1
|
Fu Z, Dong R, Zheng H, Wang Z, Cao B, Bai J, Ma M, Song Z, Pan F, Xia L, Wu Y, Zhou S, Deng D. Progress of Conductivity and Conduction Velocity Measured in Human and Animal Hearts. Rev Cardiovasc Med 2024; 25:364. [PMID: 39484125 PMCID: PMC11522836 DOI: 10.31083/j.rcm2510364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 11/03/2024] Open
Abstract
Cardiac conduction velocity (CV) is a critical electrophysiological characteristic of the myocardium, representing the speed at which electrical pulses propagate through cardiac tissue. It can be delineated into longitudinal, transverse, and normal components in the myocardium. The CV and its anisotropy ratio are crucial to both normal electrical conduction and myocardial contraction, as well as pathological conditions where it increases the risk of conduction block and reentry. This comprehensive review synthesizes longitudinal and transverse CV values from clinical and experimental studies of human infarct hearts, including findings from the isthmus and outer loop, alongside data derived from animal models. Additionally, we explore the anisotropic ratio of conductivities assessed through both animal and computational models. The review culminates with a synthesis of scientific evidence that guides the selection of CV and its corresponding conductivity in cardiac modeling, particularly emphasizing its application in patient-specific cardiac arrhythmia modeling.
Collapse
Affiliation(s)
- Zhenyin Fu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, 310058 Hangzhou, Zhejiang, China
| | - Ruiqing Dong
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, 215000 Suzhou, Jiangsu, China
| | - Huanyong Zheng
- School of Biomedical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning, China
| | - Zefeng Wang
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029 Beijing, China
| | - Boyang Cao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, 310058 Hangzhou, Zhejiang, China
| | - Jinghui Bai
- Department of General Medicine, Liaoning Cancer Hospital of Dalian University of Technology, 116024 Liaoning, China
| | - Mingxia Ma
- Department of General Medicine, Liaoning Cancer Hospital of Dalian University of Technology, 116024 Liaoning, China
| | - Zhanchun Song
- Department of Cardiology, Fushun Central Hospital, 113006 Liaoning, China
| | - Fuzhi Pan
- Department of General Medicine, Liaoning Cancer Hospital of Dalian University of Technology, 116024 Liaoning, China
| | - Ling Xia
- College of Biomedical Engineering & Instrument Science, Zhejiang University, 310058 Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, 310058 Hangzhou, Zhejiang, China
| | - Yongquan Wu
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029 Beijing, China
| | - Shijie Zhou
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Dongdong Deng
- School of Biomedical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning, China
| |
Collapse
|
2
|
Del Conte F, Montalva L, Ali L, Langeron M, Colas AE, Bonnard A. Scarless laparoscopic incisions in Pfannenstiel (slip): the first 50 cases using an innovative approach in pediatric robotic surgery. J Robot Surg 2023; 17:215-221. [PMID: 35622191 DOI: 10.1007/s11701-022-01419-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022]
Abstract
Incisions in the supra-pubic region have been described robotic-assisted surgery to improve cosmetic results in adults, but seldom in children. We aimed to present an innovative trocar placement in the Pfannenstiel line, named Scarless Laparoscopic Incisions in Pfannenstiel (SLIP), and evaluate its feasibility for various intra-abdominal procedures and its cosmetic results in pediatric robotic surgery. We performed a monocentric prospective study, including children undergoing robotic-assisted surgeries using a SLIP approach (July 2019-September 2021). Data regarding demographics, surgery, and outcome were collected and reported as median (range), or number (percentage). Cosmetic results were evaluated with a questionnaire. A SLIP approach was performed in 50 children (24 cholecystectomies, 12 splenectomies, 2 cholecystectomies and splenectomies, 9 colonic resections, 2 choledochal cyst resections, and 1 pancreatic pseudocyst resection). Median age was 11 years (2-18) and median weight 35 kg (10.5-80). Conversion to laparoscopy occurred in two cases. Post-operative complications occurred in 5 patients (10%), after colectomies [intrabdominal abscess (n = 3), stoma dysfunction (n = 1), parietal abscess (n = 1)], of which 3 (6%) required reintervention (intrabdominal abscess n = 2, stoma dysfunction n = 1). Regarding scars, 68% (n = 28) of parents and patients reported the maximal score of 5/5 for global satisfaction and 63% (n = 26) had all scars hidden by underwear. SLIP approach is versatile and can be used in supra- and infra-mesocolic robotic-assisted procedures. The low complication rate shows its safety in both young children and teenagers and does not increase operative difficulties. It results in high patient satisfaction regarding scars, and a scarless abdomen.
Collapse
Affiliation(s)
- Fulvia Del Conte
- Department of Pediatric General Surgery and Urology, Assistance Publique-Hôpitaux de Paris (AP-HP), Robert-Debré Children University Hospital, 48 boulevard Sérurier, 75019, Paris, France.,Department of Pediatric General Surgery and Urology, University Hospital, Federico II, Naples, Italy
| | - Louise Montalva
- Department of Pediatric General Surgery and Urology, Assistance Publique-Hôpitaux de Paris (AP-HP), Robert-Debré Children University Hospital, 48 boulevard Sérurier, 75019, Paris, France.,Paris Cité University, Paris, France
| | - Liza Ali
- Department of Pediatric General Surgery and Urology, Assistance Publique-Hôpitaux de Paris (AP-HP), Robert-Debré Children University Hospital, 48 boulevard Sérurier, 75019, Paris, France
| | - Margaux Langeron
- Department of Pediatric General Surgery and Urology, Assistance Publique-Hôpitaux de Paris (AP-HP), Robert-Debré Children University Hospital, 48 boulevard Sérurier, 75019, Paris, France
| | - Anne-Emmanuelle Colas
- Department of Pediatric Anesthesiology, Robert-Debré Children University Hospital, Paris, France
| | - Arnaud Bonnard
- Department of Pediatric General Surgery and Urology, Assistance Publique-Hôpitaux de Paris (AP-HP), Robert-Debré Children University Hospital, 48 boulevard Sérurier, 75019, Paris, France. .,Paris Cité University, Paris, France.
| |
Collapse
|
3
|
Choi Y, Lim B, Yang SY, Yang SH, Kwon OS, Kim D, Kim YG, Park JW, Yu HT, Kim TH, Yang PS, Uhm JS, Shim J, Kim SH, Sung JH, Choi JI, Joung B, Lee MH, Kim YH, Oh YS, Pak HN. Clinical Usefulness of Virtual Ablation Guided Catheter Ablation of Atrial Fibrillation Targeting Restitution Parameter-Guided Catheter Ablation: CUVIA-REGAB Prospective Randomized Study. Korean Circ J 2022; 52:699-711. [PMID: 35927040 PMCID: PMC9470491 DOI: 10.4070/kcj.2022.0113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVES We investigated whether extra-pulmonary vein (PV) ablation targeting a high maximal slope of the action potential duration restitution curve (Smax) improves the rhythm outcome of persistent atrial fibrillation (PeAF) ablation. METHODS In this open-label, multi-center, randomized, and controlled trial, 178 PeAF patients were randomized with 1:1 ratio to computational modeling-guided virtual Smax ablation (V-Smax) or empirical ablation (E-ABL) groups. Smax maps were generated by computational modeling based on atrial substrate maps acquired during clinical procedures in sinus rhythm. Smax maps were generated during the clinical PV isolation (PVI). The V-Smax group underwent an additional extra-PV ablation after PVI targeting the virtual high Smax sites. RESULTS After a mean follow-up period of 12.3±5.2 months, the clinical recurrence rates (25.6% vs. 23.9% in the V-Smax and the E-ABL group, p=0.880) or recurrence appearing as atrial tachycardia (11.1% vs. 5.7%, p=0.169) did not differ between the 2 groups. The post-ablation cardioversion rate was higher in the V-Smax group than E-ABL group (14.4% vs. 5.7%, p=0.027). Among antiarrhythmic drug-free patients (n=129), the AF freedom rate was 78.7% in the V-Smax group and 80.9% in the E-ABL group (p=0.776). The total procedure time was longer in the V-Smax group (p=0.008), but no significant difference was found in the major complication rates (p=0.497) between the groups. CONCLUSIONS Unlike a dominant frequency ablation, the computational modeling-guided V-Smax ablation did not improve the rhythm outcome of the PeAF ablation and had a longer procedure time. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02558699.
Collapse
Affiliation(s)
- Young Choi
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byounghyun Lim
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Song-Yi Yang
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - So-Hyun Yang
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Oh-Seok Kwon
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Daehoon Kim
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Yun Gi Kim
- Department of Cardiology, Korea University Cardiovascular Center, Korea University, Seoul, Korea
| | - Je-Wook Park
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Hee Tae Yu
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Tae-Hoon Kim
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Pil-Sung Yang
- Department of Cardiology, Bundang CHA Hospital, CHA College of Medicine, Seoul, Korea
| | - Jae-Sun Uhm
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Jamin Shim
- Department of Cardiology, Korea University Cardiovascular Center, Korea University, Seoul, Korea
| | - Sung Hwan Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Hoon Sung
- Department of Cardiology, Bundang CHA Hospital, CHA College of Medicine, Seoul, Korea
| | - Jong-Il Choi
- Department of Cardiology, Korea University Cardiovascular Center, Korea University, Seoul, Korea
| | - Boyoung Joung
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Moon-Hyoung Lee
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Young-Hoon Kim
- Department of Cardiology, Korea University Cardiovascular Center, Korea University, Seoul, Korea
| | - Yong-Seog Oh
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hui-Nam Pak
- Department of Cardiology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea.
| |
Collapse
|
4
|
Jin Z, Hwang I, Lim B, Kwon OS, Park JW, Yu HT, Kim TH, Joung B, Lee MH, Pak HN. Ablation and antiarrhythmic drug effects on PITX2+/− deficient atrial fibrillation: A computational modeling study. Front Cardiovasc Med 2022; 9:942998. [PMID: 35928934 PMCID: PMC9343754 DOI: 10.3389/fcvm.2022.942998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionAtrial fibrillation (AF) is a heritable disease, and the paired-like homeodomain transcription factor 2 (PITX2) gene is highly associated with AF. We explored the differences in the circumferential pulmonary vein isolation (CPVI), which is the cornerstone procedure for AF catheter ablation, additional high dominant frequency (DF) site ablation, and antiarrhythmic drug (AAD) effects according to the patient genotype (wild-type and PITX2+/− deficient) using computational modeling.MethodsWe included 25 patients with AF (68% men, 59.8 ± 9.8 years of age, 32% paroxysmal AF) who underwent AF catheter ablation to develop a realistic computational AF model. The ion currents for baseline AF and the amiodarone, dronedarone, and flecainide AADs according to the patient genotype (wild type and PITX2+/− deficient) were defined by relevant publications. We tested the virtual CPVI (V-CPVI) with and without DF ablation (±DFA) and three virtual AADs (V-AADs, amiodarone, dronedarone, and flecainide) and evaluated the AF defragmentation rates (AF termination or changes to regular atrial tachycardia (AT), DF, and maximal slope of the action potential duration restitution curves (Smax), which indicates the vulnerability of wave-breaks.ResultsAt the baseline AF, mean DF (p = 0.003), and Smax (p < 0.001) were significantly lower in PITX2+/− deficient patients than wild-type patients. In the overall AF episodes, V-CPVI (±DFA) resulted in a higher AF defragmentation relative to V-AADs (65 vs. 42%, p < 0.001) without changing the DF or Smax. Although a PITX2+/− deficiency did not affect the AF defragmentation rate after the V-CPVI (±DFA), V-AADs had a higher AF defragmentation rate (p = 0.014), lower DF (p < 0.001), and lower Smax (p = 0.001) in PITX2+/− deficient AF than in wild-type patients. In the clinical setting, the PITX2+/− genetic risk score did not affect the AF ablation rhythm outcome (Log-rank p = 0.273).ConclusionConsistent with previous clinical studies, the V-CPVI had effective anti-AF effects regardless of the PITX2 genotype, whereas V-AADs exhibited more significant defragmentation or wave-dynamic change in the PITX2+/− deficient patients.
Collapse
|
5
|
Jin Z, Hwang I, Lim B, Kwon OS, Park JW, Yu HT, Kim TH, Joung B, Lee MH, Pak HN. Anti-atrial Fibrillation Effects of Pulmonary Vein Isolation With or Without Ablation Gaps: A Computational Modeling Study. Front Physiol 2022; 13:846620. [PMID: 35370797 PMCID: PMC8968313 DOI: 10.3389/fphys.2022.846620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/24/2022] [Indexed: 01/22/2023] Open
Abstract
Background Although pulmonary vein isolation (PVI) gaps contribute to recurrence after atrial fibrillation (AF) catheter ablation, the mechanism is unclear. We used realistic computational human AF modeling to explore the AF wave-dynamic changes of PVI with gaps (PVI-gaps). Methods We included 40 patients (80% male, 61.0 ± 9.8 years old, 92.5% persistent AF) who underwent AF catheter ablation to develop our realistic computational AF model. We compared the effects of a complete PVI (CPVI) and PVI-gap (2-mm × 4) on the AF wave-dynamics by evaluating the dominant frequency (DF), spatial change of DF, maximal slope of the action potential duration restitution curve (Smax), and AF defragmentation rate (termination or change to atrial tachycardia), and tested the effects of additional virtual interventions and flecainide on ongoing AF with PVI-gaps. Results Compared with the baseline AF, CPVIs significantly reduced extra-PV DFs (p < 0.001), but PVI-gaps did not. COV-DFs were greater after CPVIs than PVI-gaps (p < 0.001). Neither CPVIs nor PVI-gaps changed the mean Smax. CPVIs resulted in higher AF defragmentation rates (80%) than PVI-gaps (12.5%, p < 0.001). In ongoing AF after PVI-gaps, the AF defragmentation rates after a wave-breaking gap ablation, extra-PV DF ablation, or flecainide were 60.0, 34.3, and 25.7%, respectively (p = 0.010). Conclusion CPVIs effectively reduced the DF, increased its spatial heterogeneity in extra-PV areas, and offered better anti-AF effects than extra-PV DF ablation or additional flecainide in PVI-gap conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hui-Nam Pak
- Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| |
Collapse
|
6
|
Park JW, Lim B, Hwang I, Kwon OS, Yu HT, Kim TH, Uhm JS, Joung B, Lee MH, Pak HN. Restitution Slope Affects the Outcome of Dominant Frequency Ablation in Persistent Atrial Fibrillation: CUVIA-AF2 Post-Hoc Analysis Based on Computational Modeling Study. Front Cardiovasc Med 2022; 9:838646. [PMID: 35310982 PMCID: PMC8927985 DOI: 10.3389/fcvm.2022.838646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionAlthough the dominant frequency (DF) localizes the reentrant drivers and the maximal slope of the action potential duration (APD) restitution curve (Smax) reflects the tendency of the wave-break, their interaction has never been studied. We hypothesized that DF ablation has different effects on atrial fibrillation (AF) depending on Smax.MethodsWe studied the DF and Smax in 25 realistic human persistent AF model samples (68% male, 60 ± 10 years old). Virtual AF was induced by ramp pacing measuring Smax, followed by spatiotemporal DF evaluation for 34 s. We assessed the DF ablation effect depending on Smax in both computational modeling and a previous clinical trial, CUVIA-AF (170 patients with persistent AF, 70.6% male, 60 ± 11 years old).ResultsMean DF had an inverse relationship with Smax regardless of AF acquisition timing (p < 0.001). Virtual DF ablations increased the defragmentation rate compared to pulmonary vein isolation (PVI) alone (p = 0.015), especially at Smax <1 (61.5 vs. 7.7%, p = 0.011). In post-DF ablation defragmentation episodes, DF was significantly higher (p = 0.002), and Smax was lower (p = 0.003) than in episodes without defragmentation. In the post-hoc analysis of CUVIA-AF2, we replicated the inverse relationship between Smax and DF (r = −0.47, p < 0.001), and we observed better rhythm outcomes of clinical DF ablations in addition to a PVI than of empirical PVI at Smax <1 [hazard ratio 0.45, 95% CI (0.22–0.89), p = 0.022; log-rank p = 0.021] but not at ≥ 1 (log-rank p = 0.177).ConclusionWe found an inverse relationship between DF and Smax and the outcome of DF ablation after PVI was superior at the condition with Smax <1 in both in-silico and clinical trials.
Collapse
|
7
|
Ehnesh M, Li X, Almeida TP, Chu GS, Dastagir N, Stafford PJ, Ng GA, Schlindwein FS. Evaluating spatial disparities of rotor sites and high dominant frequency regions during catheter ablation for PersAF patients targeting high dominant frequency sites using non-contacting mapping. Front Physiol 2022; 13:946718. [PMID: 35991173 PMCID: PMC9389330 DOI: 10.3389/fphys.2022.946718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose: Several studies have emphasised the significance of high dominant frequency (HDF) and rotors in the perpetuation of AF. However, the co-localisation relationship between both attributes is not completely understood yet. In this study, we aim to evaluate the spatial distributions of HDF regions and rotor sites within the left atrium (LA) pre and post HDF-guided ablation in PersAF. Methods: This study involved 10 PersAF patients undergoing catheter ablation targeting HDF regions in the LA. 2048-channels of atrial electrograms (AEG) were collected pre- and post-ablation using a non-contact array (EnSite, Abbott). The dominant frequency (DF, 4-10 Hz) areas with DF within 0.25 Hz of the maximum out of the 2048 points were defined as "high" DF (HDF). Rotors were defined as PSs that last more than 100 ms and at a similar location through subsequent phase frames over time. Results: The results indicated an extremely poor spatial correlation between the HDF regions and sites of the rotors in pre-versus post-ablation cases for the non-terminated (pre: CORR; 0.05 ± 0.17. vs. post: CORR; -0.030 ± 0.19, and with terminated patients (pre: CORR; -0.016 ± 0.03. post: CORR; -0.022 ± 0.04). Rotors associated with AF terminations had a long-lasting life-span post-ablation (non-terminated vs. terminated 120.7 ± 6.5 ms vs. 139.9 ± 39.8 ms), high core velocity (1.35 ± 1.3 mm/ms vs. 1.32 ± 0.9 mm/ms), and were less meandering (3.4 ± 3.04 mm vs. 1.5 ± 1.2 mm). Although the results suggest a poor spatial overlapping between rotors' sites and sites of AFCL changes in terminated and non-terminated patients, a higher correlation was determined in terminated patients (spatial overlapping percentage pre: 25 ± 4.2% vs. 17 ± 3.8% vs. post: 8 ± 4.2% vs. 3.7 ± 1.7% p < 0.05, respectively). Conclusion: Using non-contact AEG, it was noted that the correlation is poor between the spatial distribution of HDF regions and sites of rotors. Rotors were longer-lasting, faster and more stationary in patients with AF termination post-ablation. Rotors sites demonstrated poor spatial overlapping with sites of AFCL changes that lead to AF termination.
Collapse
Affiliation(s)
- Mahmoud Ehnesh
- School of Engineering, University of Leicester, Leicester, United Kingdom
- *Correspondence: Mahmoud Ehnesh,
| | - Xin Li
- School of Engineering, University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom
| | - Tiago P. Almeida
- School of Engineering, University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom
| | - Gavin S. Chu
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Leicester, United Kingdom
| | - Nawshin Dastagir
- Department of International Foundation, Massey University, Auckland, New Zealand
| | - Peter J. Stafford
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Leicester, United Kingdom
| | - G. André Ng
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Leicester, United Kingdom
| | - Fernando S. Schlindwein
- School of Engineering, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Leicester, United Kingdom
| |
Collapse
|
8
|
Baek YS, Kwon OS, Lim B, Yang SY, Park JW, Yu HT, Kim TH, Uhm JS, Joung B, Kim DH, Lee MH, Park J, Pak HN. Clinical Outcomes of Computational Virtual Mapping-Guided Catheter Ablation in Patients With Persistent Atrial Fibrillation: A Multicenter Prospective Randomized Clinical Trial. Front Cardiovasc Med 2021; 8:772665. [PMID: 34957255 PMCID: PMC8692944 DOI: 10.3389/fcvm.2021.772665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Clinical recurrence after atrial fibrillation catheter ablation (AFCA) still remains high in patients with persistent AF (PeAF). We investigated whether an extra-pulmonary vein (PV) ablation targeting the dominant frequency (DF) extracted from electroanatomical map–integrated AF computational modeling improves the AFCA rhythm outcome in patients with PeAF. Methods: In this open-label, randomized, multi-center, controlled trial, 170 patients with PeAF were randomized at a 1:1 ratio to the computational modeling-guided virtual DF (V-DF) ablation and empirical PV isolation (E-PVI) groups. We generated a virtual dominant frequency (DF) map based on the atrial substrate map obtained during the clinical AF ablation procedure using computational modeling. This simulation was possible within the time of the PVI procedure. V-DF group underwent extra-PV V-DF ablation in addition to PVI, but DF information was not notified to the operators from the core lab in the E-PVI group. Results: After a mean follow-up period of 16.3 ± 5.3 months, the clinical recurrence rate was significantly lower in the V-DF than with E-PVI group (P = 0.018, log-rank). Recurrences appearing as atrial tachycardias (P = 0.145) and the cardioversion rates (P = 0.362) did not significantly differ between the groups. At the final follow-up, sinus rhythm was maintained without any AADs in 74.7% in the V-DF group and 48.2% in the E-PVI group (P < 0.001). No significant difference was found in the major complication rates (P = 0.489) or total procedure time (P = 0.513) between the groups. The V-DF ablation was independently associated with a reduced AF recurrence after AFCA [hazard ratio: 0.51 (95% confidence interval: 0.30–0.88); P = 0.016]. Conclusions: The computational modeling-guided V-DF ablation improved the rhythm outcome of AFCA in patients with PeAF. Clinical Trial Registration: Clinical Research Information Service, CRIS identifier: KCT0003613.
Collapse
Affiliation(s)
- Yong-Soo Baek
- Inha University College of Medicine and Inha University Hospital, Incheon, South Korea
| | - Oh-Seok Kwon
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, South Korea
| | - Byounghyun Lim
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, South Korea
| | - Song-Yi Yang
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, South Korea
| | - Je-Wook Park
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, South Korea
| | - Hee Tae Yu
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, South Korea
| | - Tae-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, South Korea
| | - Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, South Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, South Korea
| | - Dae-Hyeok Kim
- Inha University College of Medicine and Inha University Hospital, Incheon, South Korea
| | - Moon-Hyoung Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, South Korea
| | - Junbeom Park
- Division of Cardiology, Department of Internal Medicine, Ewha Womans University, Seoul, South Korea
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, South Korea
| | | |
Collapse
|
9
|
Kwon OS, Hwang I, Pak HN. Computational modeling of atrial fibrillation. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2021. [DOI: 10.1186/s42444-021-00051-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractWith the aging society, the prevalence of atrial fibrillation (AF) continues to increase. Nevertheless, there are still limitations in antiarrhythmic drugs (AAD) or catheter interventions for AF. If it is possible to predict the outcome of AF management according to various AADs or ablation lesion sets through computational modeling, it will be of great clinical help. AF computational modeling has been utilized for in-silico arrhythmia research and enabled high-density entire chamber mapping, reproducible condition control, virtual intervention, not possible clinically or experimentally, in-depth mechanistic research. With the recent development of computer science and technology, more sophisticated and faster computational modeling has become available for clinical application. In particular, it can be applied to determine the extra-PV target of persistent AF catheter ablation or to select the AAD with the best effect. AF computational modeling combined with artificial intelligence is expected to contribute to precision medicine for more diverse uses in the future. Therefore, in this review, we will deal with the history, development, and various applications of computation modeling.
Collapse
|
10
|
Wu Z, Liu Y, Tong L, Dong D, Deng D, Xia L. Current progress of computational modeling for guiding clinical atrial fibrillation ablation. J Zhejiang Univ Sci B 2021; 22:805-817. [PMID: 34636185 DOI: 10.1631/jzus.b2000727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Atrial fibrillation (AF) is one of the most common arrhythmias, associated with high morbidity, mortality, and healthcare costs, and it places a significant burden on both individuals and society. Anti-arrhythmic drugs are the most commonly used strategy for treating AF. However, drug therapy faces challenges because of its limited efficacy and potential side effects. Catheter ablation is widely used as an alternative treatment for AF. Nevertheless, because the mechanism of AF is not fully understood, the recurrence rate after ablation remains high. In addition, the outcomes of ablation can vary significantly between medical institutions and patients, especially for persistent AF. Therefore, the issue of which ablation strategy is optimal is still far from settled. Computational modeling has the advantages of repeatable operation, low cost, freedom from risk, and complete control, and is a useful tool for not only predicting the results of different ablation strategies on the same model but also finding optimal personalized ablation targets for clinical reference and even guidance. This review summarizes three-dimensional computational modeling simulations of catheter ablation for AF, from the early-stage attempts such as Maze III or circumferential pulmonary vein isolation to the latest advances based on personalized substrate-guided ablation. Finally, we summarize current developments and challenges and provide our perspectives and suggestions for future directions.
Collapse
Affiliation(s)
- Zhenghong Wu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yunlong Liu
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lv Tong
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Diandian Dong
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dongdong Deng
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ling Xia
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
11
|
Azzolin L, Schuler S, Dössel O, Loewe A. A Reproducible Protocol to Assess Arrhythmia Vulnerability in silico: Pacing at the End of the Effective Refractory Period. Front Physiol 2021; 12:656411. [PMID: 33868025 PMCID: PMC8047415 DOI: 10.3389/fphys.2021.656411] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 01/31/2023] Open
Abstract
In both clinical and computational studies, different pacing protocols are used to induce arrhythmia and non-inducibility is often considered as the endpoint of treatment. The need for a standardized methodology is urgent since the choice of the protocol used to induce arrhythmia could lead to contrasting results, e.g., in assessing atrial fibrillation (AF) vulnerabilty. Therefore, we propose a novel method-pacing at the end of the effective refractory period (PEERP)-and compare it to state-of-the-art protocols, such as phase singularity distribution (PSD) and rapid pacing (RP) in a computational study. All methods were tested by pacing from evenly distributed endocardial points at 1 cm inter-point distance in two bi-atrial geometries. Seven different atrial models were implemented: five cases without specific AF-induced remodeling but with decreasing global conduction velocity and two persistent AF cases with an increasing amount of fibrosis resembling different substrate remodeling stages. Compared with PSD and RP, PEERP induced a larger variety of arrhythmia complexity requiring, on average, only 2.7 extra-stimuli and 3 s of simulation time to initiate reentry. Moreover, PEERP and PSD were the protocols which unveiled a larger number of areas vulnerable to sustain stable long living reentries compared to RP. Finally, PEERP can foster standardization and reproducibility, since, in contrast to the other protocols, it is a parameter-free method. Furthermore, we discuss its clinical applicability. We conclude that the choice of the inducing protocol has an influence on both initiation and maintenance of AF and we propose and provide PEERP as a reproducible method to assess arrhythmia vulnerability.
Collapse
Affiliation(s)
- Luca Azzolin
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | | |
Collapse
|
12
|
Kwon OS, Lee J, Lim S, Park JW, Han HJ, Yang SH, Hwang I, Yu HT, Kim TH, Uhm JS, Joung B, Lee MH, Pak HN. Accuracy and clinical feasibility of 3D-myocardial thickness map measured by cardiac computed tomogram. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2020. [DOI: 10.1186/s42444-020-00020-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Although myocardial thickness is an important variable for therapeutic catheter ablation of cardiac arrhythmias, quantification of wall thickness has been overlooked. We developed a software (AMBER) that measures 3D-myocardial thickness using a cardiac computed tomogram (CT) image, verified its accuracy, and tested its clinical feasibility.
Methods
We generated 3D-thickness maps by calculating wall thickness (WT) from the CT images of 120 patients’ hearts and a 3D-phantom model (PhM). The initial vector field of the Laplace equation was oriented to calculate WT with the field lines derived from the 3D mesh. We demonstrate the robustness of the Laplace WT algorithm by comparing with the real thickness of 3D-PhM, echocardiographically measured left ventricular (LV) WT, and regional left atrial (LA) WT reported from previous studies. We conducted a pilot case of catheter ablation for atrial fibrillation (AF) utilizing real-time LAWT map-guided radiofrequency (RF) energy titration.
Results
AMBER 3D-WT had excellent correlations with the real thickness of the PhM (R = 0.968, p < 0.001) and echocardiographically measured LVWT in 10 patients (R = 0.656, p = 0.007). AMBER 3D-LAWT (n = 120) showed a relatively good match with 12 previously reported regional LAWT. We successfully conducted pilot AF ablation utilizing AMBER 3D-LAWT map-guided real-time RF energy titration.
Conclusion
We developed and verified an AMBER 3D-cardiac thickness map measured by cardiac CT images for LAWT and LVWT, and tested its feasibility for RF energy titration during clinical catheter ablation.
Collapse
|
13
|
Lim B, Park JW, Hwang M, Ryu AJ, Kim IS, Yu HT, Joung B, Shim EB, Pak HN. Electrophysiological significance of the interatrial conduction including cavo-tricuspid isthmus during atrial fibrillation. J Physiol 2020; 598:3597-3612. [PMID: 32495943 DOI: 10.1113/jp279660] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/29/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The interatrial conduction, including Bachmann's bundle, the posterior septal conduction, the anterior septal conduction, and the cavo-tricuspid isthmus, contributes to the maintenance mechanisms of atrial fibrillation in a 3D biatrial model. The interatrial conduction ablation including a cavo-tricuspid isthmus ablation significantly affects the wave dynamics of atrial fibrillation (AF) and facilitates the AF termination or atrial tachycardia conversion of the AF after the circumferential pulmonary vein isolation. Additional cavo-tricuspid isthmus ablation after the circumferential pulmonary vein isolation improves long-term rhythm outcome after clinical AF catheter ablation. ABSTRACT Although it is known that atrial fibrillation (AF) is mainly a left atrial (LA) disease, the role of the right atrium (RA) and interatrial conduction (IAC), including the cavo-tricuspid isthmus (CTI), has not been clearly defined. We tested AF wave dynamics with or without IAC in computational modelling and the rhythm outcome of AF catheter ablation (AFCA) including CTI ablation in clinical cohort data. We evaluated the dominant frequency (DF) in 3D biatrial AF simulations integrated with 3D-computed tomograms obtained from 10 patients. The IAC was implemented at Bachmann's bundle, posterior septum and the CTI. After virtual circumferential PV isolation (CPVI), we disconnected IACs one by one, and observed the wave dynamics. We compared the long-term rhythm outcome after CPVI alone and additional CTI ablation in 846 patients with AFCA. LA-DF was higher than RA-DF in AF (P < 0.001). After CPVI, the DF decreased significantly by additional IAC ablation (P = 0.003), especially in the LA (P = 0.016). The amount of DF reduction (P = 0.020) and rates of AF termination (P < 0.001) or AT conversion (P = 0.021) were significantly higher after IAC ablations including CTI than those without. In clinical AFCA, the AF recurrence rate was significantly lower in patients with additional CTI ablation than CPVI alone during 25 ± 20 months' follow-up (hazard ratio 0.60 [0.46-0.79], P < 0.001, Log rank P < 0.001). IAC contributes to the maintenance mechanism of AF, and IAC including CTI ablation affects AF wave dynamics, facilitating AF termination in 3D biatrial modelling. Additional CTI ablation after CPVI improves the long-term rhythm outcome in clinical AFCA, potentially in a paroxysmal type with accompanying atrial flutter, or atrial dimension close to normal.
Collapse
Affiliation(s)
- Byounghyun Lim
- Yonsei University Health System, Seoul, Republic of Korea
| | - Je-Wook Park
- Yonsei University Health System, Seoul, Republic of Korea
| | | | - Ah-Jin Ryu
- Silicon Sapiens, Seoul, Republic of Korea
| | - In Soo Kim
- Yonsei University Health System, Seoul, Republic of Korea
| | - Hee Tae Yu
- Yonsei University Health System, Seoul, Republic of Korea
| | - Boyoung Joung
- Yonsei University Health System, Seoul, Republic of Korea
| | | | - Hui-Nam Pak
- Yonsei University Health System, Seoul, Republic of Korea
| |
Collapse
|
14
|
Lim B, Kim J, Hwang M, Song JS, Lee JK, Yu HT, Kim TH, Uhm JS, Joung B, Lee MH, Pak HN. In situ procedure for high-efficiency computational modeling of atrial fibrillation reflecting personal anatomy, fiber orientation, fibrosis, and electrophysiology. Sci Rep 2020; 10:2417. [PMID: 32051487 PMCID: PMC7016008 DOI: 10.1038/s41598-020-59372-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
We previously reported the feasibility and efficacy of a simulation-guided clinical catheter ablation of atrial fibrillation (AF) in an in-silico AF model. We developed a highly efficient realistic AF model reflecting the patient endocardial voltage and local conduction and tested its clinical feasibility. We acquired > 500 endocardial bipolar electrograms during right atrial pacing at the beginning of the AF ablation procedures. Based on the clinical bipolar electrograms, we generated simulated voltage maps by applying fibrosis and local activation maps adjusted for the fiber orientation. The software's accuracy (CUVIA2.5) was retrospectively tested in 17 patients and feasibility prospectively in 10 during clinical AF ablation. Results: We found excellent correlations between the clinical and simulated voltage maps (R = 0.933, p < 0.001) and clinical and virtual local conduction (R = 0.958, p < 0.001). The proportion of virtual local fibrosis was 15.4, 22.2, and 36.9% in the paroxysmal AF, persistent AF, and post-pulmonary vein isolation (PVI) states, respectively. The reconstructed virtual bipolar electrogram exhibited a relatively good similarities of morphology to the local clinical bipolar electrogram (R = 0.60 ± 0.08, p < 0.001). Feasibility testing revealed an in situ procedural computing time from the clinical data acquisition to wave-dynamics analyses of 48.2 ± 4.9 min. All virtual analyses were successfully achieved during clinical PVI procedures. We developed a highly efficient, realistic, in situ procedural simulation model reflective of individual anatomy, fiber orientation, fibrosis, and electrophysiology that can be applied during AF ablation.
Collapse
Affiliation(s)
- Byounghyun Lim
- Yonsei University Health System, Seoul, Republic of Korea
| | - Jaehyeok Kim
- Yonsei University Health System, Seoul, Republic of Korea
| | - Minki Hwang
- Yonsei University Health System, Seoul, Republic of Korea
| | - Jun-Seop Song
- Yonsei University Health System, Seoul, Republic of Korea
| | - Jung Ki Lee
- Yonsei University Health System, Seoul, Republic of Korea
| | - Hee-Tae Yu
- Yonsei University Health System, Seoul, Republic of Korea
| | - Tae-Hoon Kim
- Yonsei University Health System, Seoul, Republic of Korea
| | - Jae-Sun Uhm
- Yonsei University Health System, Seoul, Republic of Korea
| | - Boyoung Joung
- Yonsei University Health System, Seoul, Republic of Korea
| | - Moon-Hyung Lee
- Yonsei University Health System, Seoul, Republic of Korea
| | - Hui-Nam Pak
- Yonsei University Health System, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Jin MN, Lim B, Yu HT, Kim TH, Uhm JS, Joung B, Lee MH, Hwang C, Pak HN. Long-Term Outcome of Additional Superior Vena Cava to Septal Linear Ablation in Catheter Ablation of Atrial Fibrillation. J Am Heart Assoc 2019; 8:e013985. [PMID: 31726961 PMCID: PMC6915280 DOI: 10.1161/jaha.119.013985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background We previously reported the benefit of linear ablation from the superior vena cava to the right atrial septum (SVC‐L) within a year after circumferential pulmonary vein isolation (CPVI) in patients with paroxysmal atrial fibrillation (AF). We explored the long‐term effects of SVC‐L and its potential related mechanisms. Methods and Results Among 2140 consecutive patients with AF ablation, we included 614 patients (73.3% male, aged 57.8±10.7 years, 13.7% with persistent AF) who did not undergo an extra–pulmonary vein left atrial ablation after propensity score matching; of those, 307 had additional SVC‐L and 307 had CPVI alone. We evaluated the heart rate variability and computational modeling study to explore mechanisms. Although the procedure time was longer in the SVC‐L group than the CPVI group (P<0.001), the complication rates did not differ (P=0.560). During 40.5±24.4 months of follow‐up, the rhythm outcome was significantly better in the SVC‐L group than the CPVI group (log rank, P<0.001). At 2‐year follow‐up of heart rate variability, a significantly higher mean heart rate (P=0.018) and a lower ratio of low/high‐frequency components (P=0.011) were found with SVC‐L than CPVI alone. In realistic in silico biatrial modeling, which reflected the electroanatomies of 10 patients, SVC‐L significantly reduced biatrial dominant frequency compared with CPVI alone (P<0.001) and increased AF termination and defragmentation rates (P=0.033). Conclusions SVC‐L ablation in addition to CPVI significantly improved the long‐term rhythm outcome over 2 years after AF catheter ablation by mechanisms involving autonomic modulation and AF organization.
Collapse
Affiliation(s)
- Moo-Nyun Jin
- Division of Cardiology Yonsei University Health System Seoul Republic of Korea
| | - Byounghyun Lim
- Division of Cardiology Yonsei University Health System Seoul Republic of Korea
| | - Hee Tae Yu
- Division of Cardiology Yonsei University Health System Seoul Republic of Korea
| | - Tae-Hoon Kim
- Division of Cardiology Yonsei University Health System Seoul Republic of Korea
| | - Jae-Sun Uhm
- Division of Cardiology Yonsei University Health System Seoul Republic of Korea
| | - Boyoung Joung
- Division of Cardiology Yonsei University Health System Seoul Republic of Korea
| | - Moon-Hyoung Lee
- Division of Cardiology Yonsei University Health System Seoul Republic of Korea
| | | | - Hui-Nam Pak
- Division of Cardiology Yonsei University Health System Seoul Republic of Korea
| |
Collapse
|
16
|
Aronis KN, Ali RL, Liang JA, Zhou S, Trayanova NA. Understanding AF Mechanisms Through Computational Modelling and Simulations. Arrhythm Electrophysiol Rev 2019; 8:210-219. [PMID: 31463059 PMCID: PMC6702471 DOI: 10.15420/aer.2019.28.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
AF is a progressive disease of the atria, involving complex mechanisms related to its initiation, maintenance and progression. Computational modelling provides a framework for integration of experimental and clinical findings, and has emerged as an essential part of mechanistic research in AF. The authors summarise recent advancements in development of multi-scale AF models and focus on the mechanistic links between alternations in atrial structure and electrophysiology with AF. Key AF mechanisms that have been explored using atrial modelling are pulmonary vein ectopy; atrial fibrosis and fibrosis distribution; atrial wall thickness heterogeneity; atrial adipose tissue infiltration; development of repolarisation alternans; cardiac ion channel mutations; and atrial stretch with mechano-electrical feedback. They review modelling approaches that capture variability at the cohort level and provide cohort-specific mechanistic insights. The authors conclude with a summary of future perspectives, as envisioned for the contributions of atrial modelling in the mechanistic understanding of AF.
Collapse
Affiliation(s)
- Konstantinos N Aronis
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins UniversityBaltimore, MD, US
- Division of Cardiology, Johns Hopkins HospitalBaltimore, MD, US
| | - Rheeda L Ali
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins UniversityBaltimore, MD, US
| | - Jialiu A Liang
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins UniversityBaltimore, MD, US
| | - Shijie Zhou
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins UniversityBaltimore, MD, US
| | - Natalia A Trayanova
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins UniversityBaltimore, MD, US
| |
Collapse
|
17
|
Bellmann B, Zettwitz M, Lin T, Ruppersberg P, Guttmann S, Tscholl V, Nagel P, Roser M, Landmesser U, Rillig A. Velocity characteristics of atrial fibrillation sources determined by electrographic flow mapping before and after catheter ablation. Int J Cardiol 2019; 286:56-60. [PMID: 30773268 DOI: 10.1016/j.ijcard.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Electrographic-Flow-(EGF)-Mapping is a novel method to identify Atrial Fibrillation (AF) drivers. Sources of excitation during AF can be characterized and monitored. OBJECTIVE The aim of this study was to evaluate the correlation between velocity of EGF around a respective AF source and its spatial variability (SV) and stability (SST). METHODS 25 patients with AF were included in this study (persistent: n = 24, long-standing persistent: n = 1; mean age 70 ± 8.3 years, male: n = 17). Focal impulse and Rotor-Mapping (FIRM) was performed in addition to pulmonary vein isolation. One-minute epochs of unipolar electrograms recorded via a 64-pole basket catheter in both atria were re-analyzed with EGF-Mapping. SST was calculated as the percentage of time in which a source was detected. RESULTS AF sources identified with EGF-Mapping show a wide range of SV during 1 min covering between 0.12% and 38% of the recorded basket-catheter surface. The 12 atria where the sources showed highest temporal stability (TS; between 34% and 97% of 1 min recorded) and those 12 with the lowest TS (between 11 and 20%) differed significantly in their velocities (17.8 el/s vs 12.2 el/s; p < 0.01). In 11 atria ablation caused an average decrease of TS by 47% and of velocity by 27% while SV more than doubled. CONCLUSION Less stable AF-sources with high spatial variability showed reduced excitation propagation velocity while stable AF sources displayed a high average velocity in their vicinity. Importantly, catheter ablation reduced stability of sources and velocity suggesting a role of these parameters in guidance of ablation. CONDENSED ABSTRACT Electrographic Flow (EGF)-Mapping is a novel method to identify Atrial Fibrillation (AF) drivers based on modeling of an electrical potential surface and subsequent flow analysis. Sources of excitation during AF can be characterized and monitored. The aim of this study was to evaluate the correlation between velocity of EGF around a respective AF source and its spatial variability and stability. Less stable AF sources with high spatial variability showed reduced excitation propagation velocity while very stable AF sources displayed a high average velocity in their vicinity. Catheter ablation reduced stability of sources and velocity.
Collapse
Affiliation(s)
- Barbara Bellmann
- Charité, Universitätsmedizin Berlin, University Hospital, Department of Cardiology, Germany; Uniklinik Köln, Department of Electrophysiology, Germany
| | - Marit Zettwitz
- Charité, Universitätsmedizin Berlin, University Hospital, Department of Cardiology, Germany
| | - Tina Lin
- Heartcare Victoria, Melbourne, Australia
| | | | - Selma Guttmann
- Charité, Universitätsmedizin Berlin, University Hospital, Department of Cardiology, Germany
| | - Verena Tscholl
- Charité, Universitätsmedizin Berlin, University Hospital, Department of Cardiology, Germany
| | - Patrick Nagel
- Charité, Universitätsmedizin Berlin, University Hospital, Department of Cardiology, Germany
| | - Mattias Roser
- Charité, Universitätsmedizin Berlin, University Hospital, Department of Cardiology, Germany
| | - Ulf Landmesser
- Charité, Universitätsmedizin Berlin, University Hospital, Department of Cardiology, Germany
| | - Andreas Rillig
- Charité, Universitätsmedizin Berlin, University Hospital, Department of Cardiology, Germany.
| |
Collapse
|
18
|
Aronis KN, Ali R, Trayanova NA. The role of personalized atrial modeling in understanding atrial fibrillation mechanisms and improving treatment. Int J Cardiol 2019; 287:139-147. [PMID: 30755334 DOI: 10.1016/j.ijcard.2019.01.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Atrial fibrillation is the most common arrhythmia in humans and is associated with high morbidity, mortality and health-related expenses. Computational approaches have been increasingly utilized in atrial electrophysiology. In this review we summarize the recent advancements in atrial fibrillation modeling at the organ scale. Multi-scale atrial models now incorporate high level detail of atrial anatomy, tissue ultrastructure and fibrosis distribution. We provide the state-of-the art methodologies in developing personalized atrial fibrillation models with realistic geometry and tissue properties. We then focus on the use of multi-scale atrial models to gain mechanistic insights in AF. Simulations using atrial models have provided important insight in the mechanisms underlying AF, showing the importance of the atrial fibrotic substrate and altered atrial electrophysiology in initiation and maintenance of AF. Last, we summarize the translational evidence that supports incorporation of computational modeling in clinical practice for development of personalized treatment strategies for patients with AF. In early-stages clinical studies, AF models successfully identify patients where pulmonary vein isolation alone is not adequate for treatment of AF and suggest novel targets for ablation. We conclude with a summary of the future developments envisioned for the field of atrial computational electrophysiology.
Collapse
Affiliation(s)
- Konstantinos N Aronis
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Rheeda Ali
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
19
|
Kim IS, Lim B, Shim J, Hwang M, Yu HT, Kim TH, Uhm JS, Kim SH, Joung B, On YK, Oh S, Oh YS, Nam GB, Lee MH, Shim EB, Kim YH, Pak HN. Clinical Usefulness of Computational Modeling-Guided Persistent Atrial Fibrillation Ablation: Updated Outcome of Multicenter Randomized Study. Front Physiol 2019; 10:1512. [PMID: 31920716 PMCID: PMC6928133 DOI: 10.3389/fphys.2019.01512] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Catheter ablation of persistent atrial fibrillation (AF) is still challenging, no optimal extra-pulmonary vein lesion set is known. We previously reported the clinical feasibility of computational modeling-guided AF catheter ablation. METHODS We randomly assigned 118 patients with persistent AF (77.8% men, age 60.8 ± 9.9 years) to the computational modeling-guided ablation group (53 patients) and the empirical ablation group (55 patients) based on the operators' experience. For virtual ablation, four virtual linear and one electrogram-guided lesion sets were tested on patient heart computed tomogram-based models, and the lesion set with the fastest termination time was reported to the operator in the modeling-guided ablation group. The primary outcome was freedom from atrial tachyarrhythmias lasting longer than 30 s after a single procedure. RESULTS During 31.5 ± 9.4 months, virtual ablation procedures were available in 95.2% of the patients (108/118). Clinical recurrence rate was significantly lower after a modeling-guided ablation than after an empirical ablation (20.8 vs. 40.0%, log-rank p = 0.042). Modeling-guided ablation was independently associated with a better long-term rhythm outcome of persistent AF ablation (HR = 0.29 [0.12-0.69], p = 0.005). The rhythm outcome of the modeling-guided ablation showed better trends in males, non-obese patients with a less remodeled atrium (left atrial dimension < 50 mm), ejection fraction ≥ 50%, and those without hypertension or diabetes (p < 0.01). There were no significant differences between the groups for the total procedure time (p = 0.403), ablation time (p = 0.510), and major complication rate (p = 0.900). CONCLUSION Among patients with persistent AF, the computational modeling-guided ablation was superior to the empirical catheter ablation regarding the rhythm outcome. CLINICAL TRIAL REGISTRATION This study was registered with the ClinicalTrials.gov, number NCT02171364.
Collapse
Affiliation(s)
- In-Soo Kim
- Yonsei University Health System, Seoul, South Korea
| | | | - Jaemin Shim
- Cardiovascular Center, Korea University, Seoul, South Korea
| | - Minki Hwang
- Yonsei University Health System, Seoul, South Korea
| | - Hee Tae Yu
- Yonsei University Health System, Seoul, South Korea
| | - Tae-Hoon Kim
- Yonsei University Health System, Seoul, South Korea
| | - Jae-Sun Uhm
- Yonsei University Health System, Seoul, South Korea
| | - Sung-Hwan Kim
- Division of Cardiology, Catholic University of Korea, Seoul, South Korea
| | | | - Young Keun On
- Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Seil Oh
- Division of Cardiology, Seoul National University, Seoul, South Korea
| | - Yong-Seog Oh
- Division of Cardiology, Catholic University of Korea, Seoul, South Korea
| | - Gi-Byung Nam
- Asan Medical Center, University of Ulsan, Ulsan, South Korea
| | | | - Eun Bo Shim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, South Korea
| | - Young-Hoon Kim
- Cardiovascular Center, Korea University, Seoul, South Korea
| | - Hui-Nam Pak
- Yonsei University Health System, Seoul, South Korea
- *Correspondence: Hui-Nam Pak,
| | | |
Collapse
|
20
|
Alessandrini M, Valinoti M, Unger L, Oesterlein T, Dössel O, Corsi C, Loewe A, Severi S. A Computational Framework to Benchmark Basket Catheter Guided Ablation in Atrial Fibrillation. Front Physiol 2018; 9:1251. [PMID: 30298012 PMCID: PMC6161611 DOI: 10.3389/fphys.2018.01251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Catheter ablation is a curative therapeutic approach for atrial fibrillation (AF). Ablation of rotational sources based on basket catheter measurements has been proposed as a promising approach in patients with persistent AF to complement pulmonary vein isolation. However, clinically reported success rates are equivocal calling for a mechanistic investigation under controlled conditions. We present a computational framework to benchmark ablation strategies considering the whole cycle from excitation propagation to electrogram acquisition and processing to virtual therapy. Fibrillation was induced in a patient-specific 3D volumetric model of the left atrium, which was homogeneously remodeled to sustain reentry. The resulting extracellular potential field was sampled using models of grid catheters as well as realistically deformed basket catheters considering the specific atrial anatomy. The virtual electrograms were processed to compute phase singularity density maps to target rotor tips with up to three circular ablations. Stable rotors were successfully induced in different regions of the homogeneously remodeled atrium showing that rotors are not constrained to unique anatomical structures or locations. Density maps of rotor tip trajectories correctly identified and located the rotors (deviation < 10 mm) based on catheter recordings only for sufficient resolution (inter-electrode distance ≤3 mm) and proximity to the wall (≤10 mm). Targeting rotor sites with ablation did not stop reentries in the homogeneously remodeled atria independent from lesion size (1-7 mm radius), from linearly connecting lesions with anatomical obstacles, and from the number of rotors targeted sequentially (≤3). Our results show that phase maps derived from intracardiac electrograms can be a powerful tool to map atrial activation patterns, yet they can also be misleading due to inaccurate localization of the rotor tip depending on electrode resolution and distance to the wall. This should be considered to avoid ablating regions that are in fact free of rotor sources of AF. In our experience, ablation of rotor sites was not successful to stop fibrillation. Our comprehensive simulation framework provides the means to holistically benchmark ablation strategies in silico under consideration of all steps involved in electrogram-based therapy and, in future, could be used to study more heterogeneously remodeled disease states as well.
Collapse
Affiliation(s)
- Martino Alessandrini
- Department of Electronic Engineering and Information Technology, University of Bologna, Cesena, Italy
| | - Maddalena Valinoti
- Department of Electronic Engineering and Information Technology, University of Bologna, Cesena, Italy
| | - Laura Unger
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tobias Oesterlein
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Cristiana Corsi
- Department of Electronic Engineering and Information Technology, University of Bologna, Cesena, Italy
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefano Severi
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
21
|
Saha M, Roney CH, Bayer JD, Meo M, Cochet H, Dubois R, Vigmond EJ. Wavelength and Fibrosis Affect Phase Singularity Locations During Atrial Fibrillation. Front Physiol 2018; 9:1207. [PMID: 30246796 PMCID: PMC6139329 DOI: 10.3389/fphys.2018.01207] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023] Open
Abstract
The mechanisms underlying atrial fibrillation (AF), the most common sustained cardiac rhythm disturbance, remain elusive. Atrial fibrosis plays an important role in the development of AF and rotor dynamics. Both electrical wavelength (WL) and the degree of atrial fibrosis change as AF progresses. However, their combined effect on rotor core location remains unknown. The aim of this study was to analyze the effects of WL change on rotor core location in both fibrotic and non-fibrotic atria. Three patient specific fibrosis distributions (total fibrosis content: 16.6, 22.8, and 19.2%) obtained from clinical imaging data of persistent AF patients were incorporated in a bilayer atrial computational model. Fibrotic effects were modeled as myocyte-fibroblast coupling + conductivity remodeling; structural remodeling; ionic current changes + conductivity remodeling; and combinations of these methods. To change WL, action potential duration (APD) was varied from 120 to 240ms, representing the range of clinically observed AF cycle length, by modifying the inward rectifier potassium current (IK1) conductance between 80 and 140% of the original value. Phase singularities (PSs) were computed to identify rotor core locations. Our results show that IK1 conductance variation resulted in a decrease of APD and WL across the atria. For large WL in the absence of fibrosis, PSs anchored to regions with high APD gradient at the center of the left atrium (LA) anterior wall and near the junctions of the inferior pulmonary veins (PVs) with the LA. Decreasing the WL induced more PSs, whose distribution became less clustered. With fibrosis, PS locations depended on the fibrosis distribution and the fibrosis implementation method. The proportion of PSs in fibrotic areas and along the borders varied with both WL and fibrosis modeling method: for patient one, this was 4.2-14.9% as IK1 varied for the structural remodeling representation, but 12.3-88.4% using the combination of structural remodeling with myocyte-fibroblast coupling. The degree and distribution of fibrosis and the choice of implementation technique had a larger effect on PS locations than the WL variation. Thus, distinguishing the fibrotic mechanisms present in a patient is important for interpreting clinical fibrosis maps to create personalized models.
Collapse
Affiliation(s)
- Mirabeau Saha
- IMB, UMR 5251, University of Bordeaux, Pessac, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux University, Pessac, France
| | - Caroline H. Roney
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Jason D. Bayer
- IMB, UMR 5251, University of Bordeaux, Pessac, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux University, Pessac, France
| | - Marianna Meo
- IMB, UMR 5251, University of Bordeaux, Pessac, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux University, Pessac, France
| | - Hubert Cochet
- IMB, UMR 5251, University of Bordeaux, Pessac, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux University, Pessac, France
| | - Remi Dubois
- IMB, UMR 5251, University of Bordeaux, Pessac, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux University, Pessac, France
| | - Edward J. Vigmond
- IMB, UMR 5251, University of Bordeaux, Pessac, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux University, Pessac, France
| |
Collapse
|