1
|
Rajaei-Sharifabadi H, Shokri Z, Rohollahi M, Yari M, Fakharzadeh S, Kalanaky S, Nazaran MH, de la Fuente Oliver G, Seradj AR. Effect of Partial or Complete Replacement of Dietary Inorganic Trace Minerals Supplement with an Advanced Chelated Source on Nutrient Digestibility in Sheep. Animals (Basel) 2024; 14:3182. [PMID: 39595234 PMCID: PMC11591483 DOI: 10.3390/ani14223182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
The delicate balance of trace mineral supplementation is critical for optimizing rumen function and overall ruminant health. This study evaluated the solubility of an advanced chelate technology-based supplement and assessed its impact on rumen degradability and apparent total tract digestibility (ATTD) when replacing inorganic sources. The solubility of the advanced trace minerals supplement (ACTM) was assessed at pH 5 and pH 2. In situ ruminal degradability of dry matter (DM), organic matter (OM), and fiber fractions was evaluated using two fistulated rams fed diets supplemented with either ACTM or inorganic trace minerals. ATTD was determined in 6 lambs fed diets supplemented with 100% ACTM, 50% ACTM, and 50% inorganic (50% ACTM), or 100% inorganic sources in a Latin square design. Results showed solubilities ranging from 6.75% to 11.81% at pH 5, increasing to 69.24% to 80.47% at pH 2. ACTM supplementation significantly enhanced the rumen degradability of neutral detergent fiber (NDF) and acid detergent fiber (ADF) at 6 h of incubation (p ≤ 0.05). The 100% ACTM treatment significantly decreased rumen pH (p = 0.051) and improved DM, OM, NDF, and ADF digestibility, as well as trace mineral absorbability compared to 100% inorganic (p ≤ 0.05). These findings highlight the potential of ACTM supplementation to enhance ruminal degradability, promote better trace mineral absorption, and improve the ATTD of nutrients compared to inorganic sources.
Collapse
Affiliation(s)
- Hossein Rajaei-Sharifabadi
- Department of Animal Science, Faculty of Agriculture, Malayer University, Malayer 6574184621, Iran; (H.R.-S.); (Z.S.); (M.R.); (M.Y.)
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio-CERCA Center, 25198 Lleida, Spain;
| | - Zahra Shokri
- Department of Animal Science, Faculty of Agriculture, Malayer University, Malayer 6574184621, Iran; (H.R.-S.); (Z.S.); (M.R.); (M.Y.)
| | - Mahdi Rohollahi
- Department of Animal Science, Faculty of Agriculture, Malayer University, Malayer 6574184621, Iran; (H.R.-S.); (Z.S.); (M.R.); (M.Y.)
| | - Mojtaba Yari
- Department of Animal Science, Faculty of Agriculture, Malayer University, Malayer 6574184621, Iran; (H.R.-S.); (Z.S.); (M.R.); (M.Y.)
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Co., Tehran 1415944341, Iran; (S.F.); (S.K.)
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Co., Tehran 1415944341, Iran; (S.F.); (S.K.)
| | - Mohammad Hassan Nazaran
- Department of Research and Development, Sodour Ahrar Shargh Co., Tehran 1415944341, Iran; (S.F.); (S.K.)
| | | | - Ahmad Reza Seradj
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio-CERCA Center, 25198 Lleida, Spain;
| |
Collapse
|
2
|
Asadi M, Toghdory A, Ghoorchi T, Hatami M. The effect of maternal organic manganese supplementation on performance, immunological status, blood biochemical and antioxidant status of Afshari ewes and their newborn lambs in transition period. J Anim Physiol Anim Nutr (Berl) 2024; 108:493-499. [PMID: 37997652 DOI: 10.1111/jpn.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
It has been documented that adequate maternal manganese (Mn) status is vital for performance and health of ewes and their newborn lambs. However, required level and form of dietary Mn in ruminants are not well defined. The current study was conducted to evaluate the effect of maternal organic Mn supplementation on performance, immunological status, blood biochemical and antioxidant status of Afshari ewes and their newborn lambs in transition period. For this purpose, various organic Mn concentrations were utilized as a supplementary ingredient in formulating the diets of ewes. The ewes were randomly allocated into three groups, fed with 0, and 80 mg/kg organic Mn supplemented diet. At the end of the experiment, the parameters including the performance of newborn lambs, as well as biochemical factors, immune status and antioxidant status in ewes and their newborn lambs were evaluated. The results showed a significant increase in the plasma concentrations of Mn, glucose, insulin, thyroid hormones (T3 , T4 ) and enzymatic antioxidants (SOD, GPX , CAT) in ewes and their newborn lambs that were treated with maternal organic Mn. Moreover, inorganic Mn treatments, the concentration of IgG in newborn lamb's plasma, and colostrum of ewes increased. According to this research, organic Mn acts as a valuable and safe supplementary material that could be exploited for enhancing health of ewes and their newborn lambs.
Collapse
Affiliation(s)
- Mohammad Asadi
- Department of Animal and Poultry Nutrition, Animal Science Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Abdolhakim Toghdory
- Department of Animal and Poultry Nutrition, Animal Science Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Taghi Ghoorchi
- Department of Animal and Poultry Nutrition, Animal Science Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Hatami
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Lu H, Liu P, Liu S, Zhao X, Bai B, Cheng J, Zhang Z, Sun C, Hao L, Xue Y. Effects of sources and levels of dietary supplementary manganese on growing yak's in vitro rumen fermentation. Front Vet Sci 2023; 10:1175894. [PMID: 37360409 PMCID: PMC10288112 DOI: 10.3389/fvets.2023.1175894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Manganese (Mn) is an essential trace element for livestock, but little is known about the optimal Mn source and level for yak. Methods To improve yak's feeding standards, a 48-h in vitro study was designed to examine the effect of supplementary Mn sources including Mn sulfate (MnSO4), Mn chloride (MnCl2), and Mn methionine (Met-Mn) at five Mn levels, namely 35 mg/kg, 40 mg/kg, 50 mg/kg, 60 mg/kg, and 70 mg/kg dry matter (includes Mn in substrates), on yak's rumen fermentation. Results Results showed that Met-Mn groups showed higher acetate (p < 0.05), propionate, total volatile fatty acids (p < 0.05) levels, ammonia nitrogen concentration (p < 0.05), dry matter digestibility (DMD), and amylase activities (p < 0.05) compared to MnSO4 and MnCl2 groups. DMD (p < 0.05), amylase activities, and trypsin activities (p < 0.05) all increased firstly and then decreased with the increase of Mn level and reached high values at 40-50 mg/kg Mn levels. Cellulase activities showed high values (p < 0.05) at 50-70 mg/kg Mn levels. Microbial protein contents (p < 0.05) and lipase activities of Mn-Met groups were higher than those of MnSO4 and MnCl2 groups at 40-50 mg/kg Mn levels. Discussion Therefore, Mn-met was the best Mn source, and 40 to 50 mg/kg was the best Mn level for rumen fermentation of yaks.
Collapse
Affiliation(s)
- Huizhen Lu
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Biotechnology Center, Anhui Agricultural University, Hefei, China
- Qinghai Pure Yak Biotechnology Co., LTD., Xining, China
| | - Pengpeng Liu
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shujie Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Xinsheng Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Binqiang Bai
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jianbo Cheng
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Cai Sun
- Qinghai Pure Yak Biotechnology Co., LTD., Xining, China
| | - Lizhuang Hao
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Yanfeng Xue
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Qinghai Pure Yak Biotechnology Co., LTD., Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
4
|
Kišidayová S, Scholcová N, Mihaliková K, Váradyová Z, Pristaš P, Weisskopf S, Chrudimský T, Chroňáková A, Šimek M, Šustr V. Some Aspects of the Physiology of the Nyctotherus velox, a Commensal Ciliated Protozoon Taken from the Hindgut of the Tropical Millipede Archispirostreptus gigas. Life (Basel) 2023; 13:life13051110. [PMID: 37240755 DOI: 10.3390/life13051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
In this paper, the growth requirements, fermentation pattern, and hydrolytic enzymatic activities of anaerobic ciliates collected from the hindgut of the African tropical millipede Archispirostreptus gigas are described. Single-cell molecular analysis showed that ciliates from the millipede hindgut could be assigned to the Nyctotherus velox and a new species named N. archispirostreptae n. sp. The ciliate N. velox can grow in vitro with unspecified prokaryotic populations and various plant polysaccharides (rice starch-RS, xylan, crystalline cellulose20-CC, carboxymethylcellulose-CMC, and inulin) or without polysaccharides (NoPOS) in complex reduced medium with soluble supplements (peptone, glucose, and vitamins). Specific catalytic activity (nkat/g of protein) of α amylase of 300, xylanase of 290, carboxymethylcellulase of 190, and inulinase of 170 was present in the crude protein extract of N. velox. The highest in vitro dry matter digestibility was observed in RS and inulin after 96 h of fermentation. The highest methane concentration was observed in xylan and inulin substrates. The highest short-chain fatty acid concentration was observed in RS, inulin, and xylan. In contrast, the highest ammonia concentration was observed in NoPOS, CMC, and CC. The results indicate that starch is the preferred substrate of the N. velox. Hydrolytic enzyme activities of N. velox showed that the ciliates contribute to the fermentation of plant polysaccharides in the gut of millipedes.
Collapse
Affiliation(s)
- Svetlana Kišidayová
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 00 Košice, Slovakia
| | - Nikola Scholcová
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 00 Košice, Slovakia
| | - Katarína Mihaliková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 00 Košice, Slovakia
| | - Zora Váradyová
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 00 Košice, Slovakia
| | - Peter Pristaš
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 00 Košice, Slovakia
| | - Stanislava Weisskopf
- Institute of Soil Biology and Biogeochemistry, Biology Centre AS CR, 370 05 České Budějovice, Czech Republic
| | - Tomáš Chrudimský
- Institute of Hydrobiology, Biology Centre AS CR, 370 05 České Budějovice, Czech Republic
| | - Alica Chroňáková
- Institute of Soil Biology and Biogeochemistry, Biology Centre AS CR, 370 05 České Budějovice, Czech Republic
| | - Miloslav Šimek
- Institute of Soil Biology and Biogeochemistry, Biology Centre AS CR, 370 05 České Budějovice, Czech Republic
| | - Vladimír Šustr
- Institute of Soil Biology and Biogeochemistry, Biology Centre AS CR, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
5
|
Effect of Methionine Hydroxy Analog on Hu Sheep Digestibility, Rumen Fermentation, and Rumen Microbial Community In Vitro. Metabolites 2023; 13:metabo13020169. [PMID: 36837788 PMCID: PMC9968006 DOI: 10.3390/metabo13020169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
This experiment was conducted to evaluate the effects of a methionine hydroxy analog (MHA) on in vitro gas production, rumen fermentation parameters, and rumen microbiota. Two different MHA, 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi) and the calcium salt of the hydroxy analog of methionine (MHA-Ca), were selected for in vitro experiments. The treatments were the Control group (0% of MHA), HMBi group (2%HMBi), and MHA-Ca group (2%MHA-Ca). Dry matter digestibility was measured after 12 h and 24 h of fermentation, and fermentation parameters and microbial composition were analyzed after 24 h. HMBi and MHA-Ca showed increased (p = 0.001) cumulative gas production in 3 h. The total volatile fatty acids, microbial protein (MCP) concentration, acetate, and acetate to propionate ratio in the HMBi and MHA-Ca groups were significantly higher than those in the Control group (p = 0.006, p = 0.002, p = 0.001, p = 0.004), and the NH3-N concentrations in the HMBi and MHA-Ca groups were significantly lower than those in the Control group (p = 0.004). The 16S rRNA sequencing revealed that the HMBi group had a higher (p = 0.039, p = 0.001, p = 0.027) relative abundance of Bacteroidetes, Firmicutes, and Synergistetes and a lower relative abundance of Proteobacteria (p = 0.001) than the Control group. At the genus level, Prevotella abundance was higher (p = 0.001), while Ruminobacter abundance was lower (p = 0.001), in the HMBi and MHA-Ca groups than in the Control group. Spearman's correlation analysis showed that the relative abundance of Prevotella_1, Streptococcus, and Desulfovibrio was positively correlated with dry matter digestibility, MCP, and fermentation parameters. MHA, thus, significantly increased gas production and altered the rumen fermentation parameters and microbiota composition of sheep.
Collapse
|
6
|
Sizova E, Yausheva E, Marshinskaia O, Kazakova T, Khlopko Y, Lebedev S. Elemental composition of the hair and milk of black-spotted cows and its relationship with intestinal microbiome reorganization. Vet World 2022; 15:2565-2574. [PMID: 36590114 PMCID: PMC9798049 DOI: 10.14202/vetworld.2022.2565-2574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim The cattle breeding system is facing severe problems associated with the increased negative impact of various human activity areas on the environment and the bodies of farm animals. The use of heavy metals in different production areas leads to their accumulation in the environment due to the ingestion of animals and humans through animal products. This study aimed to assess the elemental composition of the hair and milk of black-spotted cows and to identify the relationship between the content of toxic and essential elements and the state of the intestinal microbiome. Materials and Methods The element status was estimated by studying the chemical composition of the biosubstrates using inductively coupled plasma-mass spectroscopy. Based on the analysis of hair, the elemental composition, and the use of the coefficient of toxic load, two groups of animals were formed: Group I, which included cows with a lower load factor, and Group II, which included cows with a higher load factor. Results An increase in the heavy metal concentrations in the hair and milk of animals in Group II was observed. The As, Fe, Pb, Al, Co, Ni, and V concentrations in the hair of cows from Group II increased relative to Group I by 19%, 29%, 24.5%, 32.3%, 35.6%, 21.5%, and 18.2%, respectively. There was a significant increase in the level of Fe by 11.5%, Cr by 8.25%, Mn by 17.6%, Pb by 46.1%, and Cd by 25% in Group II compared with Group I in the assessment of elemental milk composition. There were no apparent changes in the intestinal microbiome of Group II. Conclusion Some heavy metals were accumulated in the bodies and milk of animals. This shows a high probability of heavy metals causing harm to the health of animals and humans.
Collapse
Affiliation(s)
- Elena Sizova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Elena Yausheva
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Olga Marshinskaia
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Tatiana Kazakova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia,Corresponding author: Tatiana Kazakova, e-mail: Co-authors: ES: , EY: , OM: , YK: , SL:
| | - Yuriy Khlopko
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Svyatoslav Lebedev
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| |
Collapse
|
7
|
Recent Advances in Understanding the Influence of Zinc, Copper, and Manganese on the Gastrointestinal Environment of Pigs and Poultry. Animals (Basel) 2021; 11:ani11051276. [PMID: 33946674 PMCID: PMC8145729 DOI: 10.3390/ani11051276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Pigs and poultry, similar to humans, need regular consumption of zinc, copper, and manganese for normal functioning. To ensure adequate dietary intake, and prevent deficiency, their diets are supplemented with sufficient, often excessive, levels of these minerals or even at higher levels, which have been associated with improvements in their health and/or growth. However, if provided in excess, mineral quantities beyond those required are simply excreted from the animal, which is associated with negative consequences for the environment and even the development of antimicrobial resistance. Therefore, it is of great interest to better understand the dynamics of zinc, copper, and manganese in the intestine of pigs and poultry following consumption of supplemented diets, and how the requirements and benefits related to these minerals can be optimized and negative impacts minimized. The intestine of pigs and poultry contains vast numbers of microorganisms, notably bacteria, that continually interact with, and influence, their host. This review explores the influence of zinc, copper, and manganese on these interactions and how novel forms of these minerals have the potential to maximize their delivery and benefits, while limiting any negative consequences. Abstract Zinc, copper, and manganese are prominent essential trace (or micro) minerals, being required in small, but adequate, amounts by pigs and poultry for normal biological functioning. Feed is a source of trace minerals for pigs and poultry but variable bioavailability in typical feed ingredients means that supplementation with low-cost oxides and sulphates has become common practice. Such trace mineral supplementation often provides significant ‘safety margins’, while copper and zinc have been supplemented at supra-nutritional (or pharmacological) levels to improve health and/or growth performance. Regulatory mechanisms ensure that much of this oversupply is excreted by the host into the environment, which can be toxic to plants and microorganisms or promote antimicrobial resistance in microbes, and thus supplying trace minerals more precisely to pigs and poultry is necessary. The gastrointestinal tract is thus central to the maintenance of trace mineral homeostasis and the provision of supra-nutritional or pharmacological levels is associated with modification of the gut environment, such as the microbiome. This review, therefore, considers recent advances in understanding the influence of zinc, copper, and manganese on the gastrointestinal environment of pigs and poultry, including more novel, alternative sources seeking to maintain supra-nutritional benefits with minimal environmental impact.
Collapse
|
8
|
Petrič D, Mravčáková D, Kucková K, Kišidayová S, Cieslak A, Szumacher-Strabel M, Huang H, Kolodziejski P, Lukomska A, Slusarczyk S, Čobanová K, Váradyová Z. Impact of Zinc and/or Herbal Mixture on Ruminal Fermentation, Microbiota, and Histopathology in Lambs. Front Vet Sci 2021; 8:630971. [PMID: 33585621 PMCID: PMC7876273 DOI: 10.3389/fvets.2021.630971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
We investigated the effect of diets containing organic zinc and a mixture of medicinal herbs on ruminal microbial fermentation and histopathology in lambs. Twenty-eight lambs were divided into four groups: unsupplemented animals (Control), animals supplemented with organic zinc (Zn, 70 mg Zn/kg diet), animals supplemented with a mixture of dry medicinal herbs (Herbs, 100 g dry matter (DM)/d) and animals supplemented with both zinc and herbs (Zn+Herbs). Each lamb was fed a basal diet composed of meadow hay (700 g DM/d) and barley (300 g DM/d). The herbs Fumaria officinalis L. (FO), Malva sylvestris L. (MS), Artemisia absinthium L. (AA) and Matricaria chamomilla L. (MC) were mixed in equal proportions. The lambs were slaughtered after 70 d. The ruminal contents were used to determine the parameters of fermentation in vitro and in vivo and to quantify the microbes by molecular and microscopic methods. Samples of fresh ruminal tissue were used for histopathological evaluation. Quantitative analyses of the bioactive compounds in FO, MS, AA, and MC identified 3.961, 0.654, 6.482, and 12.084 g/kg DM phenolic acids and 12.211, 6.479, 0.349, and 2.442 g/kg DM flavonoids, respectively. The alkaloid content in FO was 6.015 g/kg DM. The diets affected the levels of total gas, methane and n-butyrate in vitro (P < 0.046, < 0.001, and < 0.001, respectively). Relative quantification by real-time PCR indicated a lower total ruminal bacterial population in the lambs in the Zn and Zn+Herbs groups than the Control group (P < 0.05). The relative abundances of Ruminococcus albus, R. flavefaciens, Streptococcus bovis, and Butyrivibrio proteoclasticus shifted in the Zn group. Morphological observation found a focally mixed infiltration of inflammatory cells in the lamina propria of the rumen in the Zn+Herbs group. The effect of the organic zinc and the herbal mixture on the parameters of ruminal fermentation in vitro was not confirmed in vivo, perhaps because the ruminal microbiota of the lambs adapted to the zinc-supplemented diets. Long-term supplementation of a diet combining zinc and medicinal herbs, however, may negatively affect the health of the ruminal epithelium of lambs.
Collapse
Affiliation(s)
- Daniel Petrič
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Dominika Mravčáková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Katarína Kucková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Svetlana Kišidayová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | | | - Haihao Huang
- Department of Animal Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Pawel Kolodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Anna Lukomska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Poznan, Poland
| | - Sylwester Slusarczyk
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Wroclaw, Poland
| | - Klaudia Čobanová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Zora Váradyová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
9
|
Mravčáková D, Kišidayová S, Kopčáková A, Pristaš P, Pisarčíková J, Bryszak M, Cieslak A, Várady M, Váradyová Z. Can the foregut nematode Haemonchus contortus and medicinal plants influence the fecal microbial community of the experimentally infected lambs? PLoS One 2020; 15:e0235072. [PMID: 32574178 PMCID: PMC7310730 DOI: 10.1371/journal.pone.0235072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/07/2020] [Indexed: 11/24/2022] Open
Abstract
The abomasal parasitic nematode Haemonchus contortus can influence the abomasal microbiome of the host. On the other hand, no information occurs on the influence of the parasite on the hindgut microbiome of the host. We evaluated the impact of Haemonchus contortus on the fecal microbial community of the experimentally infected lambs treated with a mixture of medicinal herbs to ameliorate the haemonchosis. Twenty-four female lambs were divided into four groups: infected animals (Inf), infected animals supplemented with a blend of medicinal herbs (Inf+Herb), uninfected control animals (Control), and uninfected animals supplemented with medicinal herbs (C+Herb). Inf and Inf+Herb lambs were infected orally with approximately 5000 L3 larvae of a strain of H. contortus susceptible to anthelmintics (MHco1). Herb blend (Herbmix) consisted of dry medicinal plants of Althaea officinalis, Petasites hybridus, Inula helenium, Malva sylvestris, Chamomilla recutita, Plantago lanceolata, Rosmarinus officinalis, Solidago virgaurea, Fumaria officinalis, Hyssopus officinalis, Melisa officinalis, Foeniculum vulgare, and Artemisia absinthium. Each animal was fed meadow hay and a commercial concentrate (600 + 350 g DM/d). Inf+Herb and C+Herb lambs were fed Herbmix (100 g DM/d and animal). Treatment lasted for 50 days. The fecal microbial fermentation parameters (short-chain fatty acids, ammonia, and pH) were evaluated at intervals of 0, 20, 32, and 50 days. The fecal eubacterial populations were evaluated by denaturing gradient gel electrophoresis (DGGE) at day 32 when H. contortus infection was the highest. No substantial effects of the H. contortus infection and the herbal treatment on fecal microbial fermentation parameters and fecal eubacterial populations were observed. Evaluation of DGGE patterns by Principal component analysis pointed to the tendency to branch the C+Herb group from the other experimental groups on Day 32. The results indicate that hindgut microbial activity was not disturbed by H. contortus infection and herbal treatment.
Collapse
Affiliation(s)
- Dominika Mravčáková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Svetlana Kišidayová
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Košice, Slovak Republic
- * E-mail:
| | - Anna Kopčáková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Peter Pristaš
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Jana Pisarčíková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Magda Bryszak
- Department of Animal Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Marián Várady
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Zora Váradyová
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Košice, Slovak Republic
| |
Collapse
|