1
|
Frazier M, Muli E, Patch H. Ecology and Management of African Honey Bees ( Apis mellifera L.). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:439-453. [PMID: 38270983 DOI: 10.1146/annurev-ento-020823-095359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In Africa, humans evolved as honey hunters of honey bee subspecies adapted to diverse geographical regions. Beekeeping today is practiced much as it was when Africans moved from honey hunting to beekeeping nearly 5,000 years ago, with beekeepers relying on seasonally available wild bees. Research suggests that populations are resilient, able to resist diseases and novel parasites. Distinct biomes, as well as environmental pressures, shaped the behavior and biology of these bees and in turn influenced how indigenous beekeeping developed. It appears that passive beekeeping practices that enabled free-living populations contributed to the overall resilience and health of the bee. There is clearly a need for research aimed at a deeper understanding of bee biology and the ecosystems from which they benefit and on which humans depend, as well as a growing realization that the management of these bees requires an indigenous approach that reflects a broader knowledge base and the economics of local communities and markets.
Collapse
Affiliation(s)
- Maryann Frazier
- Department of Entomology and Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Elliud Muli
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| | - Harland Patch
- Department of Entomology and Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
2
|
Blot N, Clémencet J, Jourda C, Lefeuvre P, Warrit N, Esnault O, Delatte H. Geographic population structure of the honeybee microsporidian parasite Vairimorpha (Nosema) ceranae in the South West Indian Ocean. Sci Rep 2023; 13:12122. [PMID: 37495608 PMCID: PMC10372035 DOI: 10.1038/s41598-023-38905-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
The microsporidian Vairimorpha (Nosema) ceranae is one of the most common parasites of the honeybee. A single honeybee carries many parasites and therefore multiple alleles of V. ceranae genes that seem to be ubiquitous. As a consequence, nucleotide diversity analyses have not allowed discriminating genetic structure of parasite populations. We performed deep loci-targeted sequencing to monitor the haplotype frequencies of genome markers in isolates from discontinuous territories, namely the tropical islands of the South West Indian Ocean. The haplotype frequency distribution corroborated the suspected tetraploidy of the parasite. Most major haplotypes were ubiquitous in the area but with variable frequency. While oceanic isolates differed from European and Asian outgroups, parasite populations from distinct archipelagoes also differed in their haplotype distribution. Interestingly an original and very divergent Malagasy isolate was detected. The observed population structure allowed formulating hypotheses upon the natural history of V. ceranae in this oceanic area. We also discussed the usefulness of allelic distribution assessment, using multiple informative loci or genome-wide analyses, when parasite population is not clonal within a single host.
Collapse
Affiliation(s)
- Nicolas Blot
- Université Clermont Auvergne, CNRS, "Laboratoire Microorganismes: Génome et Environnement", Clermont-Ferrand, France.
| | - Johanna Clémencet
- Université de la Réunion, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Cyril Jourda
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Pierre Lefeuvre
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Natapot Warrit
- Center of Excellence in Entomology, Department of Biology, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Olivier Esnault
- Groupement de Défense Sanitaire de la Réunion, La Plaine des Cafres, France
| | - Hélène Delatte
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 101, Antananarivo, Madagascar
| |
Collapse
|
3
|
Cruz CP, Luna P, Guevara R, Hinojosa-Díaz IA, Villalobos F, Dáttilo W. Climate and human influence shape the interactive role of the honeybee in pollination networks beyond its native distributional range. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Tanasković M, Erić P, Patenković A, Erić K, Mihajlović M, Tanasić V, Kusza S, Oleksa A, Stanisavljević L, Davidović S. Further Evidence of Population Admixture in the Serbian Honey Bee Population. INSECTS 2022; 13:180. [PMID: 35206752 PMCID: PMC8879341 DOI: 10.3390/insects13020180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023]
Abstract
Socioeconomic interests and beekeeper preferences have often taken precedence over the conservation of locally native honey bee subspecies, leading to the predominance of admixture populations in human-dominated areas. To assess the genetic diversity of contemporary managed Serbian honey bee colonies, we used 14 microsatellite loci and analyzed 237 worker bees from 46 apiaries in eight localities of northern and southern Serbia. Furthermore, we compared data for nine microsatellite loci with 338 individuals from Italy, Hungary, Poland, and Spain. The standard parameters of genetic diversity in Serbian honey bee populations were in line with other analyses, although somewhat smaller. STRUCTURE analysis showed the existence of two equally distributed genetic clusters and Analysis of molecular variances could not confirm the presence of a geographically discrete population but showed local differences. Discriminant analysis of principal components showed overlapping of worker bees from different parts of Serbia. Clear genetic differentiation can be observed when comparing all populations between geographical regions and their corresponding subspecies. The absence of the A. m. macedonica subspecies from its historical distribution range in southern Serbia as well as the lack of distinctive geographical groups suggest that selective breeding, queen import, and migratory beekeeping practices strongly influence the genetic structure and diversity of honey bees, leading to the genetic uniformization and creation of the admixture population.
Collapse
Affiliation(s)
- Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Pavle Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Katarina Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Milica Mihajlović
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.M.); (V.T.)
| | - Vanja Tanasić
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.M.); (V.T.)
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary;
| | - Andrzej Oleksa
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstanców Wielkopolskich 10, 85-090 Bydgoszcz, Poland;
| | | | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| |
Collapse
|
5
|
Tanasković M, Erić P, Patenković A, Erić K, Mihajlović M, Tanasić V, Stanisavljević L, Davidović S. MtDNA Analysis Indicates Human-Induced Temporal Changes of Serbian Honey Bees Diversity. INSECTS 2021; 12:insects12090767. [PMID: 34564207 PMCID: PMC8472511 DOI: 10.3390/insects12090767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary The western honey bee is one of the most economically and ecologically important species currently facing serious challenges in its whole area of distribution. The honey bee is a highly diverse species with about 30 subspecies that are adapted to regional climate factors, vegetation, pests and pathogens. The local populations of honey bees are rapidly changing and their diversity is constantly manipulated by beekeepers through the import of foreign queens, selection and migratory beekeeping. This manipulation may lead to such changes that honey bees lose their ability to thrive in the areas that were previously suitable for their wellbeing. To see how this human interference changed the genetic variability of native honey bee populations from Serbia, we sequenced part of the mitochondrial genome and compared them with published sequences. Our results suggest that human influence significantly changes the natural composition of honey bees in Serbia and that the presence of some previously reported subspecies could not be confirmed. Abstract Local populations of Apis mellifera are rapidly changing by modern beekeeping through the introduction of nonnative queens, selection and migratory beekeeping. To assess the genetic diversity of contemporary managed honey bees in Serbia, we sequenced mitochondrial tRNAleu-cox2 intergenic region of 241 worker bees from 46 apiaries at eight localities. Nine haplotypes were observed in our samples, with C2d being the most common and widespread. To evaluate genetic diversity patterns, we compared our data with 1696 sequences from the NCBI GenBank from neighbouring countries and Serbia. All 32 detected haplotypes belonged to the Southeast Europe lineage C, with two newly described haplotypes from our sample. The most frequent haplotype was C2d, followed by C2c and C1a. To distinguish A. m. carnica from A. m. macedonica, both previously reported in Serbia, PCR-RFLP analysis on the COI gene segment of mtDNA was used, and the result showed only the presence of A.m. carnica subspecies. An MDS plot constructed on pairwise FST values showed significant geographical stratification. Our samples are grouped together, but distant from the Serbian dataset from the GenBank. This, with the absence of A. m. macedonica subspecies from its historic range of distribution in southern Serbia, indicates that honey bee populations are changing rapidly due to the anthropogenic influence.
Collapse
Affiliation(s)
- Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
- Correspondence:
| | - Pavle Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Katarina Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Milica Mihajlović
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.M.); (V.T.)
| | - Vanja Tanasić
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.M.); (V.T.)
| | - Ljubiša Stanisavljević
- Center for Bee Research, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia;
| | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| |
Collapse
|
6
|
Jourdan‐Pineau H, Antoine G, Galataud J, Delatte H, Simiand C, Clémencet J. Estimating heritability in honeybees: Comparison of three major methods based on empirical and simulated datasets. Ecol Evol 2021. [DOI: 10.1002/ece3.7389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Hélène Jourdan‐Pineau
- CIRAD UMR PVBMT Saint‐Pierre France
- ASTRE CIRAD, INRAE Univ Montpellier Montpellier France
- CIRAD UMR ASTRE Montpellier France
- UMR PVBMT Université de La Réunion St Denis France
| | - Gaëlle Antoine
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Julien Galataud
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Hélène Delatte
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Christophe Simiand
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Johanna Clémencet
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| |
Collapse
|
7
|
Whole-Genome Sequence Analysis of Italian Honeybees ( Apis mellifera). Animals (Basel) 2021; 11:ani11051311. [PMID: 34063244 PMCID: PMC8147450 DOI: 10.3390/ani11051311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary The purpose of this study was to (i) explore the population structure of the A.m. ligustica which is widely distributed along the entire Italian peninsula, (ii) quantify the introgression of A.m. carnica, Buckfast, and A.m. mellifera bees in the two autochthonous Italian subspecies A.m. ligustica and A.m. sicula, and to (iii) to propose conservation strategies for the two autochthonous subspecies. Whole-genome sequencing was performed by Illumina technology obtaining a total of 4,380,004 single nucleotide polymorphisms (SNPs). Results of the analysis of the patterns of genetic variation allowed us to identify and subgroup bees according to their type. Morphometric analysis of 5800 worker bees was in agreement with genomic data. The investigation revealed the genetic originality of the Sicula, and in A.m. ligustica limited genetic introgression from the other breeds. Abstract At the end of the last glaciation, Apis mellifera was established in northern Europe. In Italy, Apis melliferaligustica adapted to the mild climate and to the rich floristic biodiversity. Today, with the spread of Varroa destructor and with the increasing use of pesticides in agriculture, the Ligustica subspecies is increasingly dependent on human action for its survival. In addition, the effects of globalization of bee keeping favored the spread in Italy of other honeybee stocks of A. mellifera, in particular the Buckfast bee. The purpose of this study was to characterize the Italian honeybee’s population by sequencing the whole genome of 124 honeybees. Whole genome sequencing was performed by Illumina technology, obtaining a total coverage of 3720.89X, with a mean sample coverage of 29.77X. A total of 4,380,004 SNP variants, mapping on Amel_HAv3.1 chromosomes, were detected. Results of the analysis of the patterns of genetic variation allowed us to identify and subgroup bees according to their type. The investigation revealed the genetic originality of the Sicula, and in A.m. ligustica limited genetic introgression from the other breeds. Morphometric analysis of 5800 worker bees was in agreement with genomic data.
Collapse
|
8
|
Mitochondrial DNA Suggests the Introduction of Honeybees of African Ancestry to East-Central Europe. INSECTS 2021; 12:insects12050410. [PMID: 34063321 PMCID: PMC8147603 DOI: 10.3390/insects12050410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary In Europe, a well-known threat to the conservation of honeybee diversity is the loss of genetic uniqueness of local populations due to beekeepers’ preference for a few genetic lineages. However, due to climate change and large-scale ongoing movement of breeding individuals, the expansion of bees of African origin could represent another threat. This issue has not yet been recognised in detail, although bees bearing African mitochondrial DNA occur in South-West and South Europe due to natural gene flow. Here, we determine the diversity of mitochondrial DNA in honey bees from East-Central Europe. We sequenced the COI-COII region in 427 bees sampled along two 900 km transects (17.5° N and 23° E). We found that 1.64% of bees (95% CI: 0.66–3.35%) had African mitochondrial DNA. It is unlikely that their presence in the area resulted from natural migration but instead human-driven introductions of hybrids of African ancestry. This expansion deserves more attention, as it may contribute to the dissemination of undesirable traits, parasites and diseases. Abstract In Europe, protecting the genetic diversity of Apis mellifera is usually perceived in the context of limiting the spread of the evolutionary C-lineage within the original range of the M-lineage. However, due to climate change and large-scale ongoing movement of breeding individuals, the expansion of bees from the African A-lineage could represent another threat. This issue has not yet been investigated in detail, although A-mitotypes occur in South-West and South Europe due to natural gene flow. Here, we determine the diversity of mtDNA in honey bees from East-Central Europe. We sequenced the COI-COII region in 427 bees sampled along two 900 km transects (17.5° N and 23° E). We found that 1.64% of bees (95% CI: 0.66–3.35 %) had A-mitotypes. It is unlikely that their presence in the area resulted from natural migration but instead human driven introductions of hybrids of African ancestry. This expansion deserves more attention, as it may contribute to the dissemination of undesirable traits, parasites and diseases.
Collapse
|
9
|
Coexistence of honeybees with distinct mitochondrial haplotypes and hybridised nuclear genomes on the Comoros Islands. Naturwissenschaften 2021; 108:17. [PMID: 33871694 DOI: 10.1007/s00114-021-01729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
The honeybee, Apis mellifera, is a globally distributed species that has spread both naturally and by humans across the globe resulting in many natural and secondary contact zones. The geographic isolation of honeybees is likely to contribute to genetic differentiation. Secondary contact has resulted in hybridization at the nuclear genome, but replacement of mitochondrial. Here, we used a mitochondrial marker and 19 microsatellite markers to test for the variations in the mitochondrial and nuclear genomes of honeybee populations on the Comoros islands. We used samples of 160 workers for mtDNA analysis and 288 workers from 16 colonies spread across the three islands for microsatellite analyses. Our results showed that the wild honeybee populations of the Comoros Islands consist of coexisting mitochondrial haplotypes. One belongs to the typical African A-lineage, and the other, the newly described L-lineage, is closely related to Apis koschevnikovi, a honeybee species native to Southeast Asia. The nuclear genomes show complete hybridization, high genetic diversity, and strong differentiation according to the island of origin. Based on our results, we hypothesise that the Asian honeybee could have been transported from Southeast Asia to Madagascar and Comoros via the human migrations that occurred 6000 years ago, and has hybridised with African honeybees at the nuclear genome, but maternal ancestry still can be traced using the mtDNA markers. We conclude that mtDNA plays a pivotal role in adaptation to the local environment, with both haplotypes of the honeybees of Comoros contributing significantly to the mito-nuclear coadaptation resulting in maintenance at almost equal frequency.
Collapse
|
10
|
Ilyasov RA, Lee ML, Takahashi JI, Kwon HW, Nikolenko AG. A revision of subspecies structure of western honey bee Apis mellifera. Saudi J Biol Sci 2020; 27:3615-3621. [PMID: 33304172 PMCID: PMC7714978 DOI: 10.1016/j.sjbs.2020.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 01/21/2023] Open
Abstract
The taxonomy of honey bee A. mellifera contains a lot of issues due to the specificity of population structure, features of biology and resolutions of honey bee subspecies discrimination methods. There are a lot of transition zones between ranges of subspecies which led to the gradual changes of characteristics among neighbor subspecies. The modern taxonomic pattern of honey bee Apis mellifera is given in this paper. Thirty-three distinct honey bee subspecies are distributed across all Africa (11 subspecies), Western Asia and the Middle East (9 subspecies), and Europe (13 subspecies). All honey bee subspecies are subdivided into 5 evolutionary lineages: lineage A (10 subspecies) and its sublineage Z (3 subspecies), lineage M (3 subspecies), lineage C (10 subspecies), lineage O (3 subspecies), lineage Y (1 subspecies), lineage C or O (3 subspecies).
Collapse
Affiliation(s)
- Rustem A. Ilyasov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of Russian Academy of Sciences, Prospect Oktyabrya 71, Ufa 450054, Russia
- Division of Life Sciences, Major of Biological Sciences, and Convergence Research Center for Insect Vectors, Incheon National University, Academy-ro 119, Yeonsu-gu, Songdo-dong, Incheon 22012, Republic of Korea
| | - Myeong-lyeol Lee
- Division of Life Sciences, Major of Biological Sciences, and Convergence Research Center for Insect Vectors, Incheon National University, Academy-ro 119, Yeonsu-gu, Songdo-dong, Incheon 22012, Republic of Korea
| | - Jun-ichi Takahashi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita Ward, Kyoto 603-8555, Japan
| | - Hyung Wook Kwon
- Division of Life Sciences, Major of Biological Sciences, and Convergence Research Center for Insect Vectors, Incheon National University, Academy-ro 119, Yeonsu-gu, Songdo-dong, Incheon 22012, Republic of Korea
| | - Alexey G. Nikolenko
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of Russian Academy of Sciences, Prospect Oktyabrya 71, Ufa 450054, Russia
| |
Collapse
|
11
|
Galataud J, Delatte H, Techer MA, Simiand C, Sookar P, Reynaud B, Clémencet J. When European meets African honeybees (Apis mellifera L.) in the tropics: Morphological changes related to genetics in Mauritius Island (South-West Indian Ocean). PLoS One 2020; 15:e0242053. [PMID: 33211716 PMCID: PMC7676661 DOI: 10.1371/journal.pone.0242053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
The previous genetic characterization of the honeybee population of Mauritius Island (Indian Ocean) revealed an ongoing process of hybridization between the first established African subspecies Apis mellifera unicolor and recently imported European subspecies (A. m. ligustica, A. m. carnica and A. m. mellifera). This context offers the rare opportunity to explore the influence of hybridization between African and European honeybees on phenotypic traits out of the case largely studied of the Africanized honeybee (hybrid between A. m. scutellata from South Africa and European subspecies). We thus conducted geometric morphometric analyses on forewings of 283 workers genetically characterized at 14 microsatellite loci to evaluate (1) if the morphological variability coincides well with the neutral genetic variability, (2) if hybrids exhibited rather parental, intermediate or transgressive traits, and (3) to test if fluctuating asymmetry (FA) of size and shape, as a measure of developmental stability, was elevated in hybrids (due to genetic stress) and/or European bees (due to unsuitable environment) compared to African bees. A strong concordance was found between morphological variability and neutral genetic variability, especially for wing shape, based on partial least-square analyses (PLS). However, on average, the morphology of hybrids was more similar to the African bees, potentially reflecting the dynamics and direction of introgression. Significant FA for wing size as well as wing shape was detected, suggesting the overall presence of stress during the development of the studied individuals. In contrast, the asymmetry levels do not differ according to the ancestry (African, European or hybrid) of the individuals. Therefore, if ongoing hybridization contributed to increasing the genetic and phenotypic diversity of the populations and influences its adaptive potential, developmental stressors could not be identified and their evolutionary consequences remain uncertain.
Collapse
Affiliation(s)
- Julien Galataud
- Université de La Réunion, UMR PVBMT, La Réunion, France
- * E-mail: (JG); (JC)
| | - Hélène Delatte
- CIRAD, UMR PVBMT, 7 chemin de l’Irat, Ligne Paradis, Saint Pierre, La Réunion, France
| | | | - Christophe Simiand
- CIRAD, UMR PVBMT, 7 chemin de l’Irat, Ligne Paradis, Saint Pierre, La Réunion, France
| | - Preeaduth Sookar
- Ministry of Agro Industry and Food Security, Agricultural Services, Reduit, Mauritius
| | - Bernard Reynaud
- Université de La Réunion, UMR PVBMT, Saint Pierre, La Réunion, France
| | - Johanna Clémencet
- Université de La Réunion, UMR PVBMT, La Réunion, France
- * E-mail: (JG); (JC)
| |
Collapse
|
12
|
Wragg D, Techer MA, Canale-Tabet K, Basso B, Bidanel JP, Labarthe E, Bouchez O, Le Conte Y, Clémencet J, Delatte H, Vignal A. Autosomal and Mitochondrial Adaptation Following Admixture: A Case Study on the Honeybees of Reunion Island. Genome Biol Evol 2018; 10:220-238. [PMID: 29202174 PMCID: PMC5814903 DOI: 10.1093/gbe/evx247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
The honeybee population of the tropical Reunion Island is a genetic admixture of the Apis mellifera unicolor subspecies, originally described in Madagascar, and of European subspecies, mainly A. m. carnica and A. m. ligustica, regularly imported to the island since the late 19th century. We took advantage of this population to study genetic admixing of the tropical-adapted indigenous and temperate-adapted European genetic backgrounds. Whole genome sequencing of 30 workers and 6 males from Reunion, compared with samples from Europe, Madagascar, Mauritius, Rodrigues, and the Seychelles, revealed the Reunion honeybee population to be composed on an average of 53.2 ± 5.9% A. m. unicolor nuclear genomic background, the rest being mainly composed of A. m. carnica and to a lesser extent A. m. ligustica. In striking contrast to this, only 1 out of the 36 honeybees from Reunion had a mitochondrial genome of European origin, suggesting selection has favored the A. m. unicolor mitotype, which is possibly better adapted to the island’s bioclimate. Local ancestry was determined along the chromosomes for all Reunion samples, and a test for preferential selection for the A. m. unicolor or European background revealed 15 regions significantly associated with the A. m. unicolor lineage and 9 regions with the European lineage. Our results provide insights into the long-term consequences of introducing exotic specimen on the nuclear and mitochondrial genomes of locally adapted populations.
Collapse
Affiliation(s)
- David Wragg
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France.,The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Maéva Angélique Techer
- CIRAD, UMR PVBMT, Saint Pierre, La Réunion, France.,UMR PVBMT, Université de La Réunion, Saint Pierre, La Réunion, France.,Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Kamila Canale-Tabet
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| | - Benjamin Basso
- Institut de l'abeille (ITSAP), UMT PrADE, Avignon, France
| | | | - Emmanuelle Labarthe
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, UMT PrADE, Avignon, France
| | - Johanna Clémencet
- UMR PVBMT, Université de La Réunion, Saint Pierre, La Réunion, France
| | | | - Alain Vignal
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| |
Collapse
|
13
|
Ian Lloyd Thierry S, Jaufeerally-Fakim Y, Gannon JE, Santchurn SJ. Shiga-toxigenicEscherichia coliof cattle origin represents a surveillance priority and an important human health threat to public and travelers of the Indian Ocean islands. J Food Saf 2018. [DOI: 10.1111/jfs.12454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - James Edward Gannon
- Department of Biology, Chemistry and Environmental Sciences; American University of Sharjah; Sharjah United Arab Emirates
| | | |
Collapse
|