1
|
Saffi GT, To L, Kleine N, Melo CMP, Chen K, Genc G, Lee KCD, Chow JTS, Jang GH, Gallinger S, Botelho RJ, Salmena L. INPP4B promotes PDAC aggressiveness via PIKfyve and TRPML-1-mediated lysosomal exocytosis. J Cell Biol 2024; 223:e202401012. [PMID: 39120584 PMCID: PMC11317760 DOI: 10.1083/jcb.202401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Aggressive solid malignancies, including pancreatic ductal adenocarcinoma (PDAC), can exploit lysosomal exocytosis to modify the tumor microenvironment, enhance motility, and promote invasiveness. However, the molecular pathways through which lysosomal functions are co-opted in malignant cells remain poorly understood. In this study, we demonstrate that inositol polyphosphate 4-phosphatase, Type II (INPP4B) overexpression in PDAC is associated with PDAC progression. We show that INPP4B overexpression promotes peripheral dispersion and exocytosis of lysosomes resulting in increased migratory and invasive potential of PDAC cells. Mechanistically, INPP4B overexpression drives the generation of PtdIns(3,5)P2 on lysosomes in a PIKfyve-dependent manner, which directs TRPML-1 to trigger the release of calcium ions (Ca2+). Our findings offer a molecular understanding of the prognostic significance of INPP4B overexpression in PDAC through the discovery of a novel oncogenic signaling axis that orchestrates migratory and invasive properties of PDAC via the regulation of lysosomal phosphoinositide homeostasis.
Collapse
Affiliation(s)
- Golam T Saffi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Lydia To
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Nicholas Kleine
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Ché M P Melo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Keyue Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Gizem Genc
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - K C Daniel Lee
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | | | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research , Toronto, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research , Toronto, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network , Toronto, Canada
| |
Collapse
|
2
|
Zhao J, Du XM, Si W, Zhao XH, Zhou ZQ. Role of INPP4B in the proliferation, migration, invasion, and survival of human endometrial cancer cells. Histol Histopathol 2024; 39:1197-1208. [PMID: 38318760 DOI: 10.14670/hh-18-711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
BACKGROUND Inositol polyphosphate 4-phosphatase type II (INPP4B) has been identified as a tumor repressor in several human cancers while its role in endometrial cancer has not been investigated yet. Therefore, the current study was designed to determine whether INPP4B participates in the progression of endometrial cancer by utilizing clinical data and experimental determination. MATERIALS AND METHODS We first include six chemotherapy-treated patients with recurrent and metastatic endometrioid carcinoma to determine the relationship between INPP4B mutation and relative tumor burden. By using siRNA-mediated gene silencing and vector-mediated gene overexpression, we further determined the effect of manipulating INPP4B expression on the proliferation, invasion, and survival of endometrial cancer cells. Furthermore, the repressing effect of INPP4B together with its role in chemotherapy was further validated by xenograft tumor-bearing mice models. Western blot analysis was used to explore further downstream signaling modulated by INPP4B expression manipulation. RESULTS Two of the patients were found to have INPP4B mutations and the mutation frequency of INPP4B increased during the progression of chemotherapy resistance. Endometrial cancer cells with silenced INPP4B expression were found to have promoted tumor cell proliferation, invasion, and survival. Endometrial cancer cells overexpressing INPP4B were found to have decreased tumor cell proliferation, invasion, and survival. An in vivo study using six xenograft tumor-bearing mice in each group revealed that INPP4B overexpression could suppress tumor progression and enhance chemosensitivity. Furthermore, INPP4B overexpression was found to modulate the activation of Wnt3a signaling. CONCLUSION The current study suggested that INPP4B could be a suppressor in endometrial cancer progression and might be a target for endometrial cancer treatment. Also, INPP4B might serve as a predictor of chemosensitivity determination.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Xue-Mei Du
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wen Si
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xian-He Zhao
- Department of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zi-Qi Zhou
- Department of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Szewczyk MM, Luciani GM, Vu V, Murison A, Dilworth D, Barghout SH, Lupien M, Arrowsmith CH, Minden MD, Barsyte-Lovejoy D. PRMT5 regulates ATF4 transcript splicing and oxidative stress response. Redox Biol 2022; 51:102282. [PMID: 35305370 PMCID: PMC8933703 DOI: 10.1016/j.redox.2022.102282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Protein methyltransferase 5 (PRMT5) symmetrically dimethylates arginine residues leading to regulation of transcription and splicing programs. Although PRMT5 has emerged as an attractive oncology target, the molecular determinants of PRMT5 dependency in cancer remain incompletely understood. Our transcriptomic analysis identified PRMT5 regulation of the activating transcription factor 4 (ATF4) pathway in acute myelogenous leukemia (AML). PRMT5 inhibition resulted in the expression of unstable, intron-retaining ATF4 mRNA that is detained in the nucleus. Concurrently, the decrease in the spliced cytoplasmic transcript of ATF4 led to lower levels of ATF4 protein and downregulation of ATF4 target genes. Upon loss of functional PRMT5, cells with low ATF4 displayed increased oxidative stress, growth arrest, and cellular senescence. Interestingly, leukemia cells with EVI1 oncogene overexpression demonstrated dependence on PRMT5 function. EVI1 and ATF4 regulated gene signatures were inversely correlated. We show that EVI1-high AML cells have reduced ATF4 levels, elevated baseline reactive oxygen species and increased sensitivity to PRMT5 inhibition. Thus, EVI1-high cells demonstrate dependence on PRMT5 function and regulation of oxidative stress response. Overall, our findings identify the PRMT5-ATF4 axis to be safeguarding the cellular redox balance that is especially important in high oxidative stress states, such as those that occur with EVI1 overexpression.
Collapse
Affiliation(s)
| | - Genna M Luciani
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Samir H Barghout
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
4
|
Wu Y, Wang X, Lu Y, Wang H, Wang M, You Y, Su X, Sun D, Sun Y, Li Y. INPP4B exerts a dual role in gastric cancer progression and prognosis. J Cancer 2021; 12:7201-7213. [PMID: 34729121 PMCID: PMC8558642 DOI: 10.7150/jca.58397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
Inositol polyphosphate 4-phosphatase type II (INPP4B) negatively regulates PI3K-Akt signalling and plays diverse roles in different types of cancer, but its role in gastric cancer (GC) is still unknown. Our study aimed to investigate the function and clinical relevance of INPP4B in GC. INPP4B expression was detected in GC tissues and nontumour tissues. The effect of INPP4B on the phenotypic changes of AGS and BGC-823 cells was investigated in vitro. The activation of serum and glucocorticoid-regulated kinase 3 (SGK3) and AKT were used to evaluate the specific mechanistic function of INPP4B in GC cells. The messenger RNA (mRNA) and protein expression levels of INPP4B were decreased in GC tissues compared with nontumour tissues. INPP4B expression was associated with tumour-node-metastasis (TNM) stage and histopathological differentiation. In addition, high INPP4B expression in GC patients with large tumour size/low-undifferentiated/TNM's III-IV stage was correlated with a poor prognosis but it was correlated with a better prognosis in patients with small tumour size/high-moderate differentiated/TNM's I-II stage patients. In addition, INPP4B knockdown inhibited proliferation, clonal formation and migration and promoted cell apoptosis in vitro, while INPP4B overexpression led to the opposite effects. Mechanistically, we found that INPP4B overexpression enhanced the phosphorylation of SGK3 (p-SGK3) in AGS cells, whereas INPP4B knockdown enhanced the p-Akt level in BGC823 cells. These findings suggested that the expression of INPP4B in GC is lower than that in normal tissues. Based on stratification survival analysis and in vitro cell experiments, INPP4B may play dual roles as an oncogene and tumour suppressor gene in different tissue grades and clinical stages.
Collapse
Affiliation(s)
- Youliang Wu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Xiaodong Wang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Yida Lu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Huizhen Wang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Mingliang Wang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Yexiang You
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Xiaoli Su
- Department of Endoscopy Center, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Dengqun Sun
- Department of General Surgery, the Armed Police Corps Hospital of Anhui, Hefei 230041, People's Republic of China
| | - Yanjun Sun
- Department of General Surgery, the Armed Police Corps Hospital of Anhui, Hefei 230041, People's Republic of China
| | - Yongxiang Li
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| |
Collapse
|
5
|
Permutation-based identification of important biomarkers for complex diseases via machine learning models. Nat Commun 2021; 12:3008. [PMID: 34021151 PMCID: PMC8140109 DOI: 10.1038/s41467-021-22756-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 03/18/2021] [Indexed: 12/02/2022] Open
Abstract
Study of human disease remains challenging due to convoluted disease etiologies and complex molecular mechanisms at genetic, genomic, and proteomic levels. Many machine learning-based methods have been developed and widely used to alleviate some analytic challenges in complex human disease studies. While enjoying the modeling flexibility and robustness, these model frameworks suffer from non-transparency and difficulty in interpreting each individual feature due to their sophisticated algorithms. However, identifying important biomarkers is a critical pursuit towards assisting researchers to establish novel hypotheses regarding prevention, diagnosis and treatment of complex human diseases. Herein, we propose a Permutation-based Feature Importance Test (PermFIT) for estimating and testing the feature importance, and for assisting interpretation of individual feature in complex frameworks, including deep neural networks, random forests, and support vector machines. PermFIT (available at https://github.com/SkadiEye/deepTL) is implemented in a computationally efficient manner, without model refitting. We conduct extensive numerical studies under various scenarios, and show that PermFIT not only yields valid statistical inference, but also improves the prediction accuracy of machine learning models. With the application to the Cancer Genome Atlas kidney tumor data and the HITChip atlas data, PermFIT demonstrates its practical usage in identifying important biomarkers and boosting model prediction performance. Study of human disease remains challenging due to convoluted disease etiologies and complex molecular mechanisms at genetic, genomic, and proteomic levels. Here, the authors propose a computationally efficient Permutation-based Feature Importance Test to assist interpretation and selection of individual features in complex machine learning models for complex disease analysis.
Collapse
|
6
|
Mangialardi EM, Chen K, Salmon B, Vacher J, Salmena L. Investigating the duality of Inpp4b function in the cellular transformation of mouse fibroblasts. Oncotarget 2019; 10:6378-6390. [PMID: 31695845 PMCID: PMC6824866 DOI: 10.18632/oncotarget.27293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/19/2019] [Indexed: 11/25/2022] Open
Abstract
Inositol Polyphosphate 4-Phosphatase, Type II (INPP4B) is a tumour suppressor in breast, ovarian, prostate, thyroid and other cancers, attributed to its ability to reduce oncogenic Akt-signaling. However, emerging studies show that INPP4B also has tumour-promoting properties in cancers including acute myeloid leukemia, colon cancer, melanoma and breast cancer. Together these findings suggest that INPP4B may be a context dependent cancer gene. Whether INPP4B functions solely in a tumour suppressing or tumour promoting manner, or both in non-transformed cells is currently not clear. In this study, consequences of deficiency and overexpression of INPP4B on cellular transformation was investigated using a mouse embryonic fibroblast (MEF) model of cellular transformation. We observed that neither deficiency nor overexpression of INPP4B was sufficient to induce neoplastic transformation, alone or in combination with H-Ras V12 or E1A overexpression. However, Inpp4b-deficiency did cooperate with SV40 T-Large-mediated cellular transformation, a finding which was associated with increased phosphorylated-Akt levels. Transformation and phosphorylated-Akt levels were dampened upon overexpression of INPP4B in SV40 T-Large-MEF. Together, our findings support a model where INPP4B function suppresses transformation mediated by SV40 T-Large, but is inconsequential for Ras and E1A mediated transformation.
Collapse
Affiliation(s)
| | - Keyue Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Brittany Salmon
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jean Vacher
- Institut de Recherches Cliniques de Montréal, Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Zhai S, Liu Y, Lu X, Qian H, Tang X, Cheng X, Wang Y, Shi Y, Deng X. INPP4B As A Prognostic And Diagnostic Marker Regulates Cell Growth Of Pancreatic Cancer Via Activating AKT. Onco Targets Ther 2019; 12:8287-8299. [PMID: 31632078 PMCID: PMC6790406 DOI: 10.2147/ott.s223221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Background Inositol polyphosphate 4-phosphatase type II (INPP4B), a member of the PI3K/Akt signaling pathway, plays a vital role in the initiation and progression of cancers. However, its biological role in pancreatic cancer remains largely undiscovered. Our study aimed to investigate the effects of INPP4B on proliferation in pancreatic cancer and its clinical relevance. Materials and methods INPP4B expression data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Clinicopathological and survival data were retrieved from the TCGA database. CCK8 and colony formation assays were performed to measure the proliferative capacity of pancreatic cancer. Tumor xenograft models were established to measure cancer proliferative abilities in vivo. Results INPP4B was upregulated in pancreatic cancer tissue compared with normal tissue. INPP4B knockdown inhibited cell proliferation and promoted apoptosis in pancreatic cancer in vitro and in vivo. INPP4B knockdown also reduced AKT phosphorylation. Moreover, INPP4B was associated with poor overall and disease-free survival, with Cox regression analysis showing that INPP4B could serve as an independent prognostic marker. ROC curve analysis showed that INPP4B possessed moderate diagnostic value. Conclusion Collectively, INPP4B is an oncogenic gene in pancreatic cancer and could serve as a potential diagnostic marker and an independent prognostic marker, suggesting that it could be a novel therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Shuyu Zhai
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yuanbin Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiongxiong Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Hao Qian
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiaomei Tang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yue Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yusheng Shi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiaxing Deng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
8
|
Correction: SubID, a non-median dichotomization tool for heterogeneous populations, reveals the pan-cancer significance of INPP4B and its regulation by EVI1 in AML. PLoS One 2018; 13:e0195417. [PMID: 29596510 PMCID: PMC5875876 DOI: 10.1371/journal.pone.0195417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0191510.].
Collapse
|