1
|
Zhao X, Shi Z, He F, Niu Y, Qi G, Sun S, Li X, Gao X. Benzoxazinoids Biosynthetic Gene Cluster Identification and Expression Analysis in Maize under Biotic and Abiotic Stresses. Int J Mol Sci 2024; 25:7460. [PMID: 39000567 PMCID: PMC11242666 DOI: 10.3390/ijms25137460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern of BGC members is impacted by biotic and abiotic stresses. Here, maize BGC was systemically investigated and 26 BGC gene members were identified on seven chromosomes, for which Bin 4.00-4.01/4.03-4.04/7.02 were the most enriched regions. All BX proteins were clearly divided into three classes and seven subclasses, and ten conserved motifs were further identified among these proteins. These proteins were localized in the subcellular compartments of chloroplast, endoplasmic reticulum, or cytoplasmic, where their catalytic activities were specifically executed. Three independent RNA-sequencing (RNA-Seq) analyses revealed that the expression profiles of the majority of BGC gene members were distinctly affected by multiple treatments, including light spectral quality, low-temperature, 24-epibrassinolide induction, and Asian corn borer infestation. Thirteen differentially expressed genes (DEGs) with high and specific expression levels were commonly detected among three RNA-Seq, as core conserved BGC members for regulating BXs biosynthesis under multiple abiotic/biotic stimulates. Moreover, the quantitative real-time PCR (qRT-PCR) verified that six core conserved genes in BGC were significantly differentially expressed in leaves of seedlings upon four treatments, which caused significant increases in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) content under darkness and wound treatments, whereas a clear decrease in DIMBOA content was observed under low-temperature treatment. In conclusion, the changes in BX metabolites in maize were regulated by BGC gene members in multiple stress presences. Therefore, the identification of key genes associated with BX accumulation under biotic/abiotic stresses will provide valuable gene resources for breeding maize varieties with enhanced capability to adapt to environmental stresses.
Collapse
Affiliation(s)
- Xiaoqiang Zhao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Fuqiang He
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yining Niu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoxiang Qi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Siqi Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xin Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Ben-Abu Y, Itsko M. Metabolome dynamics during wheat domestication. Sci Rep 2022; 12:8532. [PMID: 35595776 PMCID: PMC9122938 DOI: 10.1038/s41598-022-11952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
One of the most important crops worldwide is wheat. Wheat domestication took place about 10,000 years ago. Not only that its wild progenitors have been discovered and phenotypically characterized, but their genomes were also sequenced and compared to modern wheat. While comparative genomics is essential to track genes that contribute to improvement in crop yield, comparative analyses of functional biological end-products, such as metabolites, are still lacking. With the advent of rigorous mass-spectrometry technologies, it is now possible to address that problem on a big-data scale. In attempt to reveal classes of metabolites, which are associated with wheat domestication, we analyzed the metabolomes of wheat kernel samples from various wheat lines. These wheat lines represented subspecies of tetraploid wheat along primary and secondary domestications, including wild emmer, domesticated emmer, landraces durum, and modern durum. We detected that the groups of plant metabolites such as plant-defense metabolites, antioxidants and plant hormones underwent significant changes during wheat domestication. Our data suggest that these metabolites may have contributed to the improvement in the agricultural fitness of wheat. Closer evaluation of specific metabolic pathways may result in the future in genetically-engineered high-yield crops.
Collapse
Affiliation(s)
- Yuval Ben-Abu
- Department of Physics and Project Unit, Sapir Academic College, 79165, Sderot, Hof Ashkelon, Israel. .,Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - Mark Itsko
- WDS Inc., Contractor to Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30033, USA
| |
Collapse
|
3
|
Shavit R, Batyrshina ZS, Yaakov B, Florean M, Köllner TG, Tzin V. The wheat dioxygenase BX6 is involved in the formation of benzoxazinoids in planta and contributes to plant defense against insect herbivores. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111171. [PMID: 35151455 DOI: 10.1016/j.plantsci.2021.111171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Benzoxazinoids are plant specialized metabolites with defense properties, highly abundant in wheat (Triticum), one of the world's most important crops. The goal of our study was to characterize dioxygenase BX6 genes in tetraploid and hexaploid wheat genotypes and to elucidate their effects on defense against herbivores. Phylogenetic analysis revealed four BX6 genes in the hexaploid wheat T. aestivum, but only one ortholog was found in the tetraploid (T. turgidum) wild emmer wheat and the cultivated durum wheat. Transcriptome sequencing of durum wheat plants, damaged by either aphids or caterpillars, revealed that several BX genes, including TtBX6, were upregulated upon caterpillar feeding, relative to the undamaged control plants. A virus-induced gene silencing approach was used to reduce the expression of BX6 in T. aestivum plants, which exhibited both reduced transcript levels and reduced accumulation of different benzoxazinoids. To elucidate the effect of BX6 on plant defense, bioassays with different herbivores feeding on BX6-silenced leaves were conducted. The results showed that plants with silenced BX6 were more susceptible to aphids and the two-spotted spider mite than the control. Overall, our study indicates that wheat BX6 is involved in benzoxazinoid formation in planta and contributes to plant resistance against insect herbivores.
Collapse
Affiliation(s)
- Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Zhaniya S Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Matilde Florean
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, D-07745, Jena, Germany
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, D-07745, Jena, Germany
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
4
|
Ben-Abu Y, Itsko M. Changes in "natural antibiotic" metabolite composition during tetraploid wheat domestication. Sci Rep 2021; 11:20340. [PMID: 34645851 PMCID: PMC8514463 DOI: 10.1038/s41598-021-98764-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Gramineous plants protect their seeds from a variety of biotic stresses by producing toxic and deterrent secondary metabolites such as benzoxazinoids. It is unclear how the composition and abundance of these natural toxins has changed over the course of crop-plant domestication. To address this uncertainty, we characterized differences in metabolic levels of benzoxazinoids and their derivatives, between four lines of tetraploid wheat: wild emmer wheat (WEW), the direct progenitor of modern wheat; non-fragile domesticated emmer wheat (DEW), which was first domesticated about 11,000 years ago; the subsequently developed non-fragile and free-threshing durum landraces (LD); and modern durum (MD) varieties. Three-dimensional principal component analysis of mass spectrometry data of wheat metabolites showed with high resolution clear differences between metabolic profiles of WEW, DEW, and durum (LD + MD) and similarity in the metabolic profiles of the two durum lines (LD and MD) that is coherent with the phylogenetic relationship between the corresponding wheat lines. Moreover, our results indicated that some secondary metabolites involved in plant defense mechanisms became significantly more abundant during wheat domestication, while other defensive metabolites decreased or were lost. These metabolic changes reflect the beneficial or detrimental roles the corresponding metabolites might play during the domestication of three taxonomic subspecies of tetraploid wheat (Triticum turgidum).
Collapse
Affiliation(s)
- Yuval Ben-Abu
- Department of Physics and Project Unit, Sapir Academic College, 79165, Sderot, Hof Ashkelon, Israel.
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - Mark Itsko
- WDS Inc., Contractor to Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30033, USA
| |
Collapse
|
5
|
The Roots of Rye ( Secale cereale L.) Are Capable of Synthesizing Benzoxazinoids. Int J Mol Sci 2021; 22:ijms22094656. [PMID: 33925031 PMCID: PMC8124178 DOI: 10.3390/ijms22094656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
According to current opinion, the first step of benzoxazinoids (BXs) synthesis, that is, the conversion of indole-3-glycerol phosphate to indole, occurs exclusively in the photosynthesising parts of plants. However, the results of our previous work and some other studies suggest that this process may also occur in the roots. In this study, we provide evidence that the first step of BXs synthesis does indeed occur in the roots of rye seedlings. We detected ScBx1 transcripts, BX1 enzyme, and six BXs (2-hydroxy-1,4-benzoxazin-3-one, 2,4-dihydroxy-1,4-benzoxazin-3-one, (2R)-2-O-β-d-glucopyranosyl-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one glucoside, 2,4-dihydroxy- 7-methoxy-1,4-benzoxazin-3-one, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside, and 6-methoxy-2-benzoxazolinone) in the roots developed from seeds deprived of the coleoptile at 2 days after sowing (i.e., roots without contact with aerial parts). In roots regenerated in vitro, both ScBx1 transcripts and BX1 enzyme were detected at a low but still measurable levels. Thus, BXs are able to be synthesised in both the roots and above-ground parts of rye plants.
Collapse
|
6
|
Current Progress in Understanding and Recovering the Wheat Genes Lost in Evolution and Domestication. Int J Mol Sci 2020; 21:ijms21165836. [PMID: 32823887 PMCID: PMC7461589 DOI: 10.3390/ijms21165836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 01/19/2023] Open
Abstract
The modern cultivated wheat has passed a long evolution involving origin of wild emmer (WEM), development of cultivated emmer, formation of spelt wheat and finally establishment of modern bread wheat and durum wheat. During this evolutionary process, rapid alterations and sporadic changes in wheat genome took place, due to hybridization, polyploidization, domestication, and mutation. This has resulted in some modifications and a high level of gene loss. As a result, the modern cultivated wheat does not contain all genes of their progenitors. These lost genes are novel for modern wheat improvement. Exploring wild progenitor for genetic variation of important traits is directly beneficial for wheat breeding. WEM wheat (Triticum dicoccoides) is a great genetic resource with huge diversity for traits. Few genes and quantitative trait loci (QTL) for agronomic, quantitative, biotic and abiotic stress-related traits have already been mapped from WEM. This resource can be utilized for modern wheat improvement by integrating identified genes or QTLs through breeding.
Collapse
|
7
|
Saia S, Fragasso M, De Vita P, Beleggia R. Metabolomics Provides Valuable Insight for the Study of Durum Wheat: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3069-3085. [PMID: 30829031 DOI: 10.1021/acs.jafc.8b07097] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metabolomics is increasingly being applied in various fields offering a highly informative tool for high-throughput diagnostics. However, in plant sciences, metabolomics is underused, even though plant studies are relatively easy and cheap when compared to those on humans and animals. Despite their importance for human nutrition, cereals, and especially wheat, remain understudied from a metabolomics point of view. The metabolomics of durum wheat has been essentially neglected, although its genetic structure allows the inference of common mechanisms that can be extended to other wheat and cereal species. This review covers the present achievements in durum wheat metabolomics highlighting the connections with the metabolomics of other cereal species (especially bread wheat). We discuss the metabolomics data from various studies and their relationships to other "-omics" sciences, in terms of wheat genetics, abiotic and biotic stresses, beneficial microbes, and the characterization and use of durum wheat as feed, food, and food ingredient.
Collapse
Affiliation(s)
- Sergio Saia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 11 per Torino , Km 2,5, 13100 Vercelli , Italy
| | - Mariagiovanna Fragasso
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| |
Collapse
|
8
|
Shavit R, Batyrshina ZS, Dotan N, Tzin V. Cereal aphids differently affect benzoxazinoid levels in durum wheat. PLoS One 2018; 13:e0208103. [PMID: 30507950 PMCID: PMC6277073 DOI: 10.1371/journal.pone.0208103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Aphids are major pests in cereal crops that cause direct and indirect damage leading to yield reduction. Despite the fact that wheat provides 20% of the world’s caloric and protein diet, its metabolic responses to aphid attack, in general, and specifically its production of benzoxazinoid defense compounds are poorly understood. The objective of this study was to compare the metabolic diversity of durum wheat seedlings (Triticum turgidum ssp. durum) under attack by three different cereal aphids: i) the English grain aphid (Sitobion avenae Fabricius), ii) the bird cherry-oat aphid (Rhopalosiphum padi L.), and iii) the greenbug aphid (Schizaphis graminum Rondani), which are some of the most destructive aphid species to wheat. Insect progeny bioassays and metabolic analyses using chromatography/Q-Exactive/mass spectrometry non-targeted metabolomics and a targeted benzoxazinoid profile were performed on infested leaves. The insect bioassays revealed that the plants were susceptible to S. graminum, resistant to S. avenae, and mildly resistant to R. padi. The metabolic analyses of benzoxazinoids suggested that the predominant metabolites DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin- 3-one) and its glycosylated form DIMBOA-glucoside (Glc) were significantly induced upon both S. avenae, and R. padi aphid feeding. However, the levels of the benzoxazinoid metabolite HDMBOA-Glc (2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside) were enhanced due to the feeding of S. avenae and S. graminum aphids, to which Svevo was the most resistant and the most susceptible, respectively. The results showed a partial correlation between the induction of benzoxazinoids and aphid reproduction. Overall, our observations revealed diverse metabolic responses of wheat seedlings to cereal aphid feeding.
Collapse
Affiliation(s)
- Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zhaniya S. Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Nitsan Dotan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|