1
|
Wood AJ, Benton CH, Delahay RJ, Marion G, Palkopoulou E, Pooley CM, Smith GC, Kao RR. The utility of whole-genome sequencing to identify likely transmission pairs for pathogens with slow and variable evolution. Epidemics 2024; 48:100787. [PMID: 39197305 DOI: 10.1016/j.epidem.2024.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Pathogen whole-genome sequencing (WGS) has been used to track the transmission of infectious diseases in extraordinary detail, especially for pathogens that undergo fast and steady evolution, as is the case with many RNA viruses. However, for other pathogens evolution is less predictable, making interpretation of these data to inform our understanding of their epidemiology more challenging and the value of densely collected pathogen genome data uncertain. Here, we assess the utility of WGS for one such pathogen, in the "who-infected-whom" identification problem. We study samples from hosts (130 cattle, 111 badgers) with confirmed infection of M. bovis (causing bovine Tuberculosis), which has an estimated clock rate as slow as ∼0.1-1 variations per year. For each potential pathway between hosts, we calculate the relative likelihood that such a transmission event occurred. This is informed by an epidemiological model of transmission, and host life history data. By including WGS data, we shrink the number of plausible pathways significantly, relative to those deemed likely on the basis of life history data alone. Despite our uncertainty relating to the evolution of M. bovis, the WGS data are therefore a valuable adjunct to epidemiological investigations, especially for wildlife species whose life history data are sparse.
Collapse
Affiliation(s)
- A J Wood
- Roslin Institute, University of Edinburgh, United Kingdom
| | - C H Benton
- Animal & Plant Health Agency, United Kingdom
| | - R J Delahay
- Animal & Plant Health Agency, United Kingdom
| | - G Marion
- Biomathematics and Statistics Scotland, United Kingdom
| | | | - C M Pooley
- Biomathematics and Statistics Scotland, United Kingdom
| | - G C Smith
- Animal & Plant Health Agency, United Kingdom
| | - R R Kao
- Roslin Institute, University of Edinburgh, United Kingdom; Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Conteddu K, English HM, Byrne AW, Amin B, Griffin LL, Kaur P, Morera-Pujol V, Murphy KJ, Salter-Townshend M, Smith AF, Ciuti S. A scoping review on bovine tuberculosis highlights the need for novel data streams and analytical approaches to curb zoonotic diseases. Vet Res 2024; 55:64. [PMID: 38773649 PMCID: PMC11110237 DOI: 10.1186/s13567-024-01314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/20/2024] [Indexed: 05/24/2024] Open
Abstract
Zoonotic diseases represent a significant societal challenge in terms of their health and economic impacts. One Health approaches to managing zoonotic diseases are becoming more prevalent, but require novel thinking, tools and cross-disciplinary collaboration. Bovine tuberculosis (bTB) is one example of a costly One Health challenge with a complex epidemiology involving humans, domestic animals, wildlife and environmental factors, which require sophisticated collaborative approaches. We undertook a scoping review of multi-host bTB epidemiology to identify trends in species publication focus, methodologies, and One Health approaches. We aimed to identify knowledge gaps where novel research could provide insights to inform control policy, for bTB and other zoonoses. The review included 532 articles. We found different levels of research attention across episystems, with a significant proportion of the literature focusing on the badger-cattle-TB episystem, with far less attention given to tropical multi-host episystems. We found a limited number of studies focusing on management solutions and their efficacy, with very few studies looking at modelling exit strategies. Only a small number of studies looked at the effect of human disturbances on the spread of bTB involving wildlife hosts. Most of the studies we reviewed focused on the effect of badger vaccination and culling on bTB dynamics with few looking at how roads, human perturbations and habitat change may affect wildlife movement and disease spread. Finally, we observed a lack of studies considering the effect of weather variables on bTB spread, which is particularly relevant when studying zoonoses under climate change scenarios. Significant technological and methodological advances have been applied to bTB episystems, providing explicit insights into its spread and maintenance across populations. We identified a prominent bias towards certain species and locations. Generating more high-quality empirical data on wildlife host distribution and abundance, high-resolution individual behaviours and greater use of mathematical models and simulations are key areas for future research. Integrating data sources across disciplines, and a "virtuous cycle" of well-designed empirical data collection linked with mathematical and simulation modelling could provide additional gains for policy-makers and managers, enabling optimised bTB management with broader insights for other zoonoses.
Collapse
Affiliation(s)
- Kimberly Conteddu
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| | - Holly M English
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Andrew W Byrne
- Department of Agriculture, Food and the Marine, One Health Scientific Support Unit, Dublin, Ireland
| | - Bawan Amin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura L Griffin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Prabhleen Kaur
- School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
| | - Virginia Morera-Pujol
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Kilian J Murphy
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Adam F Smith
- Department of Wildlife Ecology and Management, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- The Frankfurt Zoological Society, Frankfurt, Germany
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Germany
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Ryan E, Breslin P, O'Keeffe J, Byrne AW, Wrigley K, Barrett D. The Irish bTB eradication programme: combining stakeholder engagement and research-driven policy to tackle bovine tuberculosis. Ir Vet J 2023; 76:32. [PMID: 37996956 PMCID: PMC10666303 DOI: 10.1186/s13620-023-00255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 09/13/2023] [Indexed: 11/25/2023] Open
Abstract
A new Irish bovine tuberculosis (bTB) eradication strategy was launched in 2021. The strategy was formulated following extensive discussions with stakeholders, formal reviews of several aspects of the existing bTB policy and relevant inputs from the latest scientific research projects. A stakeholder discussion body, the TB Forum, had been established in 2018 and this continues under the new strategy, supported by three working groups (scientific, financial and implementation). The strategy sets out actions to address cattle-to-cattle and badger-to-cattle bTB transmission, along with actions to improve farm biosecurity and empower farmers to make their own choices to reduce bTB risk.Large scale vaccination of badgers has been rolled out under the new strategy, with over 20,000 km2 covered by the vaccination programme and 6,586 badgers captured in vaccination areas in 2021. Vaccination efforts have been complemented by intensive communications campaigns, including a web enabled software application ("app") enabling farmers to report the location of badger setts.Cattle which test inconclusive to the tuberculin skin test have been re-tested using a gamma interferon blood test since April 2021, enabling truly infected cattle to be identified more effectively due to the higher sensitivity of this test. An enhanced oversight process has been put in place for herds experiencing extended or repeat bTB breakdowns. Whole genome sequencing is being used to investigate links between breakdowns, with the results supporting operational decision making in case management.Communications, including biosecurity advice, are co-designed with stakeholders, in order to improve their effectiveness. A programme involving veterinary practitioners providing tailored biosecurity bTB advice to their clients was established in 2021 and was rolled out nationally during 2022.A core element of the new strategy is the continual improvement of policies in response to changing bTB risks, informed by scientific research and then implemented with stakeholder consultation.
Collapse
Affiliation(s)
- Eoin Ryan
- Department of Agriculture, Food and the Marine, Kildare St, Dublin, 2, Ireland.
| | - Philip Breslin
- Department of Agriculture, Food and the Marine, Kildare St, Dublin, 2, Ireland
| | - James O'Keeffe
- Department of Agriculture, Food and the Marine, Kildare St, Dublin, 2, Ireland
| | - Andrew W Byrne
- Department of Agriculture, Food and the Marine, Kildare St, Dublin, 2, Ireland
| | - Karina Wrigley
- Department of Agriculture, Food and the Marine, Kildare St, Dublin, 2, Ireland
| | - Damien Barrett
- Department of Agriculture, Food and the Marine, Kildare St, Dublin, 2, Ireland
| |
Collapse
|
4
|
Sartorius A, Cahoon M, Corbetta D, Grau-Roma L, Johnson MF, Sandoval Barron E, Smallman-Raynor M, Swift BMC, Yon L, Young S, Bennett M. Relationships between soil and badger elemental concentrations across a heterogeneously contaminated landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161684. [PMID: 36690105 DOI: 10.1016/j.scitotenv.2023.161684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Understanding the links between environmental and wildlife elemental concentrations is key to help assess ecosystem functions and the potential effects of legacy pollutants. In this study, livers from 448 European badgers (Meles meles) collected across the English Midlands were used to investigate the relationship between elemental concentrations in topsoils and wildlife. Mean soil sample concentrations within 2 km of each badger, determined using data from the British Geological Survey's 'Geochemical Baseline Survey of the Environment', were compared to badger liver elemental concentrations, focusing primarily on Ag, As, Cd, Cr, Cu, K, Mn, Pb, Se, Zn. Generally, the badgers appeared to have elemental concentrations comparable with those published for other related animals, though Cu concentrations tended to be lower than expected. While there was no relationship between soil and badger liver concentrations for most biologically essential elements, biologically non-essential elements, specifically Pb, Cd, As, and Ag, were positively correlated between soil and badger livers. Lead and Cd, the elements with the strongest relationships between soils and badger livers, were primarily elevated in badgers collected in Derbyshire, a county with a millennia-long history of Pb mining and significant Pb and Cd soil pollution. Cadmium concentrations in badgers were also, on average, almost nine times higher than the local soil concentrations, likely due to Cd biomagnification in earthworms, a dietary staple of badgers. While badgers are good models for studying associations between soil and wildlife elemental concentrations, due to their diet, burrowing behaviours, and site fidelity, all flora and fauna local to human-modified environments could be exposed to and impacted by legacy pollutants.
Collapse
Affiliation(s)
- Andrea Sartorius
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK.
| | - Molly Cahoon
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Davide Corbetta
- Farm Pathology and Companion Animal Pathology Departments, School of Veterinary Medicine and Science, Veterinary Pathology Service, University of Nottingham, Sutton Bonington, UK
| | - Llorenç Grau-Roma
- Farm Pathology and Companion Animal Pathology Departments, School of Veterinary Medicine and Science, Veterinary Pathology Service, University of Nottingham, Sutton Bonington, UK; Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | | | - Elsa Sandoval Barron
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | | | - Benjamin M C Swift
- The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, UK
| | - Lisa Yon
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Scott Young
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Malcolm Bennett
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
5
|
Redpath SHA, Marks NJ, Menzies FD, O'Hagan MJH, Wilson RP, Smith S, Magowan EA, McClune DW, Collins SF, McCormick CM, Scantlebury DM. Impact of test, vaccinate or remove protocol on home ranges and nightly movements of badgers a medium density population. Sci Rep 2023; 13:2592. [PMID: 36788237 PMCID: PMC9929337 DOI: 10.1038/s41598-023-28620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
In the British Isles, the European badger (Meles meles) is thought to be the primary wildlife reservoir of bovine tuberculosis (bTB), an endemic disease in cattle. Test, vaccinate or remove ('TVR') of bTB test-positive badgers, has been suggested to be a potentially useful protocol to reduce bTB incidence in cattle. However, the practice of removing or culling badgers is controversial both for ethical reasons and because there is no consistent observed effect on bTB levels in cattle. While removing badgers reduces population density, it may also result in disruption of their social behaviour, increase their ranging, and lead to greater intra- and inter-species bTB transmission. This effect has been recorded in high badger density areas, such as in southwest England. However, little is known about how TVR affects the behaviour and movement of badgers within a medium density population, such as those that occur in Northern Ireland (NI), which the current study aimed to examine. During 2014-2017, badger ranging behaviours were examined prior to and during a TVR protocol in NI. Nightly distances travelled by 38 individuals were determined using Global Positioning System (GPS) measurements of animal tracks and GPS-enhanced dead-reckoned tracks. The latter was calculated using GPS, tri-axial accelerometer and tri-axial magnetometer data loggers attached to animals. Home range and core home range size were measured using 95% and 50% autocorrelated kernel density estimates, respectively, based on location fixes. TVR was not associated with measured increases in either distances travelled per night (mean = 3.31 ± 2.64 km) or home range size (95% mean = 1.56 ± 0.62 km2, 50% mean = 0.39 ± 0.62 km2) over the four years of study. However, following trapping, mean distances travelled per night increased by up to 44% eight days post capture. Findings differ from those observed in higher density badger populations in England, in which badger ranging increased following culling. Whilst we did not assess behaviours of individual badgers, possible reasons why no differences in home range size were observed include higher inherent 'social fluidity' in Irish populations whereby movements are less restricted by habitat saturation and/or that the numbers removed did not reach a threshold that might induce increases in ranging behaviour. Nevertheless, short-term behavioural disruption from trapping was observed, which led to significant increases in the movements of individual animals within their home range. Whether or not TVR may alter badger behaviours remains to be seen, but it would be better to utilise solutions such as oral vaccination of badgers and/or cattle as well as increased biosecurity to limit bTB transmission, which may be less likely to cause interference and thereby reduce the likelihood of bTB transmission.
Collapse
Affiliation(s)
- Sophie H A Redpath
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, Northern Ireland
| | - Nikki J Marks
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Fraser D Menzies
- Department of Agriculture, Environment and Rural Affairs, Veterinary Epidemiology Unit, Belfast, BT4 3SB, Northern Ireland
| | - Maria J H O'Hagan
- Department of Agriculture, Environment and Rural Affairs, Veterinary Epidemiology Unit, Belfast, BT4 3SB, Northern Ireland
| | - Rory P Wilson
- Department of Biological Sciences, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales
| | - Sinéad Smith
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Elizabeth A Magowan
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - David W McClune
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Shane F Collins
- Department of Agriculture, Environment and Rural Affairs, Veterinary Epidemiology Unit, Belfast, BT4 3SB, Northern Ireland
| | - Carl M McCormick
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT4 3SD, Northern Ireland
| | - D Michael Scantlebury
- School of Biological Sciences, Queens' University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland.
| |
Collapse
|
6
|
Kelly DJ, Marples NM, Byrne RL, Fogarty U, Kenny K, Cameron H, Griffin D, Holland CV. An investigation of Mycobacterium bovis and helminth coinfection in the European badger Meles meles. INTERNATIONAL JOURNAL FOR PARASITOLOGY: PARASITES AND WILDLIFE 2022; 19:311-316. [DOI: 10.1016/j.ijppaw.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
7
|
Ward CV, Heydon M, Lakin I, Sullivan AJ, Siriwardena GM. Breeding bird population trends during 2013–2019 inside and outside of European badger control areas in England. J Zool (1987) 2022. [DOI: 10.1111/jzo.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. V. Ward
- British Trust for Ornithology Norfolk UK
| | - M. Heydon
- Natural England, Foss House, Kings Pool York UK
| | - I. Lakin
- Natural England, Foss House, Kings Pool York UK
| | | | | |
Collapse
|
8
|
Habitat suitability, core habitats and diversity hotspots for the conservation of the mustelid species in Iran. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Recovery of an isolated badger (Meles meles) population in The Netherlands. EUR J WILDLIFE RES 2022. [DOI: 10.1007/s10344-022-01596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Murphy KJ, Morera‐Pujol V, Ryan E, Byrne AW, Breslin P, Ciuti S. Habitat availability alters the relative risk of a bovine tuberculosis breakdown in the aftermath of a commercial forest clearfell disturbance. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kilian J. Murphy
- Laboratory of Wildlife Ecology and Behaviour, SBES University College Dublin Ireland
| | - Virginia Morera‐Pujol
- Laboratory of Wildlife Ecology and Behaviour, SBES University College Dublin Ireland
| | - Eoin Ryan
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine (DAFM), Backweston, Kildare Ireland
| | - Andrew W. Byrne
- One Health Scientific Support Unit, National Disease Control Centre (NDCC), Department of Agriculture, Food and the Marine (DAFM), Dublin Ireland
| | - Philip Breslin
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine (DAFM), Backweston, Kildare Ireland
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, SBES University College Dublin Ireland
| |
Collapse
|
11
|
Magowan EA, Maguire IE, Smith S, Redpath S, Marks NJ, Wilson RP, Menzies F, O’Hagan M, Scantlebury DM. Dead-reckoning elucidates fine-scale habitat use by European badgers Meles meles. ANIMAL BIOTELEMETRY 2022; 10:10. [PMID: 37521810 PMCID: PMC8908954 DOI: 10.1186/s40317-022-00282-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 05/03/2023]
Abstract
Background Recent developments in both hardware and software of animal-borne data loggers now enable large amounts of data to be collected on both animal movement and behaviour. In particular, the combined use of tri-axial accelerometers, tri-axial magnetometers and GPS loggers enables animal tracks to be elucidated using a procedure of 'dead-reckoning'. Although this approach was first suggested 30 years ago by Wilson et al. (1991), surprisingly few measurements have been made in free-ranging terrestrial animals. The current study examines movements, interactions with habitat features, and home-ranges calculated from just GPS data and also from dead-reckoned data in a model terrestrial mammal, the European badger (Meles meles). Methods Research was undertaken in farmland in Northern Ireland. Two badgers (one male, one female) were live-trapped and fitted with a GPS logger, a tri-axial accelerometer, and a tri-axial magnetometer. Thereafter, the badgers' movement paths over 2 weeks were elucidated using just GPS data and GPS-enabled dead-reckoned data, respectively. Results Badgers travelled further using data from dead-reckoned calculations than using the data from only GPS data. Whilst once-hourly GPS data could only be represented by straight-line movements between sequential points, the sub-second resolution dead-reckoned tracks were more tortuous. Although there were no differences in Minimum Convex Polygon determinations between GPS- and dead-reckoned data, Kernel Utilisation Distribution determinations of home-range size were larger using the former method. This was because dead-reckoned data more accurately described the particular parts of landscape constituting most-visited core areas, effectively narrowing the calculation of habitat use. Finally, the dead-reckoned data showed badgers spent more time near to field margins and hedges than simple GPS data would suggest. Conclusion Significant differences emerge when analyses of habitat use and movements are compared between calculations made using just GPS data or GPS-enabled dead-reckoned data. In particular, use of dead-reckoned data showed that animals moved 2.2 times farther, had better-defined use of the habitat (revealing clear core areas), and made more use of certain habitats (field margins, hedges). Use of dead-reckoning to provide detailed accounts of animal movement and highlight the minutiae of interactions with the environment should be considered an important technique in the ecologist's toolkit.
Collapse
Affiliation(s)
- E. A. Magowan
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland UK
- Randox Laboratories Ltd. Crumlin, Antrim, Northern Ireland UK
| | - I. E. Maguire
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland UK
- Randox Laboratories Ltd. Crumlin, Antrim, Northern Ireland UK
| | - S. Smith
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland UK
| | - S. Redpath
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland UK
| | - N. J. Marks
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland UK
| | - R. P. Wilson
- Department of Biological Sciences, Institute of Environmental Sustainability, Swansea University, Swansea, UK
| | - F. Menzies
- Department of Agriculture, Environment and Rural Affairs, Veterinary Epidemiology Unit, Belfast, UK
| | - M. O’Hagan
- Department of Agriculture, Environment and Rural Affairs, Veterinary Epidemiology Unit, Belfast, UK
| | - D. M. Scantlebury
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland UK
| |
Collapse
|
12
|
Payne A, Ruette S, Jacquier M, Richomme C, Lesellier S, Middleton S, Duhayer J, Rossi S. Estimation of Bait Uptake by Badgers, Using Non-invasive Methods, in the Perspective of Oral Vaccination Against Bovine Tuberculosis in a French Infected Area. Front Vet Sci 2022; 9:787932. [PMID: 35359678 PMCID: PMC8961513 DOI: 10.3389/fvets.2022.787932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/07/2022] [Indexed: 11/14/2022] Open
Abstract
Although France is officially declared free of bovine tuberculosis (TB), Mycobacterium bovis infection is still observed in several regions in cattle and wildlife, including badgers (Meles meles). In this context, vaccinating badgers should be considered as a promising strategy for the reduction in M. bovis transmission between badgers and other species, and cattle in particular. An oral vaccine consisting of live Bacille Calmette–Guérin (BCG) contained in bait is currently under assessment for badgers, for which testing bait deployment in the field and assessing bait uptake by badgers are required. This study aimed to evaluate the bait uptake by badgers and determine the main factors influencing uptake in a TB-infected area in Burgundy, north-eastern France. The baits were delivered at 15 different setts located in the vicinity of 13 pastures within a TB-infected area, which has been subject to intense badger culling over the last decade. Pre-baits followed by baits containing a biomarker (Rhodamine B; no BCG vaccine) were delivered down sett entrances in the spring (8 days of pre-baiting and 4 days of baiting) and summer (2 days of pre-baiting and 2 days of baiting) of 2018. The consumption of the marked baits was assessed by detecting fluorescence, produced by Rhodamine B, in hair collected in hair traps positioned at the setts and on the margins of the targeted pastures. Collected hairs were also genotyped to differentiate individuals using 24 microsatellites markers and one sex marker. Bait uptake was estimated as the proportion of badgers consuming baits marked by the biomarker over all the sampled animals (individual level), per badger social group, and per targeted pasture. We found a bait uptake of 52.4% (43 marked individuals of 82 genetically identified) at the individual level and a mean of 48.9 and 50.6% at the social group and pasture levels, respectively. The bait uptake was positively associated with the presence of cubs (social group level) and negatively influenced by the intensity of previous trapping (social group and pasture levels). This study is the first conducted in France on bait deployment in a badger population of intermediate density after several years of intensive culling. The results are expected to provide valuable information toward a realistic deployment of oral vaccine baits to control TB in badger populations.
Collapse
Affiliation(s)
- Ariane Payne
- Wildlife Disease Unit, French Office for Biodiversity, Orléans, France
- Groupement de Défense Sanitaire de Côte d'Or, Breteniere, France
- *Correspondence: Ariane Payne
| | - Sandrine Ruette
- French Office for Biodiversity, Predators and Alien Species Unit, Birieux, France
| | - Mickaël Jacquier
- French Office for Biodiversity, Predators and Alien Species Unit, Birieux, France
- Claude Bernard Lyon 1 University, CNRS UMR5558, LBBE, Villeurbanne, France
| | - Céline Richomme
- ANSES, Nancy Laboratory for Rabies and Wildlife, Malzéville, France
| | - Sandrine Lesellier
- ANSES, Nancy Laboratory for Rabies and Wildlife, Malzéville, France
- Animal and Plant Health Agency, Woodham Lane, United Kingdom
| | - Sonya Middleton
- Animal and Plant Health Agency, Woodham Lane, United Kingdom
| | - Jeanne Duhayer
- Claude Bernard Lyon 1 University, CNRS UMR5558, LBBE, Villeurbanne, France
| | - Sophie Rossi
- Wildlife Disease Unit, French Office for Biodiversity, Orléans, France
| |
Collapse
|
13
|
Gaughran A, Mullen E, MacWhite T, Maher P, Kelly DJ, Kelly R, Good M, Marples NM. Badger territoriality maintained despite disturbance of major road construction. PLoS One 2021; 16:e0242586. [PMID: 34478443 PMCID: PMC8415604 DOI: 10.1371/journal.pone.0242586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
Road ecology has traditionally focused on the impact of in-situ and functional roads on wildlife. However, road construction also poses a major, yet understudied, threat and the implications for key aspects of animal behaviour are unknown. Badgers (Meles meles) have been implicated in the transmission of tuberculosis to cattle. There are concerns that environmental disturbances, including major road construction, can disrupt badger territoriality, promoting the spread of the disease to cattle. To address these knowledge gaps the ranging behaviour of a medium-density Irish badger population was monitored using GPS-tracking collars before, during, and after a major road realignment project that bisected the study area. We estimated badgers' home range sizes, nightly distances travelled, and the distance and frequency of extra-territorial excursions during each phase of the study and quantified any changes to these parameters. We show that road construction had a very limited effect on ranging behaviour. A small increase in nightly distance during road construction did not translate into an increase in home range size, nor an increase in the distance or frequency of extra-territorial excursions during road construction. In addition, suitable mitigation measures to prevent badger deaths appeared to ensure that normal patterns of ranging behaviour continued once the new road was in place. We recommend that continuous badger-proof fencing be placed along the entire length of new major roads, in combination with appropriately sited underpasses. Our analysis supports the view that road construction did not cause badgers to change their ranging behaviour in ways likely to increase the spread of tuberculosis.
Collapse
Affiliation(s)
- Aoibheann Gaughran
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Enda Mullen
- Department of Housing, Local Government and Heritage, National Parks and Wildlife Service, Dublin, Ireland
| | - Teresa MacWhite
- Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Peter Maher
- Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - David J. Kelly
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Ruth Kelly
- Agri-Food and Biosciences Institute, Northern Ireland, Belfast, United Kingdom
| | - Margaret Good
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Nicola M. Marples
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Effect of selective removal of badgers ( Meles meles) on ranging behaviour during a 'Test and Vaccinate or Remove' intervention in Northern Ireland. Epidemiol Infect 2021; 149:e125. [PMID: 33958017 PMCID: PMC8161305 DOI: 10.1017/s0950268821001096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The role of the Eurasian badger (Meles meles) as a wildlife host has complicated the management of bovine tuberculosis (bTB) in cattle. Badger ranging behaviour has previously been found to be altered by culling of badgers and has been suggested to increase the transmission of bTB either among badgers or between badgers and cattle. In 2014, a five-year bTB intervention research project in a 100 km2 area in Northern Ireland was initiated involving selective removal of dual path platform (DPP) VetTB (immunoassay) test positive badgers and vaccination followed by release of DPP test negative badgers (‘Test and Vaccinate or Remove’). Home range sizes, based on position data obtained from global positioning system collared badgers, were compared between the first year of the project, where no DPP test positive badgers were removed, and follow-up years 2–4 when DPP test positive badgers were removed. A total of 105 individual badgers were followed over 21 200 collar tracking nights. Using multivariable analyses, neither annual nor monthly home ranges differed significantly in size between years, suggesting they were not significantly altered by the bTB intervention that was applied in the study area.
Collapse
|
15
|
Kelly DJ, Mullen E, Good M. Bovine Tuberculosis: The Emergence of a New Wildlife Maintenance Host in Ireland. Front Vet Sci 2021; 8:632525. [PMID: 33842575 PMCID: PMC8027074 DOI: 10.3389/fvets.2021.632525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Despite advances in herd management, tuberculosis (TB) continues to affect ~0. 5% of Ireland's national cattle herd annually. It is clear that any "final" eradication of TB in cattle will need to address all TB maintenance hosts in the same environment. In Ireland and the UK, European Badgers (Meles meles) are a known TB maintenance host, while deer are recognised as spillover hosts. However, deer have been identified as maintenance hosts in other countries and Sika deer, specifically, have been identified with TB in Ireland. We examined the power of cattle, badger and Sika deer densities (at the county level) to predict cattle TB-breakdowns in Ireland, at both the herd and the individual level, using data collected between 2000 and 2018. Our hypothesis was that any positive correlations between deer density and cattle TB-breakdowns would implicate deer as TB maintenance hosts. Using linear multiple regressions, we found positive correlations between deer density and cattle TB-breakdowns at both the herd and individual levels. Since Sika deer in County Wicklow are known to have TB, we ran further regressions against subsets of data which excluded individual Irish counties. Analyses excluding Wicklow data showed much weaker correlations between Sika deer density and cattle TB-breakdowns at both the herd and individual levels, suggesting that these correlations are strongest in County Wicklow. A similar effect for badger density was seen in County Leitrim. While locally high densities of Sika deer persist in Irish counties, we believe they should be considered an integral part of any TB-control programme for those areas.
Collapse
Affiliation(s)
- David J Kelly
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Enda Mullen
- National Parks and Wildlife Service, Department of Housing, Local Government and Heritage, Dublin, Ireland
| | - Margaret Good
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland.,Independent Researcher and Private Consultant, Dun Laoghaire, Co. Dublin, Ireland
| |
Collapse
|
16
|
Jacquier M, Vandel JM, Léger F, Duhayer J, Pardonnet S, Queney G, Kaerle C, Say L, Ruette S, Devillard S. Population genetic structures at multiple spatial scales: importance of social groups in European badgers. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AbstractPopulation viability and metapopulation dynamics are strongly affected by gene flow. Identifying ecological correlates of genetic structure and gene flow in wild populations is therefore a major issue both in evolutionary ecology and species management. Studying the genetic structure of populations also enables identification of the spatial scale at which most gene flow occurs, hence the scale of the functional connectivity, which is of paramount importance for species ecology. In this study, we examined the genetic structure of a social, continuously distributed mammal, the European badger (Meles meles), both at large spatial scales (among populations) and fine (within populations) spatial scales. The study was carried out in 11 sites across France utilizing a noninvasive hair trapping protocol at 206 monitored setts. We identified 264 badgers genotyped at 24 microsatellite DNA loci. At the large scale, we observed high and significant genetic differentiation among populations (global Fst = 0.139; range of pairwise Fst [0.046–0.231]) that was not related to the geographic distance among sites, suggesting few large-scale dispersal events. Within populations, we detected a threshold value below which badgers were genetically close (< 400 m), highlighting that sociality is the major structuring process within badger populations at the fine scale.
Collapse
Affiliation(s)
- Mickaël Jacquier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
- Office Français de la Biodiversité, Unité-PAD, Montfort, Birieux, France
| | - Jean-Michel Vandel
- Office Français de la Biodiversité, Unité-PAD, Montfort, Birieux, France
| | - François Léger
- Office Français de la Biodiversité, Unité-PAD, Gerstheim, France
| | - Jeanne Duhayer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
| | - Sylvia Pardonnet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
| | | | | | - Ludovic Say
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
| | - Sandrine Ruette
- Office Français de la Biodiversité, Unité-PAD, Montfort, Birieux, France
| | - Sébastien Devillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
| |
Collapse
|
17
|
Extra Territorial Excursions by European badgers are not limited by age, sex or season. Sci Rep 2020; 10:9665. [PMID: 32541685 PMCID: PMC7296015 DOI: 10.1038/s41598-020-66809-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
European badgers (Meles meles) in medium and high density populations show strong territorial behaviour. Territories in these populations are contiguous, well-marked and often unchanging over many years. However, badgers do not always stay within their territorial boundaries. In our medium-density population, most individual badgers made extra-territorial excursions (ETEs) throughout the year. ETEs were most frequent between April and September and least frequent in December and January (the period of winter lethargy). Male badgers made longer and more frequent ETEs than females (especially between January and March, and in autumn). Breeding females made longer and more frequent ETEs than non-breeding females in November. While these peaks correspond with the main mating seasons, mating activity does not explain ETEs throughout the year. The shorter, but more frequent, ETEs in summer months may serve a monitoring purpose, rather than simply providing additional mating opportunities with badgers from outside the 'home' social group. We found that young badgers did not make regular ETEs until the summer of their second year. If badgers could be vaccinated as cubs, this would reduce any potential risk of TB spread during ETEs.
Collapse
|
18
|
Bohina OD, Boldyrev VA. Influence of the Environment on the Structure of the European Badger (Meles meles) (Mustelidae, Mammalia) Family Groups on the Oka–Don Plain. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Tuberculosis Epidemiology and Badger ( Meles meles) Spatial Ecology in a Hot-Spot Area in Atlantic Spain. Pathogens 2019; 8:pathogens8040292. [PMID: 31835627 PMCID: PMC6963265 DOI: 10.3390/pathogens8040292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
We provide a temporal overview (from 2012 to 2018) of the outcomes of tuberculosis (TB) in the cattle and badger populations in a hot-spot in Asturias (Atlantic Spain). We also study the badger’s spatial ecology from an epidemiological perspective in order to describe hazardous behavior in relation to TB transmission between cattle and badgers. Culture and single intradermal tuberculin test (SITT) were available for cattle as part of the National Program for the Eradication of TB. A field survey was also carried out in order to determine the paddocks and buildings used by each farm, and the information obtained was stored by using geographic information systems. Moreover, eighty-three badgers were submitted for necropsy and subsequent bacteriological studies. Ten badgers were also tracked, using global positioning system (GPS) collars. The prevalence of TB in cattle herds in the hot-spot increased from 2.2% in 2012 to 20% in 2016; it then declined to 0.0% in 2018. In contrast, the TB prevalence in badgers increased notably (from 5.55% in 2012–2015 to 10.64% in 2016–2018). Both cattle and badgers shared the same strain of Mycobacterium bovis. The collared badgers preferred paddocks used by TB-positive herds in spring and summer (when they were more active). The males occupied larger home ranges than the females (Khr95: males 149.78 ± 25.84 ha and females 73.37 ± 22.91 ha; Kcr50: males 29.83 ± 5.69 ha and females 13.59 ± 5.00 ha), and the home ranges were smaller in autumn and winter than in summer. The averages of the index of daily and maximum distances traveled by badgers were 1.88 ± (SD) 1.20 km and 1.99 ± 0.71 km, respectively. One of them presented a dispersive behavior with a maximum range of 18.3 km. The most preferred habitat was apple orchards in all seasons, with the exception of winter, in which they preferred pastures. Land uses and landscape structure, which have been linked with certain livestock-management practices, provide a scenario of great potential for badger–cattle interactions, thus enhancing the importance of the badgers’ ecology, which could potentially transmit TB back to cattle in the future.
Collapse
|
20
|
Gaughran A, MacWhite T, Mullen E, Maher P, Kelly DJ, Good M, Marples NM. Dispersal patterns in a medium-density Irish badger population: Implications for understanding the dynamics of tuberculosis transmission. Ecol Evol 2019; 9:13142-13152. [PMID: 31871635 PMCID: PMC6912907 DOI: 10.1002/ece3.5753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/26/2019] [Accepted: 09/15/2019] [Indexed: 11/12/2022] Open
Abstract
European badgers (Meles meles) are group-living mustelids implicated in the spread of bovine tuberculosis (TB) to cattle and act as a wildlife reservoir for the disease. In badgers, only a minority of individuals disperse from their natal social group. However, dispersal may be extremely important for the spread of TB, as dispersers could act as hubs for disease transmission. We monitored a population of 139 wild badgers over 7 years in a medium-density population (1.8 individuals/km2). GPS tracking collars were applied to 80 different individuals. Of these, we identified 25 dispersers, 14 of which were wearing collars as they dispersed. This allowed us to record the process of dispersal in much greater detail than ever before. We show that dispersal is an extremely complex process, and measurements of straight-line distance between old and new social groups can severely underestimate how far dispersers travel. Assumptions of straight-line travel can also underestimate direct and indirect interactions and the potential for disease transmission. For example, one female disperser which eventually settled 1.5 km from her natal territory traveled 308 km and passed through 22 different territories during dispersal. Knowledge of badgers' ranging behavior during dispersal is crucial to understanding the dynamics of TB transmission, and for designing appropriate interventions, such as vaccination.
Collapse
Affiliation(s)
- Aoibheann Gaughran
- Department of ZoologySchool of Natural SciencesTrinity College DublinDublinIreland
- Trinity Centre for Biodiversity ResearchTrinity College DublinDublinIreland
| | | | - Enda Mullen
- Department of Culture, Heritage and the GaeltachtNational Parks and Wildlife ServiceDublinIreland
| | - Peter Maher
- Department of Agriculture, Food and the MarineDublinIreland
| | - David J. Kelly
- Department of ZoologySchool of Natural SciencesTrinity College DublinDublinIreland
- Trinity Centre for Biodiversity ResearchTrinity College DublinDublinIreland
| | - Margaret Good
- Department of ZoologySchool of Natural SciencesTrinity College DublinDublinIreland
- Trinity Centre for Biodiversity ResearchTrinity College DublinDublinIreland
| | - Nicola M. Marples
- Department of ZoologySchool of Natural SciencesTrinity College DublinDublinIreland
- Trinity Centre for Biodiversity ResearchTrinity College DublinDublinIreland
| |
Collapse
|
21
|
Rosen LE, Fogarty U, O’Keeffe JJ, Olea-Popelka FJ. Monitoring European badger (Meles meles) reproduction under evolving bovine tuberculosis management in Ireland. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1340-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Barbour K, McClune DW, Delahay RJ, Speakman JR, McGowan NE, Kostka B, Montgomery WI, Marks NJ, Scantlebury DM. No energetic cost of tuberculosis infection in European badgers (Meles meles). J Anim Ecol 2019; 88:1973-1985. [DOI: 10.1111/1365-2656.13092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Katie Barbour
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| | - David W. McClune
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| | - Richard J. Delahay
- National Wildlife Management Centre Animal and Plant Health Agency York UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen UK
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
| | - Natasha E. McGowan
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| | - Berit Kostka
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| | - W. Ian Montgomery
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| | - Nikki J. Marks
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| | - David M. Scantlebury
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| |
Collapse
|
23
|
Habitat suitability vs landscape connectivity determining roadkill risk at a regional scale: a case study on European badger (Meles meles). EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-018-1241-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Wereszczuk A, Zalewski A. Does the matrix matter? Home range sizes and space use strategies in stone marten at sites with differing degrees of isolation. MAMMAL RES 2018. [DOI: 10.1007/s13364-018-0397-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|