1
|
Msango K, Gouda MNR, Ramakrishnan B, Kumar A, Subramanian S. Variation and functional profile of gut bacteria in the scarab beetle, Anomala dimidiata, under a cellulose-enriched microenvironment. Sci Rep 2024; 14:22400. [PMID: 39333778 PMCID: PMC11437086 DOI: 10.1038/s41598-024-73417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This study utilized cultivable methods and 16 S amplicon sequencing to compare taxonomic profiles and functional potential of gut bacteria in the scarab beetle, Anomola dimidiata, under cellulose-enriched conditions. Eight culturable cellulolytic gut bacteria were isolated from the midgut and hindgut of the scarab larvae, respectively. 16 S amplicon sequencing evinced that the most represented taxonomic profiles at phylum level in the fermentation chamber and midgut were Bacillota (71.62 and 56.76%), Pseudomonadota (22.66 and 36.89%) and Bacteroidota (2.7 and 2.81%). Bacillota (56.74 and 91.39%) were significantly enriched in the midgut with the addition of cellulose. In contrast, Bacillota and Psedomonadota were significantly enriched in the fermentation chamber. Carbohydrate metabolism was up-regulated in the midgut, while nitrogen and phosphorus metabolism were up-regulated in the fermentation chamber, suggesting these symbionts' possible metabolic roles to the host. An analysis of total cellulases as well as amplicon sequence variants indicated that the gut bacteria belonging to Acinetobacter, Bacillus, Brucella, Brevibacillus, Enterobacter, Lysinibacillus and Paenibacillus are involved in nutrition provisioning. These results have provided additional insights into the gut bacteria associated with cellulose digestion in A. dimidiata and created a platform for bioprospecting novel isolates to produce biomolecules for biotechnological use, besides identifying eco-friendly targets for its management.
Collapse
Affiliation(s)
- Kondwani Msango
- Insect Physiology, Molecular Biology and Microbiology Agricultural Research and Extension Trust, Private Bag 9, Lilongwe, Malawi.
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - B Ramakrishnan
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | |
Collapse
|
2
|
Larval gut microbiome of Pelidnota luridipes (Coleoptera: Scarabaeidae): high bacterial diversity, different metabolic profiles on gut chambers and species with probiotic potential. World J Microbiol Biotechnol 2022; 38:210. [PMID: 36050590 DOI: 10.1007/s11274-022-03387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
Abstract
Pelidnota luridipes Blanchard (1850) is a tropical beetle of the family Scarabaeidae, whose larvae live on wood without parental care. Microbiota of mid- and hindgut of larvae was evaluated by culture-dependent and independent methods, and the results show a diverse microbiota, with most species of bacteria and fungi shared between midgut and hindgut. We isolated 272 bacterial and 29 yeast isolates, identified in 57 and 7 species, respectively, while using metabarcoding, we accessed 1,481 and 267 OTUs of bacteria and fungi, respectively. The composition and abundance of bacteria and fungi differed between mid- and hindgut, with a tendency for higher richness and diversity of yeasts in the midgut, and bacteria on the hindgut. Some taxa are abundant in the intestine of P. luridipes larvae, such as Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria; as well as Saccharomycetales and Trichosporonales yeasts. Mid- and hindgut metabolic profiles differ (e.g. biosynthesis of amino acids, cofactors, and lipopolysaccharides) with higher functional diversity in the hindgut. Isolates have different functional traits such as secretion of hydrolytic enzymes and antibiosis against pathogens. Apiotrichum siamense L29A and Bacillus sp. BL17B protected larvae of the moth Galleria mellonella, against infection by the pathogens Listeria monocytogenes ATCC19111 and Pseudomonas aeruginosa ATCC 9027. This is the first work with the larval microbiome of a Rutelini beetle, demonstrating its diversity and potential in prospecting microbial products as probiotics. The functional role of microbiota for the nutrition and adaptability of P. luridipes larvae needs to be evaluated in the future.
Collapse
|
3
|
Enrichment of Anaerobic Microbial Communities from Midgut and Hindgut of Sun Beetle Larvae (Pachnoda marginata) on Wheat Straw: Effect of Inoculum Preparation. Microorganisms 2022; 10:microorganisms10040761. [PMID: 35456811 PMCID: PMC9024811 DOI: 10.3390/microorganisms10040761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
The Pachnoda marginata larva have complex gut microbiota capable of the effective conversion of lignocellulosic biomass. Biotechnological utilization of these microorganisms in an engineered system can be achieved by establishing enrichment cultures using a lignocellulosic substrate. We established enrichment cultures from contents of the midgut and hindgut of the beetle larva using wheat straw in an alkaline medium at mesophilic conditions. Two different inoculation preparations were used: procedure 1 (P1) was performed in a sterile bench under oxic conditions using 0.4% inoculum and small gauge needles. Procedure 2 (P2) was carried out under anoxic conditions using more inoculum (4%) and bigger gauge needles. Higher methane production was achieved with P2, while the highest acetic acid concentrations were observed with P1. In the enrichment cultures, the most abundant bacterial families were Dysgonomonadaceae, Heliobacteriaceae, Ruminococcaceae, and Marinilabiliaceae. Further, the most abundant methanogenic genera were Methanobrevibacter, Methanoculleus, and Methanosarcina. Our observations suggest that in samples processed with P1, the volatile fatty acids were not completely converted to methane. This is supported by the finding that enrichment cultures obtained with P2 included acetoclastic methanogens, which might have prevented the accumulation of acetic acid. We conclude that differences in the inoculum preparation may have a major influence on the outcome of enrichment cultures from the P. marginata larvae gut.
Collapse
|
4
|
Castelo MK, Crespo JE. Microorganismal Cues Involved in Host-Location in Asilidae Parasitoids. BIOLOGY 2022; 11:129. [PMID: 35053126 PMCID: PMC8773287 DOI: 10.3390/biology11010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/17/2022]
Abstract
Parasitoids are organisms that kill their host before completing their development. Typical parasitoids belong to Hymenoptera, whose females search for the hosts. But some atypical Diptera parasitoids also have searching larvae that must orientate toward, encounter, and accept hosts, through cues with different levels of detectability. In this work, the chemical cues involved in the detection of the host by parasitoid larvae of the genus Mallophora are shown with a behavioral approach. Through olfactometry assays, we show that two species of Mallophora orient to different host species and that chemical cues are produced by microorganisms. We also show that treating potential hosts with antibiotics reduces attractiveness on M. ruficauda but not to M. bigoti suggesting that endosymbiotic bacteria responsible for the host cues production should be located in different parts of the host. In fact, we were able to show that M. bigoti is attracted to frass from the most common host. Additionally, we evaluated host orientation under a context of interspecific competence and found that both parasitoid species orient to Cyclocephaala signaticollis showing that host competition could occur in the field. Our work shows how microorganisms mediate orientation to hosts but differences in their activity or location in the host result in differences in the attractiveness of different cues. We show for the first time that M. bigoti behaves similar to M. ruficauda extending and reinforcing that all Mallophora species have adopted a parasitoid lifestyle.
Collapse
Affiliation(s)
- Marcela K. Castelo
- Laboratorio de Entomología Experimental—Grupo de Investigación en Ecofisiología de Parasitoides y Otros Insectos (GIEP), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto IEGEBA (CONICET-UBA), Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina;
| | | |
Collapse
|
5
|
Zhang ZY, Ali MW, Saqib HSA, Liu SX, Yang X, Li Q, Zhang H. A Shift Pattern of Bacterial Communities Across the Life Stages of the Citrus Red Mite, Panonychus citri. Front Microbiol 2020; 11:1620. [PMID: 32754145 PMCID: PMC7366552 DOI: 10.3389/fmicb.2020.01620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 02/01/2023] Open
Abstract
As one of the most detrimental citrus pests worldwide, the citrus red mite, Panonychus citri (McGregor), shows extraordinary fecundity, polyphagia, and acaricide resistance, which may be influenced by microbes as other arthropod pests. However, the community structure and physiological function of microbes in P. citri are still largely unknown. Here, the high-throughput sequencing of 16S rDNA amplicons was employed to identify and compare the profile of bacterial communities across the larva, protonymph, deutonymph, and adult stages of P. citri. We observed a dominance of phylums Proteobacteria and Firmicutes, and classes α-, γ-, β-Proteobacteria and Bacilli in the bacterial communities across the host lifespan. Based on the dynamic analysis of the bacterial community structure, a significant shift pattern between the immature (larva, protonymph, and deutonymph) and adult stages was observed. Accordingly, among the major families (and corresponding genera), although the relative abundances of Pseudomonadaceae (Pseudomonas), Moraxellaceae (Acinetobacter), and Sphingobacteriaceae (Sphingobacterium) were consistent in larva to deutonymph stages, they were significantly increased to 30.18 ± 8.76% (30.16 ± 8.75%), 20.78 ± 10.86% (18.80 ± 10.84%), and 11.71 ± 5.49% (11.68 ± 5.48%), respectively, in adult stage, which implied the important function of these bacteria on the adults' physiology. Actually, the functional prediction of bacterial communities and Spearman correlation analysis further confirm that these bacteria had positively correlations with the pathway of "lipid metabolism" (including eight sublevel pathways) and "metabolism of cofactors and vitamins" (including five sublevel pathways), which all only increased in adult stages. In addition, the bacterial communities were eliminated by using broad-spectrum antibiotics, streptomycin, which significantly suppressed the survival and oviposition of P. citri. Overall, we not only confirmed the physiological effects of bacteria community on the vitality and fecundity of adult hosts, but also revealed the shift pattern of bacterial community structures across the life stages and demonstrated the co-enhancements of specific bacterial groups and bacterial functions in nutritional metabolism in P. citri. This study sheds light on basic information about the mutualism between spider mites and bacteria, which may be useful in shaping the next generation of control strategies for spider mite pests, especially P. citri.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Waqar Ali
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng-Xuan Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qin Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Kucuk RA. Gut Bacteria in the Holometabola: A Review of Obligate and Facultative Symbionts. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5893943. [PMID: 32809024 PMCID: PMC7433766 DOI: 10.1093/jisesa/ieaa084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 06/11/2023]
Abstract
The diversity and ecological variety of Holometabola foregrounds a wide array of dynamic symbiotic relationships with gut-dwelling bacteria. A review of the literature highlights that holometabolous insects rely on both obligate bacteria and facultative bacteria living in their guts to satisfy a number of physiological needs. The driving forces behind these differing relationships can be hypothesized through the scrutiny of bacterial associations with host gut morphology, and transmission of bacteria within a given host taxon. Our knowledge of the evolution of facultative or obligate symbiotic bacteria in holometabolan systems is further enhanced by an assessment of the various services the bacteria provide, including nutrition, immune system health, and development. The diversity of Holometabola can thus be examined through an assessment of known bacterial partnerships within the orders of Holometabola.
Collapse
Affiliation(s)
- R A Kucuk
- Clemson University, Poole Agricultural Center, Clemson, SC
| |
Collapse
|
7
|
Wu M, Liang Y, Peng H, Ye J, Wu J, Shi W, Liu W. Bioavailability of soluble microbial products as the autochthonous precursors of disinfection by-products in aerobic and anoxic surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:960-968. [PMID: 30179824 DOI: 10.1016/j.scitotenv.2018.08.354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/25/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Soluble microbial products (SMPs), as a major part of the effluent organic matter discharged into surface water, may affect the formation of disinfection by-products (DBP) in downstream drinking water treatment plants. In this study, excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), infrared spectroscopy (IR), high performance size-exclusion chromatography (HPSEC) and 16SrRNA high-throughput sequencing were used to investigate the aerobic and anoxic bioavailability of SMPs in surface water and evaluate their influences on DBP formation upon chlorination in a subsequent drinking water plant. In this study, SMPs were utilized by enriched microbial communities such as Bacteroidetes and Proteobacteria, but the accumulation of SUVA was pronounced during the two oxygen conditions. Biodegraded SMPs had higher humic substructures and lower protein-like components. Due to the presence of SMPs, microbial community compositions were influenced during biodegradation. Moreover, DO was the main factor in biodegradation of SMPs, thus affecting a series of processes, such as microbial compositions, properties of SMPs, DBP formation and reactivity. DBP formation potential decreased after anoxic and aerobic incubations. However, SMPs after aerobic degradation had higher DBP reactivity meanwhile the opposite was found for anoxic incubation. Based on the analysis of IR and HPSEC, it was found that some new substrates or intermediates with MW (220 KDa, <1 KDa) during microbial incubation may contribute to the formation of trihalomethane (THMs), chloral hydrate (CH), dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM) in each DBP sampling episode.
Collapse
Affiliation(s)
- Meirou Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China.
| | - Yongmei Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China.
| | - Huanlong Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Jian Ye
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Jie Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Weiwei Shi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Wei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China.
| |
Collapse
|