1
|
Jeong Y, Deveza L, Ortinau L, Lei K, Dawson JR, Park D. Identification of LRP1+CD13+ human periosteal stem cells that require LRP1 for bone repair. JCI Insight 2024; 9:e173831. [PMID: 39405183 PMCID: PMC11601900 DOI: 10.1172/jci.insight.173831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/04/2024] [Indexed: 11/29/2024] Open
Abstract
Human periosteal skeletal stem cells (P-SSCs) are critical for cortical bone maintenance and repair. However, their in vivo identity, molecular characteristics, and specific markers remain unknown. Here, single-cell sequencing revealed human periosteum contains SSC clusters expressing known SSC markers, podoplanin (PDPN) and PDGFRA. Notably, human P-SSCs, but not bone marrow SSCs, selectively expressed identified markers low density lipoprotein receptor-related protein 1 (LRP1) and CD13. These LRP1+CD13+ human P-SSCs were perivascular cells with high osteochondrogenic but minimal adipogenic potential. Upon transplantation into bone injuries in mice, they preserved self-renewal capability in vivo. Single-cell analysis of mouse periosteum further supported the preferential expression of LRP1 and CD13 in Prx1+ P-SSCs. When Lrp1 was conditionally deleted in Prx1 lineage cells, it led to severe bone deformity, short stature, and periosteal defects. By contrast, local treatment with an LRP1 agonist at the injury sites induced early P-SSC proliferation and bone healing. Thus, human and mouse periosteum contains unique osteochondrogenic stem cell subsets, and these P-SSCs express specific markers, LRP1 and CD13, with a regulatory mechanism through LRP1 that enhances P-SSC function and bone repair.
Collapse
Affiliation(s)
| | - Lorenzo Deveza
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | - Kevin Lei
- Department of Molecular and Human Genetics and
| | - John R. Dawson
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Dongsu Park
- Department of Molecular and Human Genetics and
| |
Collapse
|
2
|
Yin B, Shen F, Ma Q, Liu Y, Han X, Cai X, Shi Y, Ye L. Identification of Postn+ periosteal progenitor cells with bone regenerative potential. JCI Insight 2024; 9:e182524. [PMID: 39377227 PMCID: PMC11466188 DOI: 10.1172/jci.insight.182524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/13/2024] [Indexed: 10/09/2024] Open
Abstract
Bone contains multiple pools of skeletal stem/progenitor cells (SSPCs), and SSPCs in periosteal compartments are known to exhibit higher regenerative potential than those in BM and endosteal compartments. However, the in vivo identity and hierarchical relationships of periosteal SSPCs (P-SSPCs) remain unclear due to a lack of reliable markers to distinguish BM SSPCs and P-SSPCs. Here, we found that periosteal mesenchymal progenitor cells (P-MPs) in periosteum can be identified based on Postn-CreERT2 expression. Postn-expressing periosteal subpopulation produces osteolineage descendants that fuel bones to maintain homeostasis and support regeneration. Notably, Postn+ P-MPs are likely derived from Gli1+ skeletal stem cells (SSCs). Ablation of Postn+ cells results in impairments in homeostatic cortical bone architecture and defects in fracture repair. Genetic deletion of Igf1r in Postn+ cells dampens bone fracture healing. In summary, our study provides a mechanistic understanding of bone regeneration through the regulation of region-specific Postn+ P-MPs.
Collapse
Affiliation(s)
- Bei Yin
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
- Department of Endodontics, West China School of Stomatology
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
| | - Qingge Ma
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
- Department of Endodontics, West China School of Stomatology
| | | | - Xianglong Han
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
- Department of Orthodontics, West China School of Stomatology, and
| | - Xuyu Cai
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
| | - Ling Ye
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
- Department of Endodontics, West China School of Stomatology
| |
Collapse
|
3
|
Marom R, Song IW, Busse EC, Washington ME, Berrier AS, Rossi VC, Ortinau L, Jeong Y, Jiang MM, Dawson BC, Adeyeye M, Leynes C, Lietman CD, Stroup BM, Batkovskyte D, Jain M, Chen Y, Cela R, Castellon A, Tran AA, Lorenzo I, Meyers DN, Huang S, Turner A, Shenava V, Wallace M, Orwoll E, Park D, Ambrose CG, Nagamani SC, Heaney JD, Lee BH. The IFITM5 mutation in osteogenesis imperfecta type V is associated with an ERK/SOX9-dependent osteoprogenitor differentiation defect. J Clin Invest 2024; 134:e170369. [PMID: 38885336 PMCID: PMC11290974 DOI: 10.1172/jci170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Osteogenesis imperfecta (OI) type V is the second most common form of OI, distinguished by hyperplastic callus formation and calcification of the interosseous membranes, in addition to the bone fragility. It is caused by a recurrent, dominant pathogenic variant (c.-14C>T) in interferon-induced transmembrane protein 5 (IFITM5). Here, we generated a conditional Rosa26-knockin mouse model to study the mechanistic consequences of the recurrent mutation. Expression of the mutant Ifitm5 in osteo-chondroprogenitor or chondrogenic cells resulted in low bone mass and growth retardation. Mutant limbs showed impaired endochondral ossification, cartilage overgrowth, and abnormal growth plate architecture. The cartilage phenotype correlates with the pathology reported in patients with OI type V. Surprisingly, expression of mutant Ifitm5 in mature osteoblasts caused no obvious skeletal abnormalities. In contrast, earlier expression in osteo-chondroprogenitors was associated with an increase in the skeletal progenitor cell population within the periosteum. Lineage tracing showed that chondrogenic cells expressing the mutant Ifitm5 had decreased differentiation into osteoblastic cells in diaphyseal bone. Moreover, mutant IFITM5 disrupted early skeletal homeostasis in part by activating ERK signaling and downstream SOX9 protein, and inhibition of these pathways partially rescued the phenotype in mutant animals. These data identify the contribution of a signaling defect altering osteo-chondroprogenitor differentiation as a driver in the pathogenesis of OI type V.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Emily C. Busse
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Megan E. Washington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ava S. Berrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Vittoria C. Rossi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Laura Ortinau
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brian C. Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mary Adeyeye
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, UT Health Houston MD Anderson Cancer Center, Houston, Texas, USA
| | - Carolina Leynes
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Caressa D. Lietman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Bridget M. Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dominyka Batkovskyte
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mahim Jain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Racel Cela
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alexis Castellon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alyssa A. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - D. Nicole Meyers
- Department of Orthopaedic Surgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, and Huffington Department of Education, Innovation, and Technology, Advanced Technology Cores, and
| | - Alicia Turner
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Vinitha Shenava
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Maegen Wallace
- Orthopaedic Surgery, University of Nebraska Medical Center, Children’s Hospital and Medical Center, Omaha, Nebraska, USA
| | - Eric Orwoll
- Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland, Oregon, USA
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Catherine G. Ambrose
- Department of Orthopaedic Surgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Sandesh C.S. Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brendan H. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
4
|
Moore ER, Maridas DE, Gamer L, Chen G, Burton K, Rosen V. A periosteum-derived cell line to study the role of BMP/TGFβ signaling in periosteal cell behavior and function. Front Physiol 2023; 14:1221152. [PMID: 37799511 PMCID: PMC10547901 DOI: 10.3389/fphys.2023.1221152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
The periosteum is a thin tissue surrounding each skeletal element that contains stem and progenitor cells involved in bone development, postnatal appositional bone growth, load-induced bone formation, and fracture repair. BMP and TGFβ signaling are important for periosteal activity and periosteal cell behavior, but thorough examination of the influence of these pathways on specific cell populations resident in the periosteum is lacking due to limitations associated with primary periosteal cell isolations and in vitro experiments. Here we describe the generation of a novel periosteum-derived clonal cell (PDC) line from postnatal day 14 mice and use it to examine periosteal cell behavior in vitro. PDCs exhibit key characteristics of periosteal cells observed during skeletal development, maintenance, and bone repair. Specifically, PDCs express established periosteal markers, can be expanded in culture, demonstrate the ability to differentiate into chondrocytes, osteoblasts, and adipocytes, and exhibit an osteogenic response to physical stimulation. PDCs also engage in BMP and/or TGFβ signaling when treated with the activating ligands BMP2 and TGFβ-1, and in response to mechanical stimulation via fluid shear. We believe that this PDC line will be useful for large-scale, long-term experiments that were not feasible when using primary periosteal cells. Anticipated future uses include advancing our understanding of the signaling interactions that occur during appositional bone growth and fracture repair and developing drug screening platforms to discover novel growth and fracture healing factors.
Collapse
Affiliation(s)
- Emily R. Moore
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | | | | | | | | | | |
Collapse
|
5
|
Shainer R, Kram V, Kilts TM, Li L, Doyle AD, Shainer I, Martin D, Simon CG, Zeng-Brouwers J, Schaefer L, Young MF. Biglycan regulates bone development and regeneration. Front Physiol 2023; 14:1119368. [PMID: 36875017 PMCID: PMC9979216 DOI: 10.3389/fphys.2023.1119368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Endochondral bone development and regeneration relies on activation and proliferation of periosteum derived-cells (PDCs). Biglycan (Bgn), a small proteoglycan found in extracellular matrix, is known to be expressed in bone and cartilage, however little is known about its influence during bone development. Here we link biglycan with osteoblast maturation starting during embryonic development that later affects bone integrity and strength. Biglycan gene deletion reduced the inflammatory response after fracture, leading to impaired periosteal expansion and callus formation. Using a novel 3D scaffold with PDCs, we found that biglycan could be important for the cartilage phase preceding bone formation. The absence of biglycan led to accelerated bone development with high levels of osteopontin, which appeared to be detrimental to the structural integrity of the bone. Collectively, our study identifies biglycan as an influencing factor in PDCs activation during bone development and bone regeneration after fracture.
Collapse
Affiliation(s)
- Reut Shainer
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Tina M. Kilts
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Li Li
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Andrew D. Doyle
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Inbal Shainer
- Department Genes-Circuits-Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Daniel Martin
- NIDCD/NIDCR Genomics and Computational Biology Core, National Institutes of Health, Bethesda, MD, United States
| | - Carl G. Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt, Germany
| | - Marian F. Young
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
6
|
Han Z, Dong L, Li A, Li Z, Fu L, Zhang Z, Li X, Li X. Efficient angiogenesis-based wound healing through hydrogel dressing with extracellular vesicles release. Mater Today Bio 2022; 16:100427. [PMID: 36193344 PMCID: PMC9526170 DOI: 10.1016/j.mtbio.2022.100427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 10/27/2022] Open
Abstract
Wound healing and angiogenesis remain challenges for both clinical and experimental research worldwide. Periosteum-derived extracellular vesicles (P-sEVs) delivered by hydrogel dressings provide a potential strategy for wound defects to promote fast healing. In this study, we designed a NAGA/GelMA/Laponite/glycerol hydrogel wound dressing that can release P-sEVs to accelerate angiogenesis and wound healing (named P-sEVs@hydrogel) (N-acryloyl glycinamide, NAGA). The wound dressing showed multiple functions, including efficient angiogenesis, tissue adhesion and a physical barrier. P-sEVs significantly enhanced the proliferation, migration, and tube formation of endothelial cells in vitro. The results of in vivo experiments showed that P-sEVs@hydrogel accelerates the healing of a full-thickness defect wound model by stimulating the angiogenic process. The improved cell proliferation, tissue formation, remodeling, and re-epithelialization possibly resulted in the fast healing. This study shows that multifunctional hydrogel dressing combined with bioactive molecules can achieve fast and satisfactory wound healing in full-thickness wound defects and other related wounds.
Collapse
Affiliation(s)
- Zhengzhe Han
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Lanlan Dong
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Ang Li
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Zongyue Li
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, PR China
| | - Landie Fu
- North Cross School Shanghai, Building 2, Lane 803, Shuangcheng Road, Baoshan District, Shanghai, PR China
| | - Zhichang Zhang
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Xiang Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Xiaolin Li
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| |
Collapse
|
7
|
Yang D, Ortinau L, Jeong Y, Park D. Advances and challenges in intravital imaging of craniofacial and dental progenitor cells. Genesis 2022; 60:e23498. [PMID: 35980285 PMCID: PMC10015615 DOI: 10.1002/dvg.23498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
Craniofacial and appendicular bone homeostasis is dynamically regulated by a balance between bone formation and resorption by osteoblasts and osteoclasts, respectively. Despite the developments in multiple imaging techniques in bone biology, there are still technical challenges and limitations in the investigation of spatial/anatomical location of rare stem/progenitor cells and their molecular regulation in tooth and craniofacial bones of living animals. Recent advances in live animal imaging techniques for the craniofacial and dental apparatus can provide new insights in real time into bone stem/progenitor cell dynamics and function in vivo. Here, we review the current inventions and applications of the noninvasive intravital imaging technique and its practical uses and limitations in the analysis of stem/progenitor cells in craniofacial and dental apparatus in vivo. Furthermore, we also explore the potential applications of intravital microscopy in the dental field.
Collapse
Affiliation(s)
- Dongwook Yang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Laura Ortinau
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Youngjae Jeong
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Dongsu Park
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Periosteum-derived podoplanin-expressing stromal cells regulate nascent vascularization during epiphyseal marrow development. J Biol Chem 2022; 298:101833. [PMID: 35304101 PMCID: PMC9019254 DOI: 10.1016/j.jbc.2022.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
Bone marrow development and endochondral bone formation occur simultaneously. During endochondral ossification, periosteal vasculatures and stromal progenitors invade the primary avascular cartilaginous anlage, which induces primitive marrow development. We previously determined that bone marrow podoplanin (PDPN)-expressing stromal cells exist in the perivascular microenvironment and promote megakaryopoiesis and erythropoiesis. In this study, we aimed to examine the involvement of PDPN-expressing stromal cells in postnatal bone marrow generation. Using histological analysis, we observed that periosteum-derived PDPN-expressing stromal cells infiltrated the cartilaginous anlage of the postnatal epiphysis and populated on the primitive vasculature of secondary ossification center. Furthermore, immunophenotyping and cellular characteristic analyses indicated that the PDPN-expressing stromal cells constituted a subpopulation of the skeletal stem cell lineage. In vitro xenovascular model cocultured with human umbilical vein endothelial cells and PDPN-expressing skeletal stem cell progenies showed that PDPN-expressing stromal cells maintained vascular integrity via the release of angiogenic factors and vascular basement membrane-related extracellular matrices. We show that in this process, Notch signal activation committed the PDPN-expressing stromal cells into a dominant state with basement membrane-related extracellular matrices, especially type IV collagens. Our findings suggest that the PDPN-expressing stromal cells regulate the integrity of the primitive vasculatures in the epiphyseal nascent marrow. To the best of our knowledge, this is the first study to comprehensively examine how PDPN-expressing stromal cells contribute to marrow development and homeostasis.
Collapse
|
9
|
Lu D, Demissie S, Horowitz NB, Gower AC, Lenburg ME, Alekseyev YO, Hussein AI, Bragdon B, Liu Y, Daukss D, Page JM, Webster MZ, Schlezinger JJ, Morgan EF, Gerstenfeld LC. Temporal and Quantitative Transcriptomic Differences Define Sexual Dimorphism in Murine Postnatal Bone Aging. JBMR Plus 2021; 6:e10579. [PMID: 35229061 PMCID: PMC8861981 DOI: 10.1002/jbm4.10579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Time is a central element of the sexual dimorphic patterns of development, pathology, and aging of the skeleton. Because the transcriptome is a representation of the phenome, we hypothesized that both sex and sex‐specific temporal, transcriptomic differences in bone tissues over an 18‐month period would be informative to the underlying molecular processes that lead to postnatal sexual dimorphism. Regardless of age, sex‐associated changes of the whole bone transcriptomes were primarily associated not only with bone but also vascular and connective tissue ontologies. A pattern‐based approach used to screen the entire Gene Expression Omnibus (GEO) database against those that were sex‐specific in bone identified two coordinately regulated gene sets: one related to high phosphate–induced aortic calcification and one induced by mechanical stimulation in bone. Temporal clustering of the transcriptome identified two skeletal tissue‐associated, sex‐specific patterns of gene expression. One set of genes, associated with skeletal patterning and morphology, showed peak expression earlier in females. The second set of genes, associated with coupled remodeling, had quantitatively higher expression in females and exhibited a broad peak between 3 to 12 months, concurrent with the animals' reproductive period. Results of phenome‐level structural assessments of the tibia and vertebrae, and in vivo and in vitro analysis of cells having osteogenic potential, were consistent with the existence of functionally unique, skeletogenic cell populations that are separately responsible for appositional growth and intramedullary functions. These data suggest that skeletal sexual dimorphism arises through sex‐specific, temporally different processes controlling morphometric growth and later coupled remodeling of the skeleton during the reproductive period of the animal. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Darlene Lu
- Department of Biostatistics Boston University School of Public Health Boston MA USA
| | - Serkalem Demissie
- Department of Biostatistics Boston University School of Public Health Boston MA USA
| | - Nina B Horowitz
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| | - Adam C Gower
- Department of Medicine, Section of Computational Biomedicine Boston University School of Medicine Boston MA USA
| | - Marc E Lenburg
- Department of Medicine, Section of Computational Biomedicine Boston University School of Medicine Boston MA USA
- Department of Pathology and Laboratory Medicine Boston University School of Medicine Boston MA USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine Boston University School of Medicine Boston MA USA
| | - Amira I Hussein
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| | - Beth Bragdon
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| | - Yu Liu
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| | - Dana Daukss
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| | - Jack M Page
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| | - Micheal Z Webster
- Department of Mechanical Engineering Boston University Boston MA USA
| | - Jennifer J Schlezinger
- Department of Environmental Health Boston University School of Public Health Boston MA USA
| | - Elise F Morgan
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
- Department of Mechanical Engineering Boston University Boston MA USA
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery Boston University School of Medicine Boston MA USA
| |
Collapse
|
10
|
Jeyaraman M, Muthu S, Gangadaran P, Ranjan R, Jeyaraman N, Prajwal GS, Mishra PC, Rajendran RL, Ahn BC. Osteogenic and Chondrogenic Potential of Periosteum-Derived Mesenchymal Stromal Cells: Do They Hold the Key to the Future? Pharmaceuticals (Basel) 2021; 14:ph14111133. [PMID: 34832915 PMCID: PMC8618036 DOI: 10.3390/ph14111133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
The periosteum, with its outer fibrous and inner cambium layer, lies in a dynamic environment with a niche of pluripotent stem cells for their reparative needs. The inner cambium layer is rich in mesenchymal progenitors, osteogenic progenitors, osteoblasts, and fibroblasts in a scant collagen matrix environment. Their role in union and remodeling of fracture is well known. However, the periosteum as a source of mesenchymal stem cells has not been explored in detail. Moreover, with the continuous expansion of techniques, newer insights have been acquired into the roles and regulation of these periosteal cells. From a therapeutic standpoint, the periosteum as a source of tissue engineering has gained much attraction. Apart from its role in bone repair, analysis of the bone-forming potential of periosteum-derived stem cells is lacking. Hence, this article elucidates the role of the periosteum as a potential source of mesenchymal stem cells along with their capacity for osteogenic and chondrogenic differentiation for therapeutic application in the future.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201306, Uttar Pradesh, India; (M.J.); (R.R.)
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- International Association of Stem Cell and Regenerative Medicine (IASRM), Greater Kailash, New Delhi 110048, Uttar Pradesh, India;
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- International Association of Stem Cell and Regenerative Medicine (IASRM), Greater Kailash, New Delhi 110048, Uttar Pradesh, India;
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, Tamil Nadu, India
- Correspondence: (S.M.); (R.L.R.); (B.-C.A.); Tel.: +82-53-420-4914 (R.L.R.); +82-53-420-5583 (B.-C.A.)
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201306, Uttar Pradesh, India; (M.J.); (R.R.)
| | - Naveen Jeyaraman
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India;
| | | | - Prabhu Chandra Mishra
- International Association of Stem Cell and Regenerative Medicine (IASRM), Greater Kailash, New Delhi 110048, Uttar Pradesh, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- Correspondence: (S.M.); (R.L.R.); (B.-C.A.); Tel.: +82-53-420-4914 (R.L.R.); +82-53-420-5583 (B.-C.A.)
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- Correspondence: (S.M.); (R.L.R.); (B.-C.A.); Tel.: +82-53-420-4914 (R.L.R.); +82-53-420-5583 (B.-C.A.)
| |
Collapse
|
11
|
Agas D, Sabbieti MG. Archetypal autophagic players through new lenses for bone marrow stem/mature cells regulation. J Cell Physiol 2021; 236:6101-6114. [PMID: 33492700 DOI: 10.1002/jcp.30296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
The bone marrow landscape consists of specialized and stem/progenitor cells, which coordinate important tissue-related and systemic physiological features. Within the marrow cavity, stem/progenitor and differentiated hematopoietic and skeletal cells congregate into dynamic functional assemblies throughout specific anatomical regions, termed niches. There is a need for better understanding of the bone marrow microareas, through exploration of the intramural physical and molecular interactions of the distinctive cell populations. The elective liaisons established among the mesenchymal/stromal stem cell and hematopoietic stem cell lineage trees play a key role in orchestrating the stem/mature cell behavior and customized hierarchies within bone marrow cell populations. Recently, the autophagic apparatus has been discovered to be an important feature of bone marrow homeostasis. Autophagy-related factors involved in the labyrinthic and highly dynamic bone marrow workshop redesign the niche framework by coordinating the operational schedule of pluripotent stem and mature cells. The following report summarizes the most recent breakthroughs in our understanding of the intramural relationships between bone marrow cells and key autophagic mediators. Doubtless, the consideration of the autophagy-related and unrelated functions of main players, such as p62, Atg7, Atg5, and Beclin-1 remains a compelling task to thoroughly understand the complex relations between the heterogenic cell types that populate bone marrow.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy
| |
Collapse
|
12
|
Ortinau L, Lei K, Jeong Y, Park D. Real-Time Imaging of CCL5-Induced Migration of Periosteal Skeletal Stem Cells in Mice. J Vis Exp 2020:10.3791/61162. [PMID: 33016934 PMCID: PMC9119154 DOI: 10.3791/61162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Periosteal skeletal stem cells (P-SSCs) are essential for lifelong bone maintenance and repair, making them an ideal focus for the development of therapies to enhance fracture healing. Periosteal cells rapidly migrate to an injury to supply new chondrocytes and osteoblasts for fracture healing. Traditionally, the efficacy of a cytokine to induce cell migration has only been conducted in vitro by performing a transwell or scratch assay. With advancements in intravital microscopy using multiphoton excitation, it was recently discovered that 1) P-SSCs express the migratory gene CCR5 and 2) treatment with the CCR5 ligand known as CCL5 improves fracture healing and the migration of P-SSCs in response to CCL5. These results have been captured in real-time. Described here is a protocol to visualize P-SSC migration from the calvarial suture skeletal stem cell (SSC) niche towards an injury after treatment with CCL5. The protocol details the construction of a mouse restraint and imaging mount, surgical preparation of the mouse calvaria, induction of a calvaria defect, and acquisition of time-lapse imaging.
Collapse
Affiliation(s)
- Laura Ortinau
- Department of Molecular & Human Genetics, Baylor College of Medicine; Center for Skeletal Biology, Baylor College of Medicine
| | - Kevin Lei
- Department of Molecular & Human Genetics, Baylor College of Medicine
| | - Youngjae Jeong
- Department of Molecular & Human Genetics, Baylor College of Medicine
| | - Dongsu Park
- Department of Molecular & Human Genetics, Baylor College of Medicine; Center for Skeletal Biology, Baylor College of Medicine; Department of Pathology & Immunology, Baylor College of Medicine;
| |
Collapse
|
13
|
Ortinau LC, Wang H, Lei K, Deveza L, Jeong Y, Hara Y, Grafe I, Rosenfeld SB, Lee D, Lee B, Scadden DT, Park D. Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells. Cell Stem Cell 2020; 25:784-796.e5. [PMID: 31809737 DOI: 10.1016/j.stem.2019.11.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/11/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
The periosteum is critical for bone maintenance and healing. However, the in vivo identity and specific regulatory mechanisms of adult periosteum-resident skeletal stem cells are unknown. Here, we report animal models that selectively and durably label postnatal Mx1+αSMA+ periosteal stem cells (P-SSCs) and establish that P-SSCs are a long-term repopulating, functionally distinct SSC subset responsible for lifelong generation of periosteal osteoblasts. P-SSCs rapidly migrate toward an injury site, supply osteoblasts and chondrocytes, and recover new periosteum. Notably, P-SSCs specifically express CCL5 receptors, CCR3 and CCR5. Real-time intravital imaging revealed that the treatment with CCL5 induces P-SSC migration in vivo and bone healing, while CCL5/CCR5 deletion, CCR5 inhibition, or local P-SSC ablation reduces osteoblast number and delays bone healing. Human periosteal cells express CCR5 and undergo CCL5-mediated migration. Thus, the adult periosteum maintains genetically distinct SSC subsets with a CCL5-dependent migratory mechanism required for bone maintenance and injury repair.
Collapse
Affiliation(s)
- Laura C Ortinau
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Skeletal Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hamilton Wang
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kevin Lei
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lorenzo Deveza
- Department of Orthopedic Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Youngjae Jeong
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yannis Hara
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ingo Grafe
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Skeletal Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Scott B Rosenfeld
- Texas Children's Hospital, 6701 Fannin Street, Houston, TX 77030, USA
| | - Dongjun Lee
- Department of Convergence of Medical Science, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Brendan Lee
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Skeletal Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - David T Scadden
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Dongsu Park
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Skeletal Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Bolander J, Herpelinck T, Chaklader M, Gklava C, Geris L, Luyten FP. Single-cell characterization and metabolic profiling of in vitro cultured human skeletal progenitors with enhanced in vivo bone forming capacity. Stem Cells Transl Med 2019; 9:389-402. [PMID: 31738481 PMCID: PMC7031650 DOI: 10.1002/sctm.19-0151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/19/2019] [Accepted: 10/05/2019] [Indexed: 12/15/2022] Open
Abstract
Cell populations and their interplay provide the basis of a cell‐based regenerative construct. Serum‐free preconditioning can overcome the less predictable behavior of serum expanded progenitor cells, but the underlying mechanism and how this is reflected in vivo remains unknown. Herein, the cellular and molecular changes associated with a cellular phenotype shift induced by serum‐free preconditioning of human periosteum‐derived cells were investigated. Following BMP‐2 stimulation, preconditioned cells displayed enhanced in vivo bone forming capacity, associated with an adapted cellular metabolism together with an elevated expression of BMPR2. Single‐cell RNA sequencing confirmed the activation of pathways and transcriptional regulators involved in bone development and fracture healing, providing support for the augmentation of specified skeletal progenitor cell populations. The reported findings illustrate the importance of appropriate in vitro conditions for the in vivo outcome. In addition, BMPR2 represents a promising biomarker for the enrichment of skeletal progenitor cells for in vivo bone regeneration.
Collapse
Affiliation(s)
- Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Tim Herpelinck
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Malay Chaklader
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Charikleia Gklava
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, GIGA in silico medicine, University of Liege, Liège, Belgium
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Park SM, Kim J, Hong CM, Shin DH, Kim JY, Park DY, Sohn DH, Kim YH, Kwon SM, Kim JH, Bae SS, Kim K, Kim CD, Kang CD, Lee D. SIRT1 is dispensable for maturation of hematopoietic stem cell in the bone marrow niche. Exp Ther Med 2019; 18:2341-2345. [PMID: 31452717 DOI: 10.3892/etm.2019.7813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/21/2019] [Indexed: 11/06/2022] Open
Abstract
Sirtuin 1 (SIRT1) is a histone deacetylase implicated in stem cell homeostasis. Conditional Sirt1 deletion in the hematopoietic stem and progenitor system promotes hematopoietic stem and progenitor cell (HSPC) expansion under stress conditions. In addition, SIRT1 activators modulate the capacity and HSPC numbers in the bone marrow (BM). To investigate the role of SIRT1 in the BM niche, a conditional Sirt1 deletion in the BM niche was generated in a mouse model for the present study. Multicolor flow cytometric analyses were performed to determine HSC cell populations. Using 5-fluorouracil-induced proliferative stress, a survival curve was produced. In the present study, Sirt1 deletion in the BM niche demonstrated that the production of mature blood cells, lineage distribution within hematopoietic organs and frequencies of HSPC populations were comparable to those of controls. Additionally, Sirt1 deletion in the BM niche did not perturb HSC maturation under stress induced by transplantation. Therefore, these observations suggest that SIRT1 serves a dispensable role in HSC maturation in the BM niche.
Collapse
Affiliation(s)
- Su Min Park
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Jayoung Kim
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Chae Mi Hong
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Dong Hoon Shin
- Department of Pathology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Jee Yeon Kim
- Department of Pathology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Do Youn Park
- Department of Pathology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy and Biomedical Informatics, Biomedical Research Institute, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Sang-Mo Kwon
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Sun Sik Bae
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Chi-Dug Kang
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea.,Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| |
Collapse
|
16
|
Walia B, Huang AH. Tendon stem progenitor cells: Understanding the biology to inform therapeutic strategies for tendon repair. J Orthop Res 2019; 37:1270-1280. [PMID: 30270569 PMCID: PMC6823601 DOI: 10.1002/jor.24156] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
Tendon and ligament injuries are a leading cause of healthcare visits with significant impact in terms of economic cost and reduced quality of life. To date, reparative strategies remain largely restricted to conservative treatment or surgical repair. However, these therapies fail to restore native tendon structure and function; thus, the tissue may re-rupture or degenerate with time. To improve tendon healing, one promising strategy may be harnessing the innate potential of resident tendon stem/progenitor cells (TSPCs) to guide tenogenic regeneration. In this review, we outline recent advances in the identification and characterization of putative TSPC populations, and discuss biochemical, biomechanical, and biomaterial methods employed for their culture and differentiation. Finally, we identify limitations in our current understanding of TSPC biology, key challenges for their use, and potential therapeutic strategies to inform cell-based tendon repair. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1270-1280, 2019.
Collapse
Affiliation(s)
- Bhavita Walia
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H. Huang
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
17
|
Hox gene expression determines cell fate of adult periosteal stem/progenitor cells. Sci Rep 2019; 9:5043. [PMID: 30911091 PMCID: PMC6434021 DOI: 10.1038/s41598-019-41639-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/08/2019] [Indexed: 11/08/2022] Open
Abstract
Hox genes are evolutionarily conserved transcription factors that during embryonic development function as master regulators of positional identity. In postnatal life, the function of Hox proteins is less clear: Hox genes are expressed during tissue repair, but in this context their function(s) are largely unknown. Here we show that Hox genes are expressed in periosteal stem/progenitor cells in a distribution similar to that during embryonic development. Using unbiased sequencing, we established that periosteal stem/progenitor cells from distinct anatomic sites within the skeleton significantly differ in their transcriptome, and that Hox expression status best defines these differences. Lastly, we provide evidence that Hox gene expression is one potential mechanism that maintains periosteal stem/progenitor cells in a more primitive, tripotent state, while suppression of Hox genes leads to fate changes with loss of tripotency. Together, our data describe an adult role of Hox genes other than positional identity, and the modulatory role of Hox genes in fate decisions may offer potential druggable targets for the treatment of fractures, non-unions and bone defects.
Collapse
|
18
|
Treatment of intrabony defects with modified perforated membranes in aggressive periodontitis: subtraction radiography outcomes, prognostic variables, and patient morbidity. Clin Oral Investig 2018; 23:3005-3020. [PMID: 30374832 PMCID: PMC7398389 DOI: 10.1007/s00784-018-2712-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Objectives The main objectives of this study were (1) to evaluate bone/graft density alterations by digital subtraction radiography; (2) to determine factors associated with favorable clinical and radiographic outcomes, and (3) to report on patient morbidity after guided tissue regeneration (GTR) in aggressive periodontitis (AgP) patients. Materials and methods Adapting a split-mouth design, 30 comparative intrabony defects in 15 patients were randomly treated with xenogenic graft plus modified perforated membranes (MPM, tests) or xenogenic graft plus standard collagen membranes (CM, controls). The time period of observation was 12 months. Results There were significant improvements in clinical and radiographic parameters within each group, without intergroup differences. However, higher PPD reduction for three-wall defects was noted in MPM sites (5.22 versus 3.62 mm; p = 0.033). Moreover, a significant gain in bone/graft density of 4.9% from 6 to 12 months post-operatively was observed in test sites. Multivariate analysis demonstrated that morphology of intrabony defects was a predictor of CAL gain (p = 0.06), while independent prognostic variables effecting changes in bone/graft density were radiographic defect depth (p = 0.025) and radiographic angle (p = 0.033). The majority of patients reported some discomfort, pain, and edema with mild intensity without any significant differences between treatment modalities. Conclusions This study demonstrated enhanced bone/graft density gain after GTR with MPM, which may indicate greater area of new bone formation. Independent variables effecting treatment outcomes were intrabony defect morphology, radiographic defect depth, and radiographic angle. Clinical relevance This study supports the regenerative treatment of intrabony defects in AgP patients and identifies some variables with prognostic value.
Collapse
|
19
|
Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 2018; 180:143-162. [PMID: 30036727 PMCID: PMC6710094 DOI: 10.1016/j.biomaterials.2018.07.017] [Citation(s) in RCA: 542] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
Bone fractures are the most common traumatic injuries in humans. The repair of bone fractures is a regenerative process that recapitulates many of the biological events of embryonic skeletal development. Most of the time it leads to successful healing and the recovery of the damaged bone. Unfortunately, about 5-10% of fractures will lead to delayed healing or non-union, more so in the case of co-morbidities such as diabetes. In this article, we review the different strategies to heal bone defects using synthetic bone graft substitutes, biologically active substances and stem cells. The majority of currently available reviews focus on strategies that are still at the early stages of development and use mostly in vitro experiments with cell lines or stem cells. Here, we focus on what is already implemented in the clinics, what is currently in clinical trials, and what has been tested in animal models. Treatment approaches can be classified in three major categories: i) synthetic bone graft substitutes (BGS) whose architecture and surface can be optimized; ii) BGS combined with bioactive molecules such as growth factors, peptides or small molecules targeting bone precursor cells, bone formation and metabolism; iii) cell-based strategies with progenitor cells combined or not with active molecules that can be injected or seeded on BGS for improved delivery. We review the major types of adult stromal cells (bone marrow, adipose and periosteum derived) that have been used and compare their properties. Finally, we discuss the remaining challenges that need to be addressed to significantly improve the healing of bone defects.
Collapse
Affiliation(s)
- Antalya Ho-Shui-Ling
- Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France
| | - Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium
| | - Laurence E Rustom
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801, USA
| | - Amy Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61081, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium.
| | - Catherine Picart
- Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France.
| |
Collapse
|