1
|
Ramos L. Dimorphic Regulation of the MafB Gene by Sex Steroids in Hamsters, Mesocricetus auratus. Animals (Basel) 2024; 14:1728. [PMID: 38929347 PMCID: PMC11200555 DOI: 10.3390/ani14121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
MafB is a transcription factor that regulates macrophage differentiation. Macrophages are a traditional feature of the hamster Harderian gland (HG); however, studies pertaining to MafB expression in the HG are scant. Here, the full-length cDNA of the MafB gene in hamsters was cloned and sequenced. Molecular characterization revealed that MafB encodes a protein containing 323 amino acids with a DNA-binding domain, a transactivation domain, and a leucine zipper domain. qPCR assays indicated that MafB was expressed in different tissues of both sexes. The highest relative expression levels in endocrine tissues were identified in the pancreas. Gonadectomy in male hamsters was associated with significantly higher mRNA levels in the HG; replacement with dihydrotestosterone restored mRNA expression. The HG in male hamsters contained twofold more MafB mRNA than the HG of female hamsters. Adrenals revealed similar mRNA relative expression levels during the estrous cycle. The estrous phase was associated with higher mRNA levels in the ovary. A significantly up-regulated expression and sexual dimorphism of MafB was found in the pancreas. Therefore, MafB in the HG may play an active role in the macrophage differentiation required for phagocytosis activity and intraocular repair. Additionally, sex steroids appear to strongly influence the MafB expression in the HG and pancreas. These studies highlight the probable biological importance of MafB in immunological defense and pancreatic β cell regulation.
Collapse
Affiliation(s)
- Luis Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, Mexico
| |
Collapse
|
2
|
Xu J, Sang M, Cheng J, Luo C, Shi J, Sun F. Knockdown of disheveled-associated activator of morphogenesis 2 disrupts cytoskeletal organization and phagocytosis in rat Sertoli cells. Mol Cell Endocrinol 2023; 563:111867. [PMID: 36681175 DOI: 10.1016/j.mce.2023.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Disheveled-associated activator of morphogenesis 2 (DAAM2) regulates actin polymerization and cell motility. In this study, we investigated the role of DAAM2 in the cytoskeleton and phagocytosis of rat Sertoli cells in vitro and in vivo through siRNA transfection and intratesticular injection. We found that knockdown of DAAM2 significantly attenuated cytoskeletal and tight junction marker expression and reduced the integrity of the Sertoli cell monolayer. In rats, loss of DAAM2 induced disarrangement and deformation of sperms and promoted accumulation of apoptotic sperms in the testis, accompanied by morphological abnormalities in the blood-testis barrier. DAAM2 silencing also reduced the ability of Sertoli cells to engulf apoptotic spermatogenic cells and green fluorescence-labeled beads. RNA sequencing and bioinformatics analysis revealed that phagocytosis and cytoskeleton-related genes and pathways were significantly associated with DAAM2. Our study suggests that DAAM2 may be involved in spermatogenesis possibly by regulating cytoskeleton organization and phagocytosis of Sertoli cells.
Collapse
Affiliation(s)
- Junjie Xu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China; Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Mengmeng Sang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Jinmei Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Chunhai Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Zhang Q, Bai X, Shi J, Wang X, Zhang B, Dai L, Lin T, Gao Y, Zhang Y, Zhao X. DIA proteomics identified the potential targets associated with angiogenesis in the mammary glands of dairy cows with hemorrhagic mastitis. Front Vet Sci 2022; 9:980963. [PMID: 36003411 PMCID: PMC9393364 DOI: 10.3389/fvets.2022.980963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hemorrhagic mastitis (HM) in dairy cows caused great economic losses in the dairy industry due to decreased milk production and increased costs associated with cattle management and treatment. However, the pathological and molecular mechanisms of HM are not well-understood. The present study aimed to investigate differentially expressed proteins (DEPs) associated with HM according to data-independent acquisition (DIA) proteomics. Compared to the mammary glands of healthylactating Holstein cows (Control, C group), the pathology of the HM group displayed massive alveolar infiltration of hemocytes and neutrophils, and the blood vessels, including arteriole, venules and capillaries were incomplete and damaged, with a loss of endothelial cells. DIA proteomics results showed that a total of 3,739 DEPs and 819 biological process terms were screened in the HM group. We focused on the blood, permeability of blood vessel, vascular and angiogenesis of mammary glands, and a total of 99 candidate DEPs, including 60 up- and 39 down-regulated DEPs, were obtained from the Gene Ontology (GO) and Pathway enrichment analyses. Phenotype prediction and function analysis of the DEPs revealed that three DEPs, particularly Caveolin-1(CAV1), were participated in the regulation of angiogenesis. Immunohistochemical and immunofluorescence staining showed that the CAV1 protein was present mainly in the mammary epithelial cells, vascular endothelial cells and vascular smooth muscle cells. The expression level of CAV1 mRNA and protein in the HM group was significantly down-regulated. The results will be helpful to the further understanding of the pathological and molecular mechanisms of HM in dairy cows.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
- *Correspondence: Quanwei Zhang
| | - Xu Bai
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Jun Shi
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Xueying Wang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Bohao Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Lijun Dai
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Ting Lin
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Yuan Gao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
- Xingxu Zhao
| |
Collapse
|
4
|
Zhang B, Lin T, Bai X, An X, Dai L, Shi J, Zhang Y, Zhao X, Zhang Q. Sulfur Amino Acid Metabolism and the Role of Endogenous Cystathionine-γ-lyase/H2S in Holstein Cows with Clinical Mastitis. Animals (Basel) 2022; 12:ani12111451. [PMID: 35681915 PMCID: PMC9179249 DOI: 10.3390/ani12111451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
H2S plays an important role in various inflammatory diseases. However, the role of H2S and synthetic enzymes in Holstein cows with CM is unknown. The aim of this study was to identify DEPs associated with sulfide metabolism and further investigate their roles in dairy cows with CM. From 3739 DEPs generated by data-independent acquisition proteomics, we identified a total of 17 DEPs included in 44 GO terms and five KEGG pathways related to sulfide metabolism, including CTH and cystathionine-β-synthase (CBS). Immunohistochemical and immunofluorescence staining results showed that CTH and CBS proteins were present mainly in the cytoplasm of mammary epithelial cells. Endogenous H2S production in the serum of the CM group was significantly lower than that of the healthy Holstein cows. CTH and CBS mRNA and protein levels in the mammary glands of the CM group were significantly downregulated compared to those of the healthy group. These results indicate that CTH and H2S were correlated with the occurrence and development of CM in Holstein cows, which provides important insights into the function and regulatory mechanism of CTH/H2S in Holstein cows.
Collapse
Affiliation(s)
- Bohao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Y.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ting Lin
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xu Bai
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xiaoxiao An
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Lijun Dai
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Jun Shi
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Y.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Y.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (X.Z.); (Q.Z.); Tel.: +86-93-1763-2509 (Q.Z.)
| | - Quanwei Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Y.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (T.L.); (X.B.); (X.A.); (L.D.); (J.S.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (X.Z.); (Q.Z.); Tel.: +86-93-1763-2509 (Q.Z.)
| |
Collapse
|
5
|
The Distribution, Expression Patterns and Functional Analysis of NR1D1 and NR4A2 in the Reproductive Axis Tissues of the Male Tianzhu White Yak. Animals (Basel) 2021; 11:ani11113117. [PMID: 34827849 PMCID: PMC8614427 DOI: 10.3390/ani11113117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Nuclear hormone receptors NR1D1 and NR4A2 play important roles in the synthesis and metabolism of hormones that are thought to be strictly regulated by the hypothalamus-pituitary-gonad axis (HPG) tissues via gene expression. However, in the yak, the function and regulatory mechanisms of NR1D1 and NR4A2 are not clearly understood. The current study is aimed to investigate the expression patterns, distribution and functions of these two receptors in HPG tissues in male Tianzhu white yaks. Immunohistochemical staining showed NR1D1 and NR4A2 proteins were present in all yak HPG tissues with differential expression patterns and degrees of staining, particularly in Leydig cells that were strongly positive in accordance with the immunofluorescence results. qRT-PCR and Western blot results suggested that the highest expression levels of NR1D1 and NR4A2 mRNA were present in the hypothalamus, while the expression levels of NR1D1 and NR4A2 proteins were higher in the testis and epididymis than in the hypothalamus or pituitary gland. In addition, expression levels of NR1D1 and NR4A2 mRNA and protein in testicular tissues differed by age. Expression levels were significantly higher at 6 years of age. Gene ontology (GO) and pathway analysis enrichment revealed that NR1D1 may directly regulate the synthesis and metabolism of steroid hormones via interaction with different targets, while NR4A2 may indirectly regulate the synthesis and metabolism of steroid hormones. These results showed that NR1D1 and NR4A2, as important mediators, are involved in the regulation of male yak reproduction, and especially of steroid hormones and androgen metabolism. These results will be helpful for the further understanding of the regulatory mechanisms of NR1D1 and NR4A2 in yak reproduction.
Collapse
|
6
|
Maehara N, Taniguchi K, Okuno A, Ando H, Hirota A, Li Z, Wang CT, Arai S, Miyazaki T. AIM/CD5L attenuates DAMPs in the injured brain and thereby ameliorates ischemic stroke. Cell Rep 2021; 36:109693. [PMID: 34525359 DOI: 10.1016/j.celrep.2021.109693] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023] Open
Abstract
The sterile inflammation caused by damage-associated molecular patterns (DAMPs) worsens the prognosis following primary injury such as ischemic stroke. However, there are no effective treatments to regulate DAMPs. Here, we report that AIM (or CD5L) protein reduces sterile inflammation by attenuating DAMPs and that AIM administration ameliorates the deleterious effects of ischemic stroke. AIM binds to DAMPs via charge-based interactions and disulfide bond formation. This AIM association promotes the phagocytic removal of DAMPs and neutralizes DAMPs by impeding their binding to inflammatory receptors. In experimental stroke, AIM-deficient mice exhibit severe neurological damage and higher mortality with greater levels of DAMPs and associated inflammation in the brain than wild-type mice, in which brain AIM levels increase following stroke onset. Recombinant AIM administration reduces sterile inflammation in the infarcted region, leading to a profound reduction of animal mortality. Our findings provide a basis for the therapies targeting DAMPs to improve ischemic stroke.
Collapse
Affiliation(s)
- Natsumi Maehara
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kaori Taniguchi
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ami Okuno
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideaki Ando
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Aika Hirota
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zhiheng Li
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ching-Ting Wang
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; LEAP, Japan Agency for Medical Research and Development, Tokyo 113-0033, Japan; Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
7
|
Li SY, Gu X, Heinrich A, Hurley EG, Capel B, DeFalco T. Loss of Mafb and Maf distorts myeloid cell ratios and disrupts fetal mouse testis vascularization and organogenesis†. Biol Reprod 2021; 105:958-975. [PMID: 34007995 DOI: 10.1093/biolre/ioab098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Testis differentiation is initiated when Sry in pre-Sertoli cells directs the gonad toward a male-specific fate. Sertoli cells are essential for testis development, but cell types within the interstitial compartment, such as immune and endothelial cells, are also critical for organ formation. Our previous work implicated macrophages in fetal testis morphogenesis, but little is known about genes underlying immune cell development during organogenesis. Here we examine the role of the immune-associated genes Mafb and Maf in mouse fetal gonad development, and we demonstrate that deletion of these genes leads to aberrant hematopoiesis manifested by supernumerary gonadal monocytes. Mafb; Maf double knockout embryos underwent initial gonadal sex determination normally, but exhibited testicular hypervascularization, testis cord formation defects, Leydig cell deficit, and a reduced number of germ cells. In general, Mafb and Maf alone were dispensable for gonad development; however, when both genes were deleted, we observed significant defects in testicular morphogenesis, indicating that Mafb and Maf work redundantly during testis differentiation. These results demonstrate previously unappreciated roles for Mafb and Maf in immune and vascular development and highlight the importance of interstitial cells in gonadal differentiation.
Collapse
Affiliation(s)
- Shu-Yun Li
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Anna Heinrich
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Emily G Hurley
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA.,Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| |
Collapse
|
8
|
Shawki HH, Ishikawa-Yamauchi Y, Kawashima A, Katoh Y, Matsuda M, Al-Soudy AS, Minisy FM, Kuno A, Gulibaikelamu X, Hirokawa T, Takahashi S, Oishi H. EFCAB2 is a novel calcium-binding protein in mouse testis and sperm. PLoS One 2019; 14:e0214687. [PMID: 30933994 PMCID: PMC6443151 DOI: 10.1371/journal.pone.0214687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/18/2019] [Indexed: 11/18/2022] Open
Abstract
Calcium-binding proteins regulate ion metabolism and the necessary signaling pathways for the maturational events of sperm. Our aim is to identify the novel calcium-binding proteins in testis. The gene EFCAB2 (GenBank NM_026626.3, NP_080902.1) was not previously examined, and its properties and exact mechanisms of action are unknown. In this study, we performed phylogenetic and structure prediction analyses of EFCAB2, which displays definitive structural features. Additionally, the distribution, localization, and calcium binding ability of mouse EFCAB2 were investigated. Results revealed extensive conservation of EFCAB2 among different eukaryotic orthologs. The constructed 3D model predicted that mouse EFCAB2 contains seven α-helices and two EF-hand motifs. The first EF-hand motif is located in N-terminal, while the second is located in C-terminal. By aligning the 3D structure of Ca2+-binding loops from EFCAB2 with calmodulin, we predicted six residues that might be involved in Ca2+ binding. The distribution of the Efcab2 mRNA, as determined by northern blotting, was detected only in the testis among mouse tissues. Native and recombinant EFCAB2 protein were detected by western blotting as one band at 20 kDa. In situ hybridization and immunohistochemical analyses showed its localization specifically in spermatogenic cells from primary spermatocytes to elongate spermatids within the seminiferous epithelium, but neither spermatogonia nor somatic cells were expressed. Moreover, EFCAB2 was specifically localized to the principal piece of cauda epididymal sperm flagellum. Furthermore, the analyses of purified recombinant EFCAB2 by Stains-all, ruthenium red staining, and by applying in vitro autoradiography assay showed that the physiological function of this protein is Ca2+ binding. These results suggested that EFCAB2 might be involved in the control of sperm flagellar movement. Altogether, here we describe about EFCAB2 as a novel calcium-binding protein in mouse testis and sperm.
Collapse
Affiliation(s)
- Hossam H. Shawki
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
- Department of Animal Genetic Resources, National Gene Bank, Giza, Egypt
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- * E-mail: (HHS); (AK)
| | - Yu Ishikawa-Yamauchi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Kawashima
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- * E-mail: (HHS); (AK)
| | - Yuki Katoh
- Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Manabu Matsuda
- Department of Arts and Sciences, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Al-Sayed Al-Soudy
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
- Department of Animal Genetic Resources, National Gene Bank, Giza, Egypt
| | - Fatma M. Minisy
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Pathology Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Xiafukaiti Gulibaikelamu
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Koutou-ku, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
9
|
Tsakogiannis A, Manousaki T, Lagnel J, Papanikolaou N, Papandroulakis N, Mylonas CC, Tsigenopoulos CS. The Gene Toolkit Implicated in Functional Sex in Sparidae Hermaphrodites: Inferences From Comparative Transcriptomics. Front Genet 2019; 9:749. [PMID: 30713551 PMCID: PMC6345689 DOI: 10.3389/fgene.2018.00749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
Sex-biased gene expression is the mode through which sex dimorphism arises from a nearly identical genome, especially in organisms without genetic sex determination. Teleost fishes show great variations in the way the sex phenotype forms. Among them, Sparidae, that might be considered as a model family displays a remarkable diversity of reproductive modes. In this study, we sequenced and analyzed the sex-biased transcriptome in gonads and brain (the tissues with the most profound role in sexual development and reproduction) of two sparids with different reproductive modes: the gonochoristic common dentex, Dentex dentex, and the protandrous hermaphrodite gilthead seabream, Sparus aurata. Through comparative analysis with other protogynous and rudimentary protandrous sparid transcriptomes already available, we put forward common male and female-specific genes and pathways that are probably implicated in sex-maintenance in this fish family. Our results contribute to the understanding of the complex processes behind the establishment of the functional sex, especially in hermaphrodite species and set the groundwork for future experiments by providing a gene toolkit that can improve efforts to control phenotypic sex in finfish in the ever-increasingly important field of aquaculture.
Collapse
Affiliation(s)
- Alexandros Tsakogiannis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Tereza Manousaki
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Jacques Lagnel
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | | | - Nikos Papandroulakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Constantinos C. Mylonas
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Costas S. Tsigenopoulos
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| |
Collapse
|
10
|
Sakai M, Masaki K, Aiba S, Tone M, Takashima S. Expression dynamics of self-renewal factors for spermatogonial stem cells in the mouse testis. J Reprod Dev 2018; 64:267-275. [PMID: 29657241 PMCID: PMC6021615 DOI: 10.1262/jrd.2018-015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are bona fide self-renewal factors for spermatogonial stem cells (SSCs). Although GDNF is indispensable for the maintenance of SSCs, the role of FGF2 in the testis remains to be elucidated. To clarify this, the expression dynamics and regulatory mechanisms of Fgf2 and Gdnf in the mouse testes were analyzed. It is well known that Sertoli cells express Gdnf, and its receptor is expressed in a subset of undifferentiated spermatogonia, including SSCs. However, we found that Fgf2 was mainly expressed in the germ cells and its receptors were expressed not only in the cultured spermatogonial cell line, but also in testicular somatic cells. Aging, hypophysectomy, retinoic acid treatment, and testicular injury induced distinct Fgf2 and Gdnf expression dynamics, suggesting a difference in the expression mechanism of Fgf2 and Gdnf in the testis. Such differences might cause a dynamic fluctuation of Gdnf/Fgf2 ratio depending on the intrinsic/extrinsic cues. Considering that FGF2-cultured spermatogonia exhibit more differentiated phenotype than those cultured with GDNF, FGF2 might play a role distinct from that of GDNF in the testis, despite the fact that both factors are self-renewal factor for SSC in vitro.
Collapse
Affiliation(s)
- Mizuki Sakai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Kaito Masaki
- Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Shota Aiba
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Masaaki Tone
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Seiji Takashima
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.,Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan
| |
Collapse
|