1
|
Everard ML, Priftis K, Koumbourlis AC, Shields MD. Time to re-set our thinking about airways disease: lessons from history, the resurgence of chronic bronchitis / PBB and modern concepts in microbiology. Front Pediatr 2024; 12:1391290. [PMID: 38910961 PMCID: PMC11190372 DOI: 10.3389/fped.2024.1391290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
In contrast to significant declines in deaths due to lung cancer and cardiac disease in Westernised countries, the mortality due to 'chronic obstructive pulmonary disease' (COPD) has minimally changed in recent decades while 'the incidence of bronchiectasis' is on the rise. The current focus on producing guidelines for these two airway 'diseases' has hindered progress in both treatment and prevention. The elephant in the room is that neither COPD nor bronchiectasis is a disease but rather a consequence of progressive untreated airway inflammation. To make this case, it is important to review the evolution of our understanding of airway disease and how a pathological appearance (bronchiectasis) and an arbitrary physiological marker of impaired airways (COPD) came to be labelled as 'diseases'. Valuable insights into the natural history of airway disease can be obtained from the pre-antibiotic era. The dramatic impacts of antibiotics on the prevalence of significant airway disease, especially in childhood and early adult life, have largely been forgotten and will be revisited as will the misinterpretation of trials undertaken in those with chronic (bacterial) bronchitis. In the past decades, paediatricians have observed a progressive increase in what is termed 'persistent bacterial bronchitis' (PBB). This condition shares all the same characteristics as 'chronic bronchitis', which is prevalent in young children during the pre-antibiotic era. Additionally, the radiological appearance of bronchiectasis is once again becoming more common in children and, more recently, in adults. Adult physicians remain sceptical about the existence of PBB; however, in one study aimed at assessing the efficacy of antibiotics in adults with persistent symptoms, researchers discovered that the majority of patients exhibiting symptoms of PBB were already on long-term macrolides. In recent decades, there has been a growing recognition of the importance of the respiratory microbiome and an understanding of the ability of bacteria to persist in potentially hostile environments through strategies such as biofilms, intracellular communities, and persister bacteria. This is a challenging field that will likely require new approaches to diagnosis and treatment; however, it needs to be embraced if real progress is to be made.
Collapse
Affiliation(s)
- Mark L Everard
- Division of Paediatrics & Child Health, University of Western Australia, Perth, WA, Australia
| | - Kostas Priftis
- Allergology and Pulmonology Unit, 3rd Paediatric Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastassios C Koumbourlis
- Division of Pulmonary & Sleep Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC, United States
| | - Michael D Shields
- Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
2
|
Ademhan Tural D, Kasikci M, Eryilmaz Polat S, Ozsezen B, Hizal M, Sunman B, Nayir Büyüksahin H, Guzelkas I, Altay O, Dolgun TY, Emiralioglu N, Yalcin E, Dogru D, Kiper N, Hascelik G, Diker KS, Ozcelik U. The airway microbiota in siblings with primary ciliary dyskinesia: Related factors and correlation with clinical characteristics. Pediatr Pulmonol 2024; 59:695-706. [PMID: 38088243 DOI: 10.1002/ppul.26816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/22/2023] [Accepted: 12/03/2023] [Indexed: 02/16/2024]
Abstract
OBJECTIVES-AIM We aimed to show the composition and structure of and explore affecting factors on airway microbiota in primary ciliary dyskinesia (PCD) patients using culture-independent techniques. METHOD A cross-sectional observational study was performed. We recruited 14 PCD patients (seven pairs of siblings) and nine parents. Bacterial rDNA was extracted from sputum and nasal samples. Sputum samples were also inoculated on suitable bacteriological media. RESULTS Thirty-three separate genera were detected in sputum samples of PCD patients, and 41 were in nasal samples of parents. The detected genera were dominated by phyla Proteobacteria in PCD patients and their parents. Culture-dependent analyses could not detect many of the bacterial species detected with culture-independent analyses. There were no significant differences in alpha diversity between the siblings' pairs, and siblings' samples did not cluster together nearly as strongly as nonsiblings' samples. Patients who had no new complaints and no bacterial growth with the culture-dependent method at the time of study and patients who had no Haemophilus influenzae growth in the previous year had a significantly greater diversity (p < .05). Microbiota communities tended to cluster together by age, pulmonary exacerbation status, the existence of at least one H. influenzae growth with culture-dependent analyses in the previous year, and forced expiratory volume in 1 sec z and FEF25-75 z-scores. CONCLUSION The airway microbiota of patients with PCD have presented more diverse bacterial communities than had been indicated with culture-dependent methods. The study identifies relationships between bacterial airway microbiota composition and the clinical measures of patients. Sibling pairs have no more community similarities than nonsibling PCD patients. Our results may indicate that the patients' clinical characteristics, which determine the disease severity, might affect the PCD microbiome.
Collapse
Affiliation(s)
| | - Merve Kasikci
- Department of Statistics, Hacettepe University, Ankara, Türkiye
| | | | - Beste Ozsezen
- Department of Pediatric Pulmonology, Hacettepe University, Ankara, Türkiye
| | - Mina Hizal
- Department of Pediatric Pulmonology, Hacettepe University, Ankara, Türkiye
| | - Birce Sunman
- Department of Pediatric Pulmonology, Hacettepe University, Ankara, Türkiye
| | | | - Ismail Guzelkas
- Department of Pediatric Pulmonology, Hacettepe University, Ankara, Türkiye
| | - Ozlem Altay
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | | | - Ebru Yalcin
- Department of Pediatric Pulmonology, Hacettepe University, Ankara, Türkiye
| | - Deniz Dogru
- Department of Pediatric Pulmonology, Hacettepe University, Ankara, Türkiye
| | - Nural Kiper
- Department of Pediatric Pulmonology, Hacettepe University, Ankara, Türkiye
| | - Gulsen Hascelik
- Department of Microbiology, Hacettepe University, Ankara, Türkiye
| | | | - Ugur Ozcelik
- Department of Pediatric Pulmonology, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
Cuthbertson L, Löber U, Ish-Horowicz JS, McBrien CN, Churchward C, Parker JC, Olanipekun MT, Burke C, McGowan A, Davies GA, Lewis KE, Hopkin JM, Chung KF, O'Carroll O, Faul J, Creaser-Thomas J, Andrews M, Ghosal R, Piatek S, Willis-Owen SAG, Bartolomaeus TUP, Birkner T, Dwyer S, Kumar N, Turek EM, William Musk A, Hui J, Hunter M, James A, Dumas ME, Filippi S, Cox MJ, Lawley TD, Forslund SK, Moffatt MF, Cookson WOC. Genomic attributes of airway commensal bacteria and mucosa. Commun Biol 2024; 7:171. [PMID: 38347162 PMCID: PMC10861553 DOI: 10.1038/s42003-024-05840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Microbial communities at the airway mucosal barrier are conserved and highly ordered, in likelihood reflecting co-evolution with human host factors. Freed of selection to digest nutrients, the airway microbiome underpins cognate management of mucosal immunity and pathogen resistance. We show here the initial results of systematic culture and whole-genome sequencing of the thoracic airway bacteria, identifying 52 novel species amongst 126 organisms that constitute 75% of commensals typically present in heathy individuals. Clinically relevant genes encode antimicrobial synthesis, adhesion and biofilm formation, immune modulation, iron utilisation, nitrous oxide (NO) metabolism and sphingolipid signalling. Using whole-genome content we identify dysbiotic features that may influence asthma and chronic obstructive pulmonary disease. We match isolate gene content to transcripts and metabolites expressed late in airway epithelial differentiation, identifying pathways to sustain host interactions with microbiota. Our results provide a systematic basis for decrypting interactions between commensals, pathogens, and mucosa in lung diseases of global significance.
Collapse
Affiliation(s)
- Leah Cuthbertson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ulrike Löber
- Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Jonathan S Ish-Horowicz
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Mathematics, Imperial College London, London, UK
| | - Claire N McBrien
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Colin Churchward
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jeremy C Parker
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Conor Burke
- Department of Respiratory Medicine, Connolly Hospital, Dublin, Ireland
| | - Aisling McGowan
- Department of Respiratory Medicine, Connolly Hospital, Dublin, Ireland
| | - Gwyneth A Davies
- Population Data Science and Health Data Research UK BREATHE Hub, Swansea University Medical School, Swansea University, Swansea, UK
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Keir E Lewis
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
- Respiratory Medicine, Hywel Dda University Health Board, Llanelli, UK
| | - Julian M Hopkin
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Orla O'Carroll
- Department of Respiratory Medicine, Connolly Hospital, Dublin, Ireland
| | - John Faul
- Department of Respiratory Medicine, Connolly Hospital, Dublin, Ireland
| | - Joy Creaser-Thomas
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Mark Andrews
- Respiratory Medicine, Hywel Dda University Health Board, Llanelli, UK
| | - Robin Ghosal
- Respiratory Medicine, Hywel Dda University Health Board, Llanelli, UK
| | - Stefan Piatek
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Theda U P Bartolomaeus
- Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Till Birkner
- Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Sarah Dwyer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Nitin Kumar
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elena M Turek
- National Heart and Lung Institute, Imperial College London, London, UK
| | - A William Musk
- School of Population and Global Health, The University of Western Australia, Perth, WA, Australia
- Busselton Population Medical Research Institute, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Respiratory Medicine Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Jennie Hui
- School of Population and Global Health, The University of Western Australia, Perth, WA, Australia
- Busselton Population Medical Research Institute, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Michael Hunter
- School of Population and Global Health, The University of Western Australia, Perth, WA, Australia
- Busselton Population Medical Research Institute, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Alan James
- School of Population and Global Health, The University of Western Australia, Perth, WA, Australia
- Department of Respiratory Medicine Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Marc-Emmanuel Dumas
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- U1283 INSERM / UMR8199 CNRS, Institut Pasteur de Lille, Lille University Hospital, European Genomic Institute for Diabetes, University of Lille, Lille, France
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Sarah Filippi
- Department of Mathematics, Imperial College London, London, UK
| | - Michael J Cox
- University of Birmingham College of Medical and Dental Sciences, 150183, Institute of Microbiology and Infection, Birmingham, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sofia K Forslund
- Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin, Germany.
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany.
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | |
Collapse
|
4
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Cuthbertson L, Turner SE, Jackson A, Ranson C, Loosemore M, Kelleher P, Moffatt MF, Cookson WO, Hull JH, Shah A. Evidence of immunometabolic dysregulation and airway dysbiosis in athletes susceptible to respiratory illness. EBioMedicine 2022; 79:104024. [PMID: 35490556 PMCID: PMC9062742 DOI: 10.1016/j.ebiom.2022.104024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 11/03/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|
6
|
Song Y, Hou J, Kwok JSL, Weng H, Tang MF, Wang MH, Leung ASY, Tao KP, Wong GWK, Chan RWY, Tsui SKW, Leung TF. Whole-Genome Shotgun Sequencing for Nasopharyngeal Microbiome in Pre-school Children With Recurrent Wheezing. Front Microbiol 2022; 12:792556. [PMID: 35250904 PMCID: PMC8889122 DOI: 10.3389/fmicb.2021.792556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
Microbiome mediates early life immune deviation in asthma development. Recurrent wheeze (RW) in pre-school years is a risk factor for asthma diagnosis in school-age children. Dysbiosis exists in asthmatic airways, while its origin in pre-school years and relationship to RW is not clearly defined. This study investigated metagenomics of nasopharyngeal microbiome in pre-school children with RW. We applied whole-genome shotgun sequencing and human rhinovirus (HRV) detection on nasopharyngeal samples collected from three groups of pre-school children: (i) RW group: 16 children at-risk for asthma who were hospitalized for RW, (ii) inpatient control (IC): 18 subjects admitted for upper respiratory infection, and (iii) community control (CC): 36 children without respiratory syndromes. Sequence reads were analyzed by MetaPhlAn2 and HUMAnN2 algorithm for taxonomic and functional identification. Linear discriminant analysis effect size (LEfSe) analysis was used to identify discriminative features. We identified that Moraxella catarrhalis and Dolosigranulum pigrum were predominant species in nasopharynx. RW had lower alpha diversity (Shannon diversity index) than CC (0.48 vs. 1.07; Padj = 0.039), characterized by predominant Proteobacteria. LEfSe analysis revealed D. pigrum was the only discriminative species across groups (LDA = 5.57, P = 0.002), with its relative abundance in RW, IC, and CC being 9.6, 14.2, and 37.3%, respectively (P < 0.05). LEfSe identified five (ribo)nucleotides biosynthesis pathways to be group discriminating. Adjusting for HRV status, pre-school children with RW have lower nasopharyngeal biodiversity, which is associated with Proteobacteria predominance and lower abundance of D. pigrum. Along with discriminative pathways found in RW and CC, these microbial biomarkers help to understand RW pathogenesis.
Collapse
Affiliation(s)
- Yuping Song
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Jinpao Hou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Jamie Sui Lam Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Haoyi Weng
- Jockey Club School of Public Health and Primary Care, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Man Fung Tang
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Maggie Haitian Wang
- Jockey Club School of Public Health and Primary Care, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Agnes Sze Yin Leung
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Kin Pong Tao
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.,The Chinese University of Hong Kong-University Medical Center Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Gary Wing Kin Wong
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Renee Wan Yi Chan
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.,The Chinese University of Hong Kong-University Medical Center Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Ting Fan Leung
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.,The Chinese University of Hong Kong-University Medical Center Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| |
Collapse
|
7
|
Marsh RL, Binks MJ, Smith-Vaughan HC, Janka M, Clark S, Richmond P, Chang AB, Thornton RB. Prevalence and subtyping of biofilms present in bronchoalveolar lavage from children with protracted bacterial bronchitis or non-cystic fibrosis bronchiectasis: a cross-sectional study. THE LANCET MICROBE 2022; 3:e215-e223. [DOI: 10.1016/s2666-5247(21)00300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022] Open
|
8
|
Broderick DTJ, Waite DW, Marsh RL, Camargo CA, Cardenas P, Chang AB, Cookson WOC, Cuthbertson L, Dai W, Everard ML, Gervaix A, Harris JK, Hasegawa K, Hoffman LR, Hong SJ, Josset L, Kelly MS, Kim BS, Kong Y, Li SC, Mansbach JM, Mejias A, O’Toole GA, Paalanen L, Pérez-Losada M, Pettigrew MM, Pichon M, Ramilo O, Ruokolainen L, Sakwinska O, Seed PC, van der Gast CJ, Wagner BD, Yi H, Zemanick ET, Zheng Y, Pillarisetti N, Taylor MW. Bacterial Signatures of Paediatric Respiratory Disease: An Individual Participant Data Meta-Analysis. Front Microbiol 2021; 12:711134. [PMID: 35002989 PMCID: PMC8733647 DOI: 10.3389/fmicb.2021.711134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The airway microbiota has been linked to specific paediatric respiratory diseases, but studies are often small. It remains unclear whether particular bacteria are associated with a given disease, or if a more general, non-specific microbiota association with disease exists, as suggested for the gut. We investigated overarching patterns of bacterial association with acute and chronic paediatric respiratory disease in an individual participant data (IPD) meta-analysis of 16S rRNA gene sequences from published respiratory microbiota studies. Methods: We obtained raw microbiota data from public repositories or via communication with corresponding authors. Cross-sectional analyses of the paediatric (<18 years) microbiota in acute and chronic respiratory conditions, with >10 case subjects were included. Sequence data were processed using a uniform bioinformatics pipeline, removing a potentially substantial source of variation. Microbiota differences across diagnoses were assessed using alpha- and beta-diversity approaches, machine learning, and biomarker analyses. Results: We ultimately included 20 studies containing individual data from 2624 children. Disease was associated with lower bacterial diversity in nasal and lower airway samples and higher relative abundances of specific nasal taxa including Streptococcus and Haemophilus. Machine learning success in assigning samples to diagnostic groupings varied with anatomical site, with positive predictive value and sensitivity ranging from 43 to 100 and 8 to 99%, respectively. Conclusion: IPD meta-analysis of the respiratory microbiota across multiple diseases allowed identification of a non-specific disease association which cannot be recognised by studying a single disease. Whilst imperfect, machine learning offers promise as a potential additional tool to aid clinical diagnosis.
Collapse
Affiliation(s)
| | - David W. Waite
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Robyn L. Marsh
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Paul Cardenas
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Anne B. Chang
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Department of Respiratory and Sleep Medicine, Queensland Children’s Hospital, Brisbane, QLD, Australia
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - William O. C. Cookson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Leah Cuthbertson
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Wenkui Dai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mark L. Everard
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Alain Gervaix
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - J. Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Lucas R. Hoffman
- Seattle Children’s Hospital, Seattle, WA, United States
- Department of Pediatrics and Microbiology, University of Washington, Seattle, WA, United States
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Matthew S. Kelly
- Division of Pediatric Infectious Diseases, Duke University, Durham, NC, United States
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Yong Kong
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Shuai C. Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jonathan M. Mansbach
- Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Asuncion Mejias
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH, United States
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Laura Paalanen
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Marcos Pérez-Losada
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Melinda M. Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Maxime Pichon
- CHU Poitiers, Infectious Agents Department, Poitiers, France
- University of Poitiers, INSERM U1070, Poitiers, France
| | - Octavio Ramilo
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Lasse Ruokolainen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Patrick C. Seed
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Brandie D. Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Aurora, CO, United States
| | - Hana Yi
- School of Biosystem and Biomedical Science, Korea University, Seoul, South Korea
| | - Edith T. Zemanick
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | | | - Michael W. Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Cuthbertson L, James P, Habibi MS, Thwaites RS, Paras A, Chiu C, Openshaw PJM, Cookson WOC, Moffatt MF. Resilience of the respiratory microbiome in controlled adult RSV challenge study. Eur Respir J 2021; 59:13993003.01932-2021. [PMID: 34711536 PMCID: PMC8754103 DOI: 10.1183/13993003.01932-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/03/2021] [Indexed: 11/25/2022]
Abstract
This study of healthy adults revealed no major changes in the bacterial community of the respiratory tracts following RSV inoculation, suggesting that the adult respiratory microbial community is resilient to viral perturbationshttps://bit.ly/3AwnMc8
Collapse
Affiliation(s)
- Leah Cuthbertson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Phillip James
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Allan Paras
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
10
|
Craven V, Hausdorff WP, Everard ML. High levels of inherent variability in microbiological assessment of bronchoalveolar lavage samples from children with persistent bacterial bronchitis and healthy controls. Pediatr Pulmonol 2020; 55:3209-3214. [PMID: 32915513 DOI: 10.1002/ppul.25067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023]
Abstract
Bronchoalveolar lavage (BAL) is widely regarded as providing "gold standard" samples for infective lower respiratory tract disease. Current approaches have been adopted empirically without robust assessment and hence carry many assumptions that have not been tested. Many of these uncertainties were highlighted in the ATS pediatric bronchoscopy guidelines. This study was designed to explore some of these issues. BAL was undertaken via an endotracheal tube in 13 subjects aged less than 6 years with persistent bacterial bronchitis and five healthy controls. Aliquots of the same pooled BAL sample were sent to two accredited laboratories. one producing semiquantitative results and the other quantitative results. For five patients potentially pathogenic bacteria were grown by one laboratory but not the other, while in three more there were discrepancies in the organisms reported. Despite being symptomatic and off antibiotics, only 3 of 13 patients were reported to have a pathogen at a density of more than 1 × 104 colony forming unit. There was at best a poor correlation between semiquantitative and quantitative data. Potential pathogens were cultured in two of five control samples. The results suggest that the results from conventional microbiological assessment of BAL samples can be highly variable and that the proposal that a discrete cut-off is of value in patients with chronic endobronchial infection is probably invalid.
Collapse
Affiliation(s)
- Vanessa Craven
- Department of Respiratory Medicine, Sheffield Children's Hospital, Sheffield, UK
| | - William P Hausdorff
- PATH, Washington, DC, USA.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Mark L Everard
- Division of Child Health, Perth Children's Hospital, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
11
|
Habibi MS, Thwaites RS, Chang M, Jozwik A, Paras A, Kirsebom F, Varese A, Owen A, Cuthbertson L, James P, Tunstall T, Nickle D, Hansel TT, Moffatt MF, Johansson C, Chiu C, Openshaw PJM. Neutrophilic inflammation in the respiratory mucosa predisposes to RSV infection. Science 2020; 370:eaba9301. [PMID: 33033192 PMCID: PMC7613218 DOI: 10.1126/science.aba9301] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/30/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
The variable outcome of viral exposure is only partially explained by known factors. We administered respiratory syncytial virus (RSV) to 58 volunteers, of whom 57% became infected. Mucosal neutrophil activation before exposure was highly predictive of symptomatic RSV disease. This was associated with a rapid, presymptomatic decline in mucosal interleukin-17A (IL-17A) and other mediators. Conversely, those who resisted infection showed presymptomatic activation of IL-17- and tumor necrosis factor-related pathways. Vulnerability to infection was not associated with baseline microbiome but was reproduced in mice by preinfection chemokine-driven airway recruitment of neutrophils, which caused enhanced disease mediated by pulmonary CD8+ T cell infiltration. Thus, mucosal neutrophilic inflammation at the time of RSV exposure enhances susceptibility, revealing dynamic, time-dependent local immune responses before symptom onset and explaining the as-yet unpredictable outcomes of pathogen exposure.
Collapse
Affiliation(s)
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Agnieszka Jozwik
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Allan Paras
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Freja Kirsebom
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Augusto Varese
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Amber Owen
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Leah Cuthbertson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Phillip James
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - David Nickle
- Genetics & Pharmacogenomics, Department of Translational Medicine, Merck & Co., Inc., Boston, MA, USA
| | - Trevor T Hansel
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK.
| | | |
Collapse
|
12
|
Singanayagam A, Glanville N, Cuthbertson L, Bartlett NW, Finney LJ, Turek E, Bakhsoliani E, Calderazzo MA, Trujillo-Torralbo MB, Footitt J, James PL, Fenwick P, Kemp SV, Clarke TB, Wedzicha JA, Edwards MR, Moffatt M, Cookson WO, Mallia P, Johnston SL. Inhaled corticosteroid suppression of cathelicidin drives dysbiosis and bacterial infection in chronic obstructive pulmonary disease. Sci Transl Med 2020; 11:11/507/eaav3879. [PMID: 31462509 DOI: 10.1126/scitranslmed.aav3879] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/12/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Bacterial infection commonly complicates inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD). The mechanisms of increased infection susceptibility and how use of the commonly prescribed therapy inhaled corticosteroids (ICS) accentuates pneumonia risk in COPD are poorly understood. Here, using analysis of samples from patients with COPD, we show that ICS use is associated with lung microbiota disruption leading to proliferation of streptococcal genera, an effect that could be recapitulated in ICS-treated mice. To study mechanisms underlying this effect, we used cellular and mouse models of streptococcal expansion with Streptococcus pneumoniae, an important pathogen in COPD, to demonstrate that ICS impairs pulmonary clearance of bacteria through suppression of the antimicrobial peptide cathelicidin. ICS impairment of pulmonary immunity was dependent on suppression of cathelicidin because ICS had no effect on bacterial loads in mice lacking cathelicidin (Camp -/-) and exogenous cathelicidin prevented ICS-mediated expansion of streptococci within the microbiota and improved bacterial clearance. Suppression of pulmonary immunity by ICS was mediated by augmentation of the protease cathepsin D. Collectively, these data suggest a central role for cathepsin D/cathelicidin in the suppression of antibacterial host defense by ICS in COPD. Therapeutic restoration of cathelicidin to boost antibacterial immunity and beneficially modulate the lung microbiota might be an effective strategy in COPD.
Collapse
Affiliation(s)
- Aran Singanayagam
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK.
| | - Nicholas Glanville
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK
| | - Leah Cuthbertson
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Nathan W Bartlett
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK.,Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW 2305, Australia
| | - Lydia J Finney
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Elena Turek
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Eteri Bakhsoliani
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK
| | | | | | - Joseph Footitt
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK
| | - Phillip L James
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Peter Fenwick
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Samuel V Kemp
- Royal Brompton Hospital, Fulham Road, London SW2 6NP, UK
| | - Thomas B Clarke
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Jadwiga A Wedzicha
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Michael R Edwards
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK
| | - Miriam Moffatt
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - William O Cookson
- National Heart and Lung Institute, Brompton Campus, Imperial College London, London SW3 6LY, UK
| | - Patrick Mallia
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK
| | - Sebastian L Johnston
- National Heart and Lung Institute, St Mary's Campus, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
13
|
Kinneman L, Zhu W, Wong WSW, Clemency N, Provenzano M, Vilboux T, Jane't K, Seo-Mayer P, Levorson R, Kou M, Ascher D, Niederhuber JE, Hourigan SK. Assessment of the Urinary Microbiome in Children Younger Than 48 Months. Pediatr Infect Dis J 2020; 39:565-570. [PMID: 32091499 DOI: 10.1097/inf.0000000000002622] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The urinary tract was once thought to be sterile, and little is known about the urinary microbiome in children. This study aimed to examine the urinary microbiome of young children across demographic and clinical factors. METHODS Children <48 months, undergoing a urinary catheterization for clinical purposes in the Pediatric Emergency Department were recruited and urine samples collected. Detailed demographic and clinical information were recorded. Urine samples underwent DNA extraction and 16S ribosomal RNA gene sequencing, urinalysis and urine culture. RESULTS Eighty-five children were included; a urinary microbiome was identified in every child. Nine children had Escherichia coli urinary tract infections (UTIs) identified. Those with UTIs had a significantly decreased alpha diversity (t test, P < 0.001) and the composition of the microbiome clustered separately (P = 0.001) compared with those without UTIs. CONCLUSIONS A urinary microbiome was identified in every child, even neonates. Differences in microbiome diversity and composition were observed in patients with a standard culture positive UTI. The urinary microbiome has just begun to be explored, and the implications on long-term disease processes deserve further investigation.
Collapse
Affiliation(s)
- Lauren Kinneman
- From the Department of Pediatrics and Department of Emergency Medicine, Inova Children's Hospital, Falls Church, VA.,Division of Emergency Medicine, Department of Pediatrics, University of Washington, Seattle, WA.,Seattle Children's Emergency Department, Seattle, WA
| | - Wei Zhu
- Seattle Children's Emergency Department, Seattle, WA
| | - Wendy S W Wong
- Inova Translational Medicine Institute, Falls Church, VA.,Seattle Children's Emergency Department, Seattle, WA
| | - Nicole Clemency
- Inova Translational Medicine Institute, Falls Church, VA.,Seattle Children's Emergency Department, Seattle, WA
| | - Marina Provenzano
- Inova Translational Medicine Institute, Falls Church, VA.,Seattle Children's Emergency Department, Seattle, WA
| | | | - Keary Jane't
- Inova Translational Medicine Institute, Falls Church, VA
| | - Patricia Seo-Mayer
- From the Department of Pediatrics and Department of Emergency Medicine, Inova Children's Hospital, Falls Church, VA.,Pediatric Specialists of Virginia, Falls Church, VA
| | - Rebecca Levorson
- From the Department of Pediatrics and Department of Emergency Medicine, Inova Children's Hospital, Falls Church, VA.,Pediatric Specialists of Virginia, Falls Church, VA
| | - Maybelle Kou
- From the Department of Pediatrics and Department of Emergency Medicine, Inova Children's Hospital, Falls Church, VA
| | - David Ascher
- From the Department of Pediatrics and Department of Emergency Medicine, Inova Children's Hospital, Falls Church, VA
| | - John E Niederhuber
- Inova Translational Medicine Institute, Falls Church, VA.,Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA
| | - Suchitra K Hourigan
- From the Department of Pediatrics and Department of Emergency Medicine, Inova Children's Hospital, Falls Church, VA.,Inova Translational Medicine Institute, Falls Church, VA.,Pediatric Specialists of Virginia, Falls Church, VA
| |
Collapse
|
14
|
Gallucci M, Pedretti M, Giannetti A, di Palmo E, Bertelli L, Pession A, Ricci G. When the Cough Does Not Improve: A Review on Protracted Bacterial Bronchitis in Children. Front Pediatr 2020; 8:433. [PMID: 32850546 PMCID: PMC7426454 DOI: 10.3389/fped.2020.00433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic cough is defined as a daily cough that persists longer than 4 weeks. Protracted bacterial bronchitis (PBB) is a common cause of chronic wet cough in preschool children with no symptoms or signs of other specific causes, and resolution usually follows a 2-week course of an appropriate oral antibiotic. The diagnosis is mainly clinical; generally, no instrumental examinations are necessary. The most common bacteria found in the bronchoalveolar lavage (BAL) of subjects with PBB include Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis. Nowadays, there is no certain evidence of the role of viruses in PBB pathogenesis even though different types of viruses have been detected in BAL from children with PBB. Airway malacia is commonly found in children with PBB; conversely, there is no correlation with any type of immunodeficiency. Amoxicillin-clavulanate acid is the most commonly used antibiotic, as first-line, prolonged therapy (longer than 2 weeks) is sometimes required to cough resolution. When the wet cough does not improve despite prolonged antibiotic treatment, an underlying disease should be considered. Moreover, there are several hypotheses of a link between PBB and bronchiectasis, as recent evidences show that recurrent PBB (>3 episodes/years) and the presence of H. influenzae infection in the lower airways seem to be significant risk factors to develop bronchiectasis. This underlines the importance of a close follow-up among children with PBB and the need to consider chest computerized tomography (CT) in patients with risk factors for bronchiectasis. In this brief review, we summarize the main clinical and pathogenetic findings of PBB, a disease that may be related to a relevant morbidity and decreased quality of life during the pediatric age.
Collapse
Affiliation(s)
- Marcella Gallucci
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Melissa Pedretti
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Arianna Giannetti
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Emanuela di Palmo
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Luca Bertelli
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giampaolo Ricci
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Cuthbertson L, Oo SWC, Cox MJ, Khoo SK, Cox DW, Chidlow G, Franks K, Prastanti F, Borland ML, Gern JE, Smith DW, Bizzintino JA, Laing IA, Le Souëf PN, Moffatt MF, Cookson WOC. Viral respiratory infections and the oropharyngeal bacterial microbiota in acutely wheezing children. PLoS One 2019; 14:e0223990. [PMID: 31622414 PMCID: PMC6797130 DOI: 10.1371/journal.pone.0223990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
Acute viral wheeze in children is a major cause of hospitalisation and a major risk factor for the development of asthma. However, the role of the respiratory tract microbiome in the development of acute wheeze is unclear. To investigate whether severe wheezing episodes in children are associated with bacterial dysbiosis in the respiratory tract, oropharyngeal swabs were collected from 109 children with acute wheezing attending the only tertiary paediatric hospital in Perth, Australia. The bacterial community from these samples was explored using next generation sequencing and compared to samples from 75 non-wheezing controls. No significant difference in bacterial diversity was observed between samples from those with wheeze and healthy controls. Within the wheezing group, attendance at kindergarten or preschool was however, associated with increased bacterial diversity. Rhinovirus (RV) infection did not have a significant effect on bacterial community composition. A significant difference in bacterial richness was observed between children with RV-A and RV-C infection, however this is likely due to the differences in age group between the patient cohorts. The bacterial community within the oropharynx was found to be diverse and heterogeneous. Age and attendance at day care or kindergarten were important factors in driving bacterial diversity. However, wheeze and viral infection were not found to significantly relate to the bacterial community. Bacterial airway microbiome is highly variable in early life and its role in wheeze remains less clear than viral influences.
Collapse
Affiliation(s)
- Leah Cuthbertson
- National Heart and Lung Institute, Imperial College, London, England, United Kingdom
- * E-mail:
| | - Stephen W. C. Oo
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Respiratory Department, Perth Children’s Hospital, Perth, Western Australia
| | - Michael J. Cox
- National Heart and Lung Institute, Imperial College, London, England, United Kingdom
| | - Siew-Kim Khoo
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Des W. Cox
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Glenys Chidlow
- Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre, Perth, Australia
| | - Kimberley Franks
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Franciska Prastanti
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Meredith L. Borland
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Emergency Department, Perth Children’s Hospital, Perth, Australia
- Division of Emergency Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David W. Smith
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre, Perth, Australia
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Joelene A. Bizzintino
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Ingrid A. Laing
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Peter N. Le Souëf
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, Australia
| | - Miriam F. Moffatt
- National Heart and Lung Institute, Imperial College, London, England, United Kingdom
| | - William O. C. Cookson
- National Heart and Lung Institute, Imperial College, London, England, United Kingdom
- Royal Brompton and Harefield NHS Foundation Trust, London, England, United Kingdom
| |
Collapse
|
16
|
Till H, Kashofer K, Laje P, ElHaddad A, Warncke G, Gorkiewicz G, Singer G. Microbial Evidence in Congenital Pulmonary Airway Malformations of Young Asymptomatic Infants. J Laparoendosc Adv Surg Tech A 2019; 29:685-687. [DOI: 10.1089/lap.2017.0456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Holger Till
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Pablo Laje
- The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ahmed ElHaddad
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Gert Warncke
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | | | - Georg Singer
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
17
|
Pillarisetti N, Broderick D, Ainsworth A, Mulholland A, Wagner Mackenzie B, Middleton D, Byrnes CA, Taylor MW. The airway microbiota in children newly diagnosed with bronchiectasis largely retains its diversity. Eur Respir J 2019; 54:13993003.00704-2019. [PMID: 31023855 DOI: 10.1183/13993003.00704-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Naveen Pillarisetti
- Dept of Paediatric Respiratory Medicine, Starship Children's Hospital, Auckland, New Zealand .,Dept of Paediatrics and Child Health, University of Auckland, Auckland, New Zealand
| | - David Broderick
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Alana Ainsworth
- Dept of Paediatric Respiratory Medicine, Starship Children's Hospital, Auckland, New Zealand.,Dept of Paediatrics and Child Health, University of Auckland, Auckland, New Zealand
| | - Anna Mulholland
- Dept of Paediatric Respiratory Medicine, Starship Children's Hospital, Auckland, New Zealand.,Dept of Paediatrics and Child Health, University of Auckland, Auckland, New Zealand
| | | | - Danielle Middleton
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Catherine A Byrnes
- Dept of Paediatric Respiratory Medicine, Starship Children's Hospital, Auckland, New Zealand.,Dept of Paediatrics and Child Health, University of Auckland, Auckland, New Zealand
| | - Michael W Taylor
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Marsh RL, Smith-Vaughan HC, Chen AC, Marchant JM, Yerkovich ST, Gibson PG, Pizzutto SJ, Hodge S, Upham JW, Chang AB. Multiple Respiratory Microbiota Profiles Are Associated With Lower Airway Inflammation in Children With Protracted Bacterial Bronchitis. Chest 2019; 155:778-786. [DOI: 10.1016/j.chest.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/01/2022] Open
|
19
|
Bush A, Floto RA. Pathophysiology, causes and genetics of paediatric and adult bronchiectasis. Respirology 2019; 24:1053-1062. [PMID: 30801930 DOI: 10.1111/resp.13509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
Bronchiectasis has historically been considered to be irreversible dilatation of the airways, but with modern imaging techniques it has been proposed that 'irreversible' be dropped from the definition. The upper limit of normal for the ratio of airway to arterial development increases with age, and a developmental perspective is essential. Bronchiectasis (and persistent bacterial bronchitis, PBB) is a descriptive term and not a diagnosis, and should be the start not the end of the patient's diagnostic journey. PBB, characterized by airway infection and neutrophilic inflammation but without significant airway dilatation may be a precursor of bronchiectasis, and there are many commonalities in the microbiology and the pathology, which are reviewed in this article. A high index of suspicion is essential, and a history of chronic wet or productive cough for more than 4-8 weeks should prompt investigation. There are numerous underlying causes of bronchiectasis, although in many cases no cause is found. Causes include post-infectious, especially after tuberculosis, adenoviral or pertussis infection; aspiration syndromes; defects in host defence, which may solely affect the airways (cystic fibrosis, not considered in this review, and primary ciliary dyskinesia); and primary ciliary dyskinesia or be systemic, such as common variable immunodeficiency; genetic syndromes; and anatomical defects such as intraluminal airway obstruction (e.g. foreign body), intramural obstruction (e.g. complete cartilage rings) and external airway compression (e.g. by tuberculous lymph nodes). Identification of the underlying cause is important, because some of these conditions have specific treatments and others genetic implications for the family.
Collapse
Affiliation(s)
- Andrew Bush
- Department of Paediatrics, Imperial College, London, UK.,Department of Paediatric Respirology, National Heart and Lung Institute, London, UK.,Royal Brompton Harefield NHS Foundation Trust, London, UK
| | - R Andres Floto
- Department of Respiratory Biology, University of Cambridge, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| |
Collapse
|