1
|
Kang SW. Central Nervous System Associated With Light Perception and Physiological Responses of Birds. Front Physiol 2021; 12:723454. [PMID: 34744764 PMCID: PMC8566752 DOI: 10.3389/fphys.2021.723454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental light that animal receives (i.e., photoperiod and light intensity) has recently been shown that it affects avian central nervous system for the physiological responses to the environment by up or downregulation of dopamine and serotonin activities, and this, in turn, affects the reproductive function and stress-related behavior of birds. In this study, the author speculated on the intriguing possibility that one of the proposed avian deep-brain photoreceptors (DBPs), i.e., melanopsin (Opn4), may play roles in the dual sensory-neurosecretory cells in the hypothalamus, midbrain, and brain stem for the behavior and physiological responses of birds by light. Specifically, the author has shown that the direct light perception of premammillary nucleus dopamine-melatonin (PMM DA-Mel) neurons is associated with the reproductive activation in birds. Although further research is required to establish the functional role of Opn4 in the ventral tegmental area (VTA), dorsal raphe nucleus, and caudal raphe nucleus in the light perception and physiological responses of birds, it is an exciting prospect because the previous results in birds support this hypothesis that Opn4 in the midbrain DA and serotonin neurons may play significant roles on the light-induced welfare of birds.
Collapse
Affiliation(s)
- Seong W. Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
2
|
Manoochehri R, Jafarzadeh Shirazi MR, Akhlaghi A, Tsutsui K, Namavar MR, Zamiri MJ, Rezazadeh FM. The localization and expression of gonadotropin inhibitory hormone in the hypothalamus of turkey hens during the prepubertal, pubertal and postpubertal phases. Domest Anim Endocrinol 2021; 74:106486. [PMID: 32882449 DOI: 10.1016/j.domaniend.2020.106486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
Gonadotropin inhibitory hormone (GnIH), initially discovered in birds as a hypothalamic neuropeptide, inhibits the synthesis and release of gonadotropins by affecting GnRH neurons and gonadotropes. Therefore, it may be a key neuropeptide in reproduction in birds. The aim of the present study was to investigate the prepubertal, pubertal, and postpubertal localization of GnIH and changes in hypothalamic GnIH expression in British United Turkey hens. In prepubertal, pubertal, and postpubertal periods, the brains of turkey hens (n = 15) were removed after fixation. Sections (30 μm) were prepared from the entire hypothalamus and stained immunohistochemically against GnIH antibody. Gonadotropin inhibitory hormone-immunoreactive neurons were observed in the paraventricular nucleus. These neurons were significantly more abundant in the prepubertal turkeys than pubertal and postpubertal turkeys (P < 0.05). The results suggested that GnIH neurons have an important role in regulating the pubertal events in British United Turkey hens.
Collapse
Affiliation(s)
- R Manoochehri
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - A Akhlaghi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - K Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| | - M R Namavar
- Department of Anatomy, Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Anatomy, Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M J Zamiri
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - F M Rezazadeh
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Maney DL, Aldredge RA, Edwards SHA, James NP, Sockman KW. Time course of photo-induced Egr-1 expression in the hypothalamus of a seasonally breeding songbird. Mol Cell Endocrinol 2020; 512:110854. [PMID: 32422399 PMCID: PMC7347413 DOI: 10.1016/j.mce.2020.110854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023]
Abstract
Many seasonally-breeding species use daylength to time reproduction. Light-induced release of progonadal hormones involves a complex cascade of responses both inside and outside the brain. In this study, we used induction of early growth response 1 (Egr-1), the protein product of an immediate early gene, to evaluate the time course of such responses in male white-throated sparrows (Zonotrichia albicollis) exposed to a single long day. Induction of Egr-1 in the pars tuberalis began ∼11 h after dawn. This response was followed ∼6 h later by dramatic induction in the tuberal hypothalamus, including in the ependymal cells lining the third ventricle. At approximately the same time, Egr-1 was induced in dopaminergic and vasoactive intestinal peptide neurons in the tuberal hypothalamus and in dopaminergic neurons of the premammillary nucleus. We noted no induction in gonadotropin-releasing hormone (GnRH) neurons until 2 h after dawn the following morning. Overall, our results indicate that Egr-1 responses in GnRH neurons occur rather late during photostimulation, compared with responses in other cell populations, and that such induction may reflect new synthesis related to GnRH depletion rather than stimulation by light cues.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA.
| | - Robert A Aldredge
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Nathan P James
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Keith W Sockman
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Nakane Y, Shinomiya A, Ota W, Ikegami K, Shimmura T, Higashi SI, Kamei Y, Yoshimura T. Action spectrum for photoperiodic control of thyroid-stimulating hormone in Japanese quail (Coturnix japonica). PLoS One 2019; 14:e0222106. [PMID: 31509560 PMCID: PMC6738599 DOI: 10.1371/journal.pone.0222106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022] Open
Abstract
At higher latitudes, vertebrates exhibit a seasonal cycle of reproduction in response to changes in day-length, referred to as photoperiodism. Extended day-length induces thyroid-stimulating hormone in the pars tuberalis of the pituitary gland. This hormone triggers the local activation of thyroid hormone in the mediobasal hypothalamus and eventually induces gonadal development. In avian species, light information associated with day-length is detected through photoreceptors located in deep-brain regions. Within these regions, the expressions of multiple photoreceptive molecules, opsins, have been observed. However, even though the Japanese quail is an excellent model for photoperiodism because of its robust and significant seasonal responses in reproduction, a comprehensive understanding of photoreceptors in the quail brain remains undeveloped. In this study, we initially analyzed an action spectrum using photoperiodically induced expression of the beta subunit genes of thyroid-stimulating hormone in quail. Among seven wavelengths examined, we detected maximum sensitivity of the action spectrum at 500 nm. The low value for goodness of fit in the alignment with a template of retinal1-based photopigment, assuming a spectrum associated with a single opsin, proposed the possible involvement of multiple opsins rather than a single opsin. Analysis of gene expression in the septal region and hypothalamus, regions hypothesized to be photosensitive in quail, revealed mRNA expression of a mammal-like melanopsin in the infundibular nucleus within the mediobasal hypothalamus. However, no significant diurnal changes were observed for genes in the infundibular nucleus. Xenopus-like melanopsin, a further isoform of melanopsin in birds, was detected in neither the septal region nor the infundibular nucleus. These results suggest that the mammal-like melanopsin expressed in the infundibular nucleus within the mediobasal hypothalamus could be candidate deep-brain photoreceptive molecule in Japanese quail. Investigation of the functional involvement of mammal-like melanopsin-expressing cells in photoperiodism will be required for further conclusions.
Collapse
Affiliation(s)
- Yusuke Nakane
- Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail: , (YN); , (TY)
| | - Ai Shinomiya
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Wataru Ota
- Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Keisuke Ikegami
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Tsuyoshi Shimmura
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Fuchu Japan
| | - Sho-Ichi Higashi
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail: , (YN); , (TY)
| |
Collapse
|