1
|
Putotto C, Versacci P, Marino B. Variable Effects of Laterality Genes on Disharmony Between Different Thoraco-Abdominal Organs and Between Individual Cardiac Segments. Pediatr Cardiol 2025; 46:508-509. [PMID: 39242439 DOI: 10.1007/s00246-024-03639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
A significant percentage of patients with heterotaxy show disharmony between abdominal, bronchopulmonary and atrial situs. This finding is interesting in light of the variable effects of ciliary and laterality genes on different organs and different cardiac segments. Defects in ciliary and laterality genes that usually result in situs inversus or heterotaxy, may occasionally act separately at ventricular and/or great arteries segment, even in patients with normal viscero-atrial situs solitus. Some patients with situs solitus and transposition of great arteries or congenitally corrected transposition of great arteries have been shown to represent the result of partial segmental effects of laterality genes alterations. Specific effects of defects in laterality genes can explain disharmony between thoraco-abdominal organs and heart segments.
Collapse
Affiliation(s)
- Carolina Putotto
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161, Rome, Italy.
| | - Paolo Versacci
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Bruno Marino
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161, Rome, Italy
| |
Collapse
|
2
|
Putotto C, Pugnaloni F, Unolt M, Calcagni G, Versacci P, Marino B. Laterality, heterotaxy, and isolated congenital heart defects : The genetic basis of the segmental nature of the heart. Genome Med 2024; 16:100. [PMID: 39138574 PMCID: PMC11323548 DOI: 10.1186/s13073-024-01375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
To date, the role of NODAL in normal and abnormal L-R asymmetry has been well established. In a recent paper, mutations of this gene have been reported in heterotaxy but also in transposition with D- or L-ventricular loop. The effects of NODAL and other laterality genes can be recognized separately in all three cardiac segments: for topology and septation of the atria, for ventricular looping, and for spiralization and alignment of the great arteries.
Collapse
Affiliation(s)
- Carolina Putotto
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, 00161, Italy.
| | - Flaminia Pugnaloni
- Fetal, Neonatal, and Cardiological Sciences Research Area, Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
| | - Marta Unolt
- Fetal, Neonatal, and Cardiological Sciences Research Area, Pediatric Cardiology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
| | - Giulio Calcagni
- Fetal, Neonatal, and Cardiological Sciences Research Area, Pediatric Cardiology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
| | - Paolo Versacci
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, 00161, Italy
| | - Bruno Marino
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, 00161, Italy
| |
Collapse
|
3
|
Houyel L. Human Genetics of d-Transposition of Great Arteries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:671-681. [PMID: 38884741 DOI: 10.1007/978-3-031-44087-8_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Although several genes underlying occurrence of transposition of the great arteries have been found in the mouse, human genetics of the most frequent cyanotic congenital heart defect diagnosed in neonates is still largely unknown. Development of the outflow tract is a complex process which involves the major genes of cardiac development, acting on myocardial cells from the anterior second heart field, and on mesenchymal cells from endocardial cushions. These genes, coding for transcription factors, interact with each other, and their differential expression conditions the severity of the phenotype. A precise description of the anatomic phenotypes is mandatory to achieve a better comprehension of the complex mechanisms responsible for transposition of the great arteries.
Collapse
Affiliation(s)
- Lucile Houyel
- Department of Congenital and Pediatric Cardiology, Necker-Enfants Malades Hospital-M3C, APHP, Paris, France.
- Université Paris Cité, Paris, France.
| |
Collapse
|
4
|
Paternò S, Pisani L, Zanconato S, Ferraro VA, Carraro S. Role of Nasal Nitric Oxide in Primary Ciliary Dyskinesia and Other Respiratory Conditions in Children. Int J Mol Sci 2023; 24:16159. [PMID: 38003348 PMCID: PMC10671569 DOI: 10.3390/ijms242216159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Nitric oxide (NO) is produced within the airways and released with exhalation. Nasal NO (nNO) can be measured in a non-invasive way, with different devices and techniques according to the age and cooperation of the patients. Here, we conducted a narrative review of the literature to examine the relationship between nNO and some respiratory diseases with a particular focus on primary ciliary dyskinesia (PCD). A total of 115 papers were assessed, and 50 were eventually included in the review. nNO in PCD is low (below 77 nL/min), and its measurement has a clear diagnostic value when evaluated in a clinically suggestive phenotype. Many studies have evaluated the role of NO as a molecular mediator as well as the association between nNO values and genotype or ciliary function. As far as other respiratory diseases are concerned, nNO is low in chronic rhinosinusitis and cystic fibrosis, while increased values have been found in allergic rhinitis. Nonetheless, the role in the diagnosis and prognosis of these conditions has not been fully clarified.
Collapse
Affiliation(s)
| | | | | | | | - Silvia Carraro
- Unit of Pediatric Allergy and Respiratory Medicine, Women’s and Children’s Health Department, University of Padova, 35128 Padova, Italy; (S.P.); (L.P.); (S.Z.); (V.A.F.)
| |
Collapse
|
5
|
Votava-Smith JK, Gaesser J, Harbison AL, Lee V, Tran N, Rajagopalan V, del Castillo S, Kumar SR, Herrup E, Baust T, Johnson JA, Gabriel GC, Reynolds WT, Wallace J, Meyers B, Ceschin R, Lo CW, Schmithorst VJ, Panigrahy A. Clinical factors associated with microstructural connectome related brain dysmaturation in term neonates with congenital heart disease. Front Neurosci 2022; 16:952355. [PMID: 36466162 PMCID: PMC9717392 DOI: 10.3389/fnins.2022.952355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Term congenital heart disease (CHD) neonates display abnormalities of brain structure and maturation, which are possibly related to underlying patient factors, abnormal physiology and perioperative insults. Our primary goal was to delineate associations between clinical factors and postnatal brain microstructure in term CHD neonates using diffusion tensor imaging (DTI) magnetic resonance (MR) acquisition combined with complementary data-driven connectome and seed-based tractography quantitative analyses. Our secondary goal was to delineate associations between mild dysplastic structural brain abnormalities and connectome and seed-base tractography quantitative analyses. These mild dysplastic structural abnormalities have been derived from prior human infant CHD MR studies and neonatal mouse models of CHD that were collectively used to calculate to calculate a brain dysplasia score (BDS) that included assessment of subcortical structures including the olfactory bulb, the cerebellum and the hippocampus. Methods Neonates undergoing cardiac surgery for CHD were prospectively recruited from two large centers. Both pre- and postoperative MR brain scans were obtained. DTI in 42 directions was segmented into 90 regions using a neonatal brain template and three weighted methods. Clinical data collection included 18 patient-specific and 9 preoperative variables associated with preoperative scan and 6 intraoperative (e.g., cardiopulmonary bypass and deep hypothermic circulatory arrest times) and 12 postoperative variables associated with postoperative scan. We compared patient specific and preoperative clinical factors to network topology and tractography alterations on a preoperative neonatal brain MRI, and intra and postoperative clinical factors to network topology alterations on postoperative neonatal brain MRI. A composite BDS was created to score abnormal findings involving the cerebellar hemispheres and vermis, supratentorial extra-axial fluid, olfactory bulbs and sulci, hippocampus, choroid plexus, corpus callosum, and brainstem. The neuroimaging outcomes of this study included (1) connectome metrics: cost (number of connections) and global/nodal efficiency (network integration); (2) seed based tractography methods of fractional anisotropy (FA), radial diffusivity, and axial diffusivity. Statistics consisted of multiple regression with false discovery rate correction (FDR) comparing the clinical risk factors and BDS (including subcortical components) as predictors/exposures and the global connectome metrics, nodal efficiency, and seed based- tractography (FA, radial diffusivity, and axial diffusivity) as neuroimaging outcome measures. Results A total of 133 term neonates with complex CHD were prospectively enrolled and 110 had analyzable DTI. Multiple patient-specific factors including d-transposition of the great arteries (d-TGA) physiology and severity of impairment of fetal cerebral substrate delivery (i.e., how much the CHD lesion alters typical fetal circulation such that the highest oxygen and nutrient rich blood from the placenta are not directed toward the fetal brain) were predictive of preoperative reduced cost (p < 0.0073) and reduced global/nodal efficiency (p < 0.03). Cardiopulmonary bypass time predicted postoperative reduced cost (p < 0.04) and multiple postoperative factors [extracorporeal membrane oxygenation (ECMO), seizures and cardiopulmonary resuscitation (CPR)] were predictive of postoperative reduced cost and reduced global/nodal efficiency (p < 0.05). Anthropometric measurements (weight, length, and head size) predicted tractography outcomes. Total BDS was not predictive of brain network topology. However, key subcortical components of the BDS score did predict key global and nodal network topology: abnormalities of the cerebellum predicted reduced cost (p < 0.0417) and of the hippocampus predicted reduced global efficiency (p < 0.0126). All three subcortical structures predicted unique alterations of nodal efficiency (p < 0.05), including hippocampal abnormalities predicting widespread reduced nodal efficiency in all lobes of the brain, cerebellar abnormalities predicting increased prefrontal nodal efficiency, and olfactory bulb abnormalities predicting posterior parietal-occipital nodal efficiency. Conclusion Patient-specific (d-TGA anatomy, preoperative impairment of fetal cerebral substrate delivery) and postoperative (e.g., seizures, need for ECMO, or CPR) clinical factors were most predictive of diffuse postnatal microstructural dysmaturation in term CHD neonates. Anthropometric measurements (weight, length, and head size) predicted tractography outcomes. In contrast, subcortical components (cerebellum, hippocampus, olfactory) of a structurally based BDS (derived from CHD mouse mutants), predicted more localized and regional postnatal microstructural differences. Collectively, these findings suggest that brain DTI connectome and seed-based tractography are complementary techniques which may facilitate deciphering the mechanistic relative contribution of clinical and genetic risk factors related to poor neurodevelopmental outcomes in CHD.
Collapse
Affiliation(s)
- Jodie K. Votava-Smith
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Jenna Gaesser
- Department of Neurology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Vince Lee
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nhu Tran
- Division of Neonatology, Department of Pediatrics, Keck School of Medicine of USC, Children’s Hospital Los Angeles, Fetal and Neonatal Institute, Los Angeles, CA, United States
| | - Vidya Rajagopalan
- Department of Radiology, Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Sylvia del Castillo
- Department of Anesthesiology Critical Care Medicine Anesthesiology, Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - S. Ram Kumar
- Division of Cardiothoracic Surgery, Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Elizabeth Herrup
- Division of Pediatric Cardiac Intensive Care, Department of Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tracy Baust
- Division of Pediatric Cardiac Intensive Care, Department of Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jennifer A. Johnson
- Division of Pediatric Cardiology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - George C. Gabriel
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - William T. Reynolds
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Julia Wallace
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Benjamin Meyers
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rafael Ceschin
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vanessa J. Schmithorst
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ashok Panigrahy
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Ashok Panigrahy,
| |
Collapse
|
6
|
De Ita M, Gaytán-Cervantes J, Cisneros B, Araujo MA, Huicochea-Montiel JC, Cárdenas-Conejo A, Lazo-Cárdenas CC, Ramírez-Portillo CI, Feria-Kaiser C, Peregrino-Bejarano L, Yáñez-Gutiérrez L, González-Torres C, Rosas-Vargas H. Clustering of Genetic Anomalies of Cilia Outer Dynein Arm and Central Apparatus in Patients with Transposition of the Great Arteries. Genes (Basel) 2022; 13:genes13091662. [PMID: 36140829 PMCID: PMC9498580 DOI: 10.3390/genes13091662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Transposition of the great arteries (TGA) is a congenital heart defect with a complex pathogenesis that has not been fully elucidated. In this study, we performed whole-exome sequencing (WES) in isolated TGA-diagnosed patients and analyzed genes of motile and non-motile cilia ciliogenesis and ciliary trafficking, as well as genes previously associated with this heart malformation. Deleterious missense and splicing variants of genes DNAH9, DNAH11, and ODAD4 of cilia outer dynein arm and central apparatus, HYDIN, were found in our TGA patients. Remarkable, there is a clustering of deleterious genetic variants in cilia genes, suggesting it could be an oligogenic disease. Our data evidence the genetic diversity and etiological complexity of TGA and point out that population allele determination and genetic aggregation studies are required to improve genetic counseling.
Collapse
Affiliation(s)
- Marlon De Ita
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
- Dpto de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México 07360, Mexico
| | - Javier Gaytán-Cervantes
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS, Ciudad de México 06720, Mexico
| | - Bulmaro Cisneros
- Dpto de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México 07360, Mexico
| | - María Antonieta Araujo
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Juan Carlos Huicochea-Montiel
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Alan Cárdenas-Conejo
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Charles César Lazo-Cárdenas
- Departamento clínico de Cardiología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - César Iván Ramírez-Portillo
- Departamento clínico de Cardiología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Carina Feria-Kaiser
- Unidad de Cuidados Intensivos Neonatales, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | | | - Lucelli Yáñez-Gutiérrez
- Clínica de Cardiopatías Congénitas, UMAE Hospital de Cardiología, CMN Siglo XXI, Ciudad de México 06720, Mexico
| | - Carolina González-Torres
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS, Ciudad de México 06720, Mexico
- Correspondence: (C.G.-T.); (H.R.-V.)
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
- Correspondence: (C.G.-T.); (H.R.-V.)
| |
Collapse
|
7
|
Whole genome sequencing in transposition of the great arteries and associations with clinically relevant heart, brain and laterality genes. Am Heart J 2022; 244:1-13. [PMID: 34670123 DOI: 10.1016/j.ahj.2021.10.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The most common cyanotic congenital heart disease (CHD) requiring management as a neonate is transposition of great arteries (TGA). Clinically, up to 50% of TGA patients develop some form of neurodevelopmental disability (NDD), thought to have a significant genetic component. A "ciliopathy" and links with laterality disorders have been proposed. This first report of whole genome sequencing in TGA, sought to identify clinically relevant variants contributing to heart, brain and laterality defects. METHODS Initial whole genome sequencing analyses on 100 TGA patients focussed on established disease genes related to CHD (n = 107), NDD (n = 659) and heterotaxy (n = 74). Single variant as well as copy number variant analyses were conducted. Variant pathogenicity was assessed using the American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. RESULTS Fifty-five putatively damaging variants were identified in established disease genes associated with CHD, NDD and heterotaxy; however, no clinically relevant variants could be attributed to disease. Notably, case-control analyses identified significantly more predicted-damaging, silent and total variants in TGA cases than healthy controls in established CHD genes (P < .001), NDD genes (P < .001) as well as across the three gene panels (P < .001). CONCLUSION We present compelling evidence that the majority of TGA is not caused by monogenic rare variants and is most likely oligogenic and/or polygenic in nature, highlighting the complex genetic architecture and multifactorial influences on this CHD sub-type and its long-term sequelae. Assessment of variant burden in key heart, brain and/or laterality genes may be required to unravel the genetic contributions to TGA and related disabilities.
Collapse
|
8
|
Schilling AL, Carcella AR, Moore J, Zahid M, Lo C, Wang EW, Lee SE, Little SR. Compatibility of a Thermoresponsive and Controlled Release System for Promoting Sinonasal Cilia Regeneration. Macromol Biosci 2021; 21:e2100277. [PMID: 34390164 DOI: 10.1002/mabi.202100277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Indexed: 11/11/2022]
Abstract
The current clinical goal for managing chronic rhinosinusitis (CRS), a heterogenous disease of the paranasal sinuses, is to control inflammation, yet adjunct therapies that promote mucosal regeneration can improve the long-term health of the upper airways. The small natural openings to the sinuses, however, limit the efficacy of traditional drug delivery methods (i.e., nasal sprays and irrigation). Accordingly, a conformable thermoresponsive and controlled release system ("TEMPS", Thermogel, Extended-release Microsphere-based delivery to the Paranasal Sinuses) is developed. The poly(lactic-co-glycolic acid) microsphere component enables the encapsulation of numerous therapeutics, such as retinoic acid (RA), an analog of vitamin A (VA). Studies in CRS patients and preclinical models have shown that aqueous RA or VA gels promoted the differentiation of ciliated cells and improved mucosal healing following repeat applications. In the present study, TEMPS is designed for the controlled release of RA such that a single dose of RA-TEMPS delivers bioactive drug for at least 30 days. Furthermore, as TEMPS will be in direct contact with sinonasal tissue, its compatibility with ciliated human nasal epithelium is explored. After ex vivo incubation in thermogel for 24 h, cilia motility is maintained, providing evidence that TEMPS can be compatible for application along the sinonasal epithelium.
Collapse
Affiliation(s)
- Andrea L Schilling
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Adam R Carcella
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - John Moore
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh Medical, Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA, 15219, USA
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 8112, Rangos Research Center, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 8112, Rangos Research Center, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Eric W Wang
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh Medical, Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA, 15219, USA
| | - Stella E Lee
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh Medical, Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA, 15219, USA
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA.,Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, USA.,Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA, 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA.,Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.,Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15213, USA
| |
Collapse
|
9
|
Feldman KS, Kim E, Czachowski MJ, Wu Y, Lo CW, Zahid M. Differential effect of anesthetics on mucociliary clearance in vivo in mice. Sci Rep 2021; 11:4896. [PMID: 33649513 PMCID: PMC7921682 DOI: 10.1038/s41598-021-84605-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
Respiratory mucociliary clearance (MCC) is a key defense mechanism that functions to entrap and transport inhaled pollutants, particulates, and pathogens away from the lungs. Previous work has identified a number of anesthetics to have cilia depressive effects in vitro. Wild-type C57BL/6 J mice received intra-tracheal installation of 99mTc-Sulfur colloid, and were imaged using a dual-modality SPECT/CT system at 0 and 6 h to measure baseline MCC (n = 8). Mice were challenged for one hour with inhalational 1.5% isoflurane, or intraperitoneal ketamine (100 mg/kg)/xylazine (20 mg/kg), ketamine (0.5 mg/kg)/dexmedetomidine (50 mg/kg), fentanyl (0.2 mg/kg)/1.5% isoflurane, propofol (120 mg/Kg), or fentanyl/midazolam/dexmedetomidine (0.025 mg/kg/2.5 mg/kg/0.25 mg/kg) prior to MCC assessment. The baseline MCC was 6.4%, and was significantly reduced to 3.7% (p = 0.04) and 3.0% (p = 0.01) by ketamine/xylazine and ketamine/dexmedetomidine challenge respectively. Importantly, combinations of drugs containing fentanyl, and propofol in isolation did not significantly depress MCC. Although no change in cilia length or percent ciliation was expected, we tried to correlate ex-vivo tracheal cilia ciliary beat frequency and cilia-generated flow velocities with MCC and found no correlation. Our results indicate that anesthetics containing ketamine (ketamine/xylazine and ketamine/dexmedetomidine) significantly depress MCC, while combinations containing fentanyl (fentanyl/isoflurane, fentanyl/midazolam/dexmedetomidine) and propofol do not. Our method for assessing MCC is reproducible and has utility for studying the effects of other drug combinations.
Collapse
Affiliation(s)
- Kyle S Feldman
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA
| | - Eunwon Kim
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA
| | | | - Yijen Wu
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA
| | - Cecilia W Lo
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA
| | - Maliha Zahid
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA.
| |
Collapse
|
10
|
Abstract
Respiratory motile cilia, specialized organelles of the cell, line the apical surface of epithelial cells lining the respiratory tract. By beating in a metachronal, synchronal fashion, these multiple, motile, actin-based organelles generate a cephalad fluid flow clearing the respiratory tract of inhaled pollutants and pathogens. With increasing environmental pollution, novel viral pathogens and emerging multi-drug resistant bacteria, cilia generated mucociliary clearance (MCC) is essential for maintaining lung health. MCC is also depressed in multiple congenital disorders like primary ciliary dyskinesia, cystic fibrosis as well as acquired disorders like chronic obstructive pulmonary disease. All these disorders have established, in some case multiple, mouse models. In this publication, we detail a method using a small amount of radioactivity and dual-modality SPECT/CT imaging to accurately and reproducibly measure MCC in mice in vivo. The method allows for recovery of mice after imaging, making serial measurements possible, and testing potential therapeutics longitudinally over time. The data in wild-type mice demonstrates the reproducibility of the MCC measurement as long as adequate attention to detail is paid, and the protocol strictly adhered to.
Collapse
Affiliation(s)
- Kyle S Feldman
- Department of Developmental Biology, University of Pittsburgh School of Medicine
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh School of Medicine;
| |
Collapse
|
11
|
Sherman F, Wodrich M, Zampi JD, Lee J, McCaffery H, Saba TG. Phenotypic features of ciliary dyskinesia among patients with congenital cardiovascular malformations. Pediatr Pulmonol 2020; 55:2674-2682. [PMID: 32662935 DOI: 10.1002/ppul.24959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/11/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cilia are cell membrane-bound organelles responsible for airway mucus clearance, establishment of left-right organ asymmetry, cardiogenesis, and many other functions in utero. Phenotypic features suggestive of respiratory ciliary dyskinesia among patients with heterotaxy syndrome, defined as complex cardiovascular malformations (CVM) and situs ambiguus (SA), has not been adequately explored. OBJECTIVES We hypothesized that there is a greater incidence of phenotypic features consistent with ciliary dyskinesia among patients with heterotaxy syndrome compared to patients with other CVM and laterality defects without heterotaxy syndrome. METHODS Thirty six subjects were identified by medical record search and divided into four groups based on situs status and type of CVM as follows: SA and complex CVM (group 1); SA and simple CVM (group 2); situs solitus and complex CVM (group 3); and situs solitus and simple CVM (group 4). Phenotype was assessed with a clinical questionnaire, nasal nitric oxide (NO) level, and pulmonary function testing. Those with complex CVM underwent additional testing for variants in genes involved in ciliary structure and function. RESULTS The mean nasal NO level was significantly lower among all subjects with complex CVM regardless of situs anomalies (groups 1 and 3). There was no significant difference in respiratory symptoms or lung function among the four groups. No bi-allelic genetic mutations were detected among patients with complex CVM. CONCLUSIONS This study identified a relatively lower mean nasal NO level, suggestive of relative ciliary dyskinesia, among subjects with complex CVM. Pulmonary function and clinical symptoms did not reflect significant pulmonary disease among those with complex CVM.
Collapse
Affiliation(s)
- Forrest Sherman
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Mitchel Wodrich
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey D Zampi
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Julie Lee
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Harlan McCaffery
- Center for Human Growth and Development, University of Michigan, Ann Arbor, Michigan
| | - Thomas G Saba
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Zahid M, Feinstein TN, Oro A, Schwartz M, Lee AD, Lo CW. Rapid Ex-Vivo Ciliogenesis and Dose-Dependent Effect of Notch Inhibition on Ciliogenesis of Respiratory Epithelia. Biomolecules 2020; 10:E1182. [PMID: 32823934 PMCID: PMC7464104 DOI: 10.3390/biom10081182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Cilia are actin based cellular protrusions conserved from algae to complex multicellular organisms like Homo sapiens. Respiratory motile cilia line epithelial cells of the tracheobronchial tree, beat in a synchronous, metachronal wave, moving inhaled pollutants and pathogens cephalad. Their role in both congenital disorders like primary ciliary dyskinesia (PCD) to acquired disorders like chronic obstructive pulmonary disease (COPD) continues to evolve. In this current body of work we outline a protocol optimized to reciliate human nasal epithelial cells and mouse tracheal cells in vitro. Using this protocol, we knocked down known cilia genes, as well as use a small molecule inhibitor of Notch, N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl Ester (DAPT), to assess the effect of these on ciliogenesis in order to show the validity of our protocol. Methods: Tracheas were harvested from wild-type, adult C57B6 mice, pronase digested and sloughed off epithelial cells grown to confluence in stationary culture on rat-tail collagen coated wells. Upon reaching confluence, collagen was digested and cells placed suspension culture protocol to reciliate the cells. Using this suspension culture protocol, we employed siRNA gene knockdown to assay gene functions required for airway ciliogenesis. Knock down of Dynein axonemal heavy chain 5 (Dnah5), a ciliary structural protein, was confirmed using immunostaining. Mouse tracheal cells were treated in suspension with varying doses of DAPT, an inhibitor of Notch, with the purpose of evaluating its effect and dose response on ciliogenesis. The optimum dose was then used on reciliating human nasal epithelial cells. Results: siRNA knockdown of Foxj1 prevented ciliation, consistent with its role as a master regulator of motile cilia. Knockdown of Dnai1 and Dnah5 resulted in immotile cilia, and Cand1 knockdown, a centrosome protein known to regulate centrosome amplification, inhibited airway ciliogenesis. Dnah5 knockdown was confirmed with significantly decreased immunostaining of cilia for this protein. Inhibiting Notch signaling by inhibiting gamma secretase with DAPT enhanced the percentage of ciliation, and resulted in longer cilia that beat with higher frequency in both mouse and human airway epithelia. Conclusions: Modifying existing reciliation protocols to suit both human nasal epithelial and mouse tracheal tissue, we have shown that knockdown of known cilia-related genes have the expected effects. Additionally, we have demonstrated the optimal dosage for significantly improving reciliation of airway epithelia using DAPT. Given that cilia length and function are significantly compromised in COPD, these findings open up interesting avenues for further exploration.
Collapse
Affiliation(s)
| | | | | | | | | | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA 15201, USA; (M.Z.); (T.N.F.); (A.O.); (M.S.); (A.D.L.)
| |
Collapse
|
13
|
De Ita M, Cisneros B, Rosas-Vargas H. Genetics of Transposition of Great Arteries: Between Laterality Abnormality and Outflow Tract Defect. J Cardiovasc Transl Res 2020; 14:390-399. [PMID: 32734553 DOI: 10.1007/s12265-020-10064-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
Transposition of great arteries (TGA) is a complex congenital heart disease whose etiology is still unknown. This defect has been associated, at least in part, with genetic abnormalities involved in laterality establishment and heart outflow tract development, which suggest a genetic heterogeneity. In animal models, the evidence of association with certain genes is strong but, surprisingly, genetic anomalies of its human orthologues are found only in a low proportion of patients and in nonaffected subjects, so that the underlying causes remain as an unexplored field. Evidence related to TGA suggests different pathogenic mechanisms involved between patients with normal organ disposition and isomerism. This article reviews the most important genetic abnormalities related to TGA and contextualizes them into the mechanism of embryonic development, comparing them between humans and mice, to comprehend the evidence that could be relevant for genetic counseling. Graphical abstract.
Collapse
Affiliation(s)
- Marlon De Ita
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- 2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico.
| |
Collapse
|
14
|
Liu X, Chen W, Li W, Priest JR, Fu Y, Pang K, Ma B, Han B, Liu X, Hu S, Zhou Z. Exome-Based Case-Control Analysis Highlights the Pathogenic Role of Ciliary Genes in Transposition of the Great Arteries. Circ Res 2020; 126:811-821. [PMID: 32078439 DOI: 10.1161/circresaha.119.315821] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Transposition of the great arteries (TGA) is one of the most severe types of congenital heart diseases. Understanding the clinical characteristics and pathogenesis of TGA is, therefore, urgently needed for patient management of this severe disease. However, the clinical characteristics and genetic cause underlying TGA remain largely unexplored. OBJECTIVE We sought to systematically examine the clinical characteristics and genetic cause for isolated nonsyndromic TGA. METHODS AND RESULTS We recruited 249 patients with TGA (66 family trios) and performed whole-exome sequencing. The incidence of patent ductus arteriosus in dextro-TGA (52.7%) and dextrocardia/mesocardia in congenitally corrected TGA (32.8%) were significantly higher than that in other subtypes. A high prevalence of bicuspid pulmonic valve (9.6%) was observed in patients with TGA. Similar results were observed in a replication group of TGA (n=132). Through a series of bioinformatics filtering steps, we obtained 82 candidate genes harboring potentially damaging de novo, loss of function, compound heterozygous, or X-linked recessive variants. Established congenital heart disease-causing genes, such as FOXH1, were found among the list of candidate genes. A total of 19 ciliary genes harboring rare potentially damaging variants were also found; for example, DYNC2LI1 with a de novo putatively damaging variant. The enrichment of ciliary genes supports the roles of cilia in the pathogenesis of TGA. In total, 33% of the TGA probands had >1 candidate gene hit by putatively deleterious variants, suggesting that a portion of the TGA cases were probably affected by oligogenic or polygenic inheritance. CONCLUSIONS The findings of clinical characteristic analyses have important implications for TGA patient stratification. The results of genetic analyses highlight the pathogenic role of ciliary genes and a complex genetic architecture underlying TGA.
Collapse
Affiliation(s)
- Xuanyu Liu
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Xuanyu Liu, W.C., W.L., Y.F., B.M., B.H., Xuewen Liu, S.H., Z.Z.).,Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, China (Xuanyu Liu, W.C., W.L., Y.F., Z.Z.)
| | - Wen Chen
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Xuanyu Liu, W.C., W.L., Y.F., B.M., B.H., Xuewen Liu, S.H., Z.Z.).,Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, China (Xuanyu Liu, W.C., W.L., Y.F., Z.Z.)
| | - Wenke Li
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, China (Xuanyu Liu, W.C., W.L., Y.F., Z.Z.)
| | - James R Priest
- Department of Pediatrics, Stanford University School of Medicine, CA (J.R.P.)
| | - Yuanyuan Fu
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Xuanyu Liu, W.C., W.L., Y.F., B.M., B.H., Xuewen Liu, S.H., Z.Z.).,Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, China (Xuanyu Liu, W.C., W.L., Y.F., Z.Z.)
| | - Kunjing Pang
- Department of Echocardiography, Fuwai Hospital, Beijing, China (K.P.)
| | - Baihui Ma
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Xuanyu Liu, W.C., W.L., Y.F., B.M., B.H., Xuewen Liu, S.H., Z.Z.)
| | - Bianmei Han
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Xuanyu Liu, W.C., W.L., Y.F., B.M., B.H., Xuewen Liu, S.H., Z.Z.)
| | - Xuewen Liu
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Xuanyu Liu, W.C., W.L., Y.F., B.M., B.H., Xuewen Liu, S.H., Z.Z.)
| | - Shengshou Hu
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Xuanyu Liu, W.C., W.L., Y.F., B.M., B.H., Xuewen Liu, S.H., Z.Z.)
| | - Zhou Zhou
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Xuanyu Liu, W.C., W.L., Y.F., B.M., B.H., Xuewen Liu, S.H., Z.Z.).,Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, China (Xuanyu Liu, W.C., W.L., Y.F., Z.Z.)
| |
Collapse
|
15
|
Simulation Study on the Mass Transport Based on the Ciliated Dynamic System of the Respiratory Tract. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:6036248. [PMID: 31885683 PMCID: PMC6925737 DOI: 10.1155/2019/6036248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 02/04/2023]
Abstract
To study the mass transport of mucociliary clearance of the human upper respiratory tract, a two-dimensional mass transport model based on the ciliated movement was established by using the immersed boundary-lattice Boltzmann method (IB-LBM). In this model, different characteristics of the mucus layer (ML) and the periciliary liquid (PCL) were taken into account. A virtual elastic membrane was introduced to divide the two layers dynamically. All moving boundaries that were involved in the present simulation were modeled with the immersed boundary. The Newtonian fluid was used to model the flow in PCL, and the viscoelastic fluid based on the Oldroyd-B model was used for the flow in ML; the two types of flow were both solved by the LBM framework. Based on the model, the ML thickness, the cilia density, and the phase difference of adjacent cilia were regulated, respectively, to study the transport velocity of the ML. In addition, the motion law of solid particles in PCL was also studied. According to the results, four primary conclusions were drawn. (1) At a given beating pattern, the increase of the ML thickness will decrease its transport velocity. (2) Increasing the cilia density can promote the mean transport velocity of the ML. (3) By raising the phase difference of adjacent cilia to a certain scope, the transport of ML can be accelerated. (4) In PCL, particles initially located on the upper part of the cilia tend to migrate upward and then get close to the ML. The above study can provide some reasonable explanations for the mechanism of the mucociliary clearance system, which is also helpful to the further understanding of the mass transport principle of the human upper respiratory tract.
Collapse
|
16
|
Gabriel GC, Lo CW. Novel insights into the genetic landscape of congenital heart disease with systems genetics. PROGRESS IN PEDIATRIC CARDIOLOGY 2019; 54. [PMID: 34404969 DOI: 10.1016/j.ppedcard.2019.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We recently conducted a large-scale mouse mutagenesis screen and uncovered a central role for cilia in the pathogenesis of congenital heart disease (CHD). Though our screen was phenotype based, most of the genes recovered were cilia-related, including genes encoding proteins important for ciliogenesis, cilia-transduced cell signaling, and vesicular trafficking. Also unexpected, many of the cilia related genes recovered are known direct protein-protein interactors, even though each gene was recovered independently in unrelated mouse lines. These findings suggest a cilia-based protein-protein interactome network may provide the context for congenital heart disease pathogenesis. This could explain the incomplete penetrance and variable expressivity of human CHD, and account for its complex non-Mendelian etiology. Supporting these findings in mice, a preponderance of cilia and cilia related cell signaling genes were observed among de novo pathogenic variants identified in a CHD patient cohort. Further clinical relevance unfolded with the observation of a high prevalence of respiratory cilia dysfunction in CHD patients. This was associated with increased postsurgical respiratory complications. Together these findings highlight the importance of cilia in CHD pathogenesis and suggest possible clinical translation with instituting pulmonary therapy to improve outcome for CHD patients undergoing congenital cardiac surgeries.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States of America
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States of America
| |
Collapse
|
17
|
Kempeneers C, Chilvers MA. To beat, or not to beat, that is question! The spectrum of ciliopathies. Pediatr Pulmonol 2018; 53:1122-1129. [PMID: 29938933 DOI: 10.1002/ppul.24078] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/19/2018] [Indexed: 12/14/2022]
Abstract
Cilia are widely distributed throughout the human body, and have numerous roles in physiology, development, and disease. Ciliary ultrastructure is complex, consisting of nine parallel microtubules doublets, with or without motor dynein arms and a central pair of microtubules. Classification of cilia has evolved over time, and currently, four main classes are described: motile and non-motile cilia with a "9 + 2" structure, and motile and non-motile cilia with a "9 + 0" structure, which depend on the presence or absence of dynein arms and a central pair. Ciliopathies are inherited multisystem disorders of cilia, and may present with a varied spectrum of genotypes and phenotypes. Motor and sensory ciliopathies were historically considered as distinct dysfunctions of motile and non-motile cilia, but recent data indicate that the classical features of motor and sensory cilia may overlap.
Collapse
Affiliation(s)
- Céline Kempeneers
- Pediatric Respirology, Department of Pediatrics, University Hospital Liège, Liège, Belgium
| | - Mark A Chilvers
- Division of Respirology, Department of Pediatrics, University of British Columbia and British Columbia Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
18
|
Versacci P, Pugnaloni F, Digilio MC, Putotto C, Unolt M, Calcagni G, Baban A, Marino B. Some Isolated Cardiac Malformations Can Be Related to Laterality Defects. J Cardiovasc Dev Dis 2018; 5:jcdd5020024. [PMID: 29724030 PMCID: PMC6023464 DOI: 10.3390/jcdd5020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
Human beings are characterized by a left–right asymmetric arrangement of their internal organs, and the heart is the first organ to break symmetry in the developing embryo. Aberrations in normal left–right axis determination during embryogenesis lead to a wide spectrum of abnormal internal laterality phenotypes, including situs inversus and heterotaxy. In more than 90% of instances, the latter condition is accompanied by complex and severe cardiovascular malformations. Atrioventricular canal defect and transposition of the great arteries—which are particularly frequent in the setting of heterotaxy—are commonly found in situs solitus with or without genetic syndromes. Here, we review current data on morphogenesis of the heart in human beings and animal models, familial recurrence, and upstream genetic pathways of left–right determination in order to highlight how some isolated congenital heart diseases, very common in heterotaxy, even in the setting of situs solitus, may actually be considered in the pathogenetic field of laterality defects.
Collapse
Affiliation(s)
- Paolo Versacci
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Flaminia Pugnaloni
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Carolina Putotto
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marta Unolt
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Anwar Baban
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Bruno Marino
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|