1
|
Simon J, Mikhael P, Graur A, Chang AEB, Skates SJ, Osarogiagbon RU, Sequist LV, Fintelmann FJ. Significance of Image Reconstruction Parameters for Future Lung Cancer Risk Prediction Using Low-Dose Chest Computed Tomography and the Open-Access Sybil Algorithm. Invest Radiol 2024:00004424-990000000-00263. [PMID: 39437009 DOI: 10.1097/rli.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
PURPOSE Sybil is a validated publicly available deep learning-based algorithm that can accurately predict lung cancer risk from a single low-dose computed tomography (LDCT) scan. We aimed to study the effect of image reconstruction parameters and CT scanner manufacturer on Sybil's performance. MATERIALS AND METHODS Using LDCTs of a subset of the National Lung Screening Trial participants, which we previously used for internal validation of the Sybil algorithm (test set), we ran the Sybil algorithm on LDCT series pairs matched on kilovoltage peak, milliampere-seconds, reconstruction interval, reconstruction diameter, and either reconstruction filter or axial slice thickness. We also evaluated the cumulative effect of these parameters by combining the best- and the worst-performing parameters. A subanalysis compared Sybil's performance by CT manufacturer. We considered any LDCT positive if future lung cancer was subsequently confirmed by biopsy or surgical resection. The areas under the curve (AUCs) for each series pair were compared using DeLong's test. RESULTS There was no difference in Sybil's performance between 1049 pairs of standard versus bone reconstruction filter (AUC at 1 year 0.84 [95% confidence interval (CI): 0.70-0.99] vs 0.86 [95% CI: 0.75-0.98], P = 0.87) and 1961 pairs of standard versus lung reconstruction filter (AUC at 1 year 0.98 [95% CI: 0.97-0.99] vs 0.98 [95% CI: 0.96-0.99], P = 0.81). Similarly, there was no difference in 1288 pairs comparing 2-mm versus 5-mm axial slice thickness (AUC at 1 year 0.98 [95% CI: 0.94-1.00] vs 0.99 [95% CI: 0.97-0.99], P = 0.68). The best-case scenario combining a lung reconstruction filter with 2-mm slice thickness compared with the worst-case scenario combining a bone reconstruction filter with 2.5-mm slice thickness uncovered a significantly different performance at years 2-4 (P = 0.03). Subanalysis showed no significant difference in performance between Siemens and Toshiba scanners. CONCLUSIONS Sybil's predictive performance for future lung cancer risk is robust across different reconstruction filters and axial slice thicknesses, demonstrating its versatility in various imaging settings. Combining favorable reconstruction parameters can significantly enhance predictive ability at years 2-4. The absence of significant differences between Siemens and Toshiba scanners further supports Sybil's versatility.
Collapse
Affiliation(s)
- Judit Simon
- From the Division of Thoracic Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Boston, MA (J.S., A.G., F.J.F.); Harvard Medical School, Boston, MA (J.S., A.E.B.C., S.J.S., L.V.S., F.J.F.); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA (P.M.); Jameel Clinic, Massachusetts Institute of Technology, Cambridge, MA (P.M.); Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA (A.E.B.C., L.V.S.); Department of Medicine, MGH Biostatistics, Massachusetts General Hospital, Boston MA (S.J.S.); and Multidisciplinary Thoracic Oncology Program, Baptist Cancer Center, Memphis, TN (R.U.O.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Xie J, He Y, Che S, Zhao W, Niu Y, Qin D, Li Z. Differential diagnosis of benign and lung adenocarcinoma presenting as larger solid nodules and masses based on multiscale CT radiomics. PLoS One 2024; 19:e0309033. [PMID: 39365772 PMCID: PMC11451992 DOI: 10.1371/journal.pone.0309033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/04/2024] [Indexed: 10/06/2024] Open
Abstract
PURPOSE To develop a better radiomic model for the differential diagnosis of benign and lung adenocarcinoma lesions presenting as larger solid nodules and masses based on multiscale computed tomography (CT) radiomics. MATERIALS AND METHODS This retrospective study enrolled 205 patients with solid nodules and masses from Center 1 between January 2010 and February 2022 and Center 2 between January 2019 and February 2022. After applying the inclusion and exclusion criteria, we retrospectively enrolled 165 patients from two centers and assigned them to the training dataset (n = 115) or the test dataset (n = 50). Radiomics features were extracted from volumes of interest on CT images. A gradient boosting decision tree (GBDT) was used for data dimensionality reduction to perform the final feature selection. Four models were developed using clinical data, conventional imaging features and radiomics features, namely, the clinical and image model (CIM), the plain CT radiomics model (PRM), the enhanced CT radiomics model (ERM) and the combined model (CM). Model performance was evaluated to determine the best model for identifying benign and lung adenocarcinoma presenting as larger solid nodules and masses. RESULTS In the training dataset, the areas under the curve (AUCs) for the CIM, PRM, ERM, and CM were 0.718, 0.806, 0.819, and 0.917, respectively. The differential diagnostic capability of the ERM was better than that of the PRM and the CIM. The CM was optimal. Intermediate and junior radiologists and respiratory physicians achieved improved obviously diagnostic results with the radiomics model. The senior radiologists showed slight improved diagnostic results after using the radiomics model. CONCLUSION Radiomics may have the potential to be used as a noninvasive tool for the differential diagnosis of benign and lung adenocarcinoma lesions presenting as larger solid nodules and masses.
Collapse
Affiliation(s)
- Jiayue Xie
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yifan He
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Siyu Che
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wenjing Zhao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuxin Niu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Dongxue Qin
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhiyong Li
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
3
|
Cheng L, Gao H, Wang Z, Guo L, Wang X, Jin G. Prospective study of dual-phase 99mTc-MIBI SPECT/CT nomogram for differentiating non-small cell lung cancer from benign pulmonary lesions. Eur J Radiol 2024; 179:111657. [PMID: 39163806 DOI: 10.1016/j.ejrad.2024.111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVES To establish and validate a technetium 99m sestamibi (99mTc-MIBI) single-photon emission computed tomography/computed tomography (SPECT/CT) nomogram for predicting non-small cell lung cancer (NSCLC). Comparing the diagnostic performance of early and delayed SPECT/CT nomogram, and compare the diagnostic performance of SPECT/CT radiomics models with single SPECT and CT radiomics models. METHODS This prospective study included 119 lesions (NSCLC: n = 92, benign pulmonary lesions: n = 27) from 103 patients (mean age: 59.68 ± 8.94 years). Patients underwent dual-phase 99mTc-MIBI SPECT/CT imaging. They were divided into the training (n = 83) and validation (n = 36) cohorts. Logistic regression, support vector machine, random forest, and light-gradient boosting machine were applied to train and determine the optimal machine learning model. Then, combining radiomics score and clinical factors, establish nomograms for diagnosing NSCLC. RESULT CYFRA21-1 was selected for constructing the clinical model. In early imaging, the areas under the curve (AUCs) of the clinical model, radiomics model, and nomogram were 0.571, 0.830, and 0.875, respectively. The nomogram performed better than the clinical model and similarly to the radiomics model (P=0.020, P=0.216), and there are no statistically significant differences in the predictive performance between the radiomics model and the clinical model (P=0.103). In delayed imaging, the AUC was 0.643, 0.888, and 0.893, respectively. The predictive performance of the nomogram was superior compared to the clinical model and comparable to the radiomics model (P=0.042, P=0.480), and the radiomics model also demonstrated superior diagnostic performance compared to the clinical model (P=0.049). Compared to early SPECT/CT results, the AUC values of the nomogram and radiomics models in the delayed phase were higher, although no statistical differences were found (P=0.831, P=0.568). In delayed imaging, the AUC of the radiomics models for CT and SPECT was 0.696 and 0.768, respectively, SPECT/CT radiomics exhibited significant differences compared with CT and SPECT alone (P=0.042, P=0.038). CONCLUSION Dual-phase 99mTc-MIBI SPECT/CT nomograms and radiomics models can effectively predict NSCLC, providing an economically and non-invasive imaging method for diagnosing NSCLC, moreover, these findings provide a basis for early diagnosis and treatment strategies in NSCLC patients. Delayed-phase SPECT/CT imaging may offer greater practical value than early-phase imaging for diagnosing NSCLC. However, this novel approach necessitates further validation in larger, multi-center cohorts. CLINICAL RELEVANCE Radiomics nomogram based on SPECT/CT for discriminating NSCLC from benign lung lesions helps to aid early diagnosis and guide treatment. KEY POINTS Nomograms, based on dual-phase SPECT/CT, was constructed to discriminate between non-small cell lung cancer and benign lesions. SPECT/CT radiomics model has better predictive performance than SPECT and CT radiomics model.
Collapse
Affiliation(s)
- Liping Cheng
- Department of Nuclear Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Han Gao
- Department of Radiology, Taikang Xianlin Gulou Hospital, Nanjing 210000, China
| | - Zhensheng Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Lin Guo
- Department of Nuclear Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xuehan Wang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Gang Jin
- Department of Nuclear Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
4
|
Xing ZC, Guo HZ, Hou ZL, Zhang HX, Zhang S. The value of computed tomography-based radiomics for predicting malignant pleural effusions. Front Oncol 2024; 14:1419343. [PMID: 39188676 PMCID: PMC11345134 DOI: 10.3389/fonc.2024.1419343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Background Malignant pleural effusion (MPE) is a common clinical problem that requires cytological and/or histological confirmation obtained by invasive examination to establish a definitive diagnosis. Radiomics is rapidly evolving and can provide a non-invasive tool to identify MPE. Objectives We aimed to develop a model based on radiomic features extracted from unenhanced chest computed tomography (CT) images and investigate its value in predicting MPE. Method This retrospective study included patients with pleural effusions between January 2016 and June 2020. All patients underwent a chest CT scanning and medical thoracoscopy after artificial pneumothorax. Cases were divided into a training cohort and a test cohort for modelling and verifying respectively. The Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) were applied to determine the optimal features. We built a radiomics model based on support vector machines (SVM) and evaluated its performance using ROC and calibration curve analysis. Results Twenty-nine patients with MPE and fifty-two patients with non-MPE were enrolled. A total of 944 radiomic features were quantitatively extracted from each sample and reduced to 14 features for modeling after selection. The AUC of the radiomics model was 0.96 (95% CI: 0.912-0.999) and 0.86 (95% CI: 0.657~1.000) in the training and test cohorts, respectively. The calibration curves for model were in good agreement between predicted and actual data. Conclusions The radiomics model based on unenhanced chest CT has good performance for predicting MPE and may provide a powerful tool for doctors in clinical decision-making.
Collapse
Affiliation(s)
- Zhen-Chuan Xing
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hua-Zheng Guo
- Department of Infectious Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zi-Liang Hou
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hong-Xia Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Shuai Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Li ZM, Liu W, Chen XL, Wu WZ, Xu XE, Chu MY, Yu SX, Li EM, Huang HC, Xu LY. Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data. Clin Res Hepatol Gastroenterol 2024; 48:102318. [PMID: 38471582 DOI: 10.1016/j.clinre.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data. METHODS A total of 138 ESCC patients receiving CCRT were enrolled in this study and randomly split into a training cohort (n = 92) and a test cohort (n = 46). All patients were classified into either complete response (CR) or incomplete response (non-CR) groups according to RECIST1.1. Radiomic features were extracted by 3Dslicer. Serum proteomic data was obtained by Olink proximity extension assay. The logistic regression model with elastic-net penalty and the R-package "rms" v6.2-0 were applied to construct classification and nomogram models, respectively. The area under the receiver operating characteristic curves (AUC) was used to evaluate the predictive performance of the models. RESULTS Seven classification models based on multi-omics data were constructed, of which Model-COR, which integrates five clinical, five serum proteomic, and seven radiomic features, achieved the best predictive performance on the test cohort (AUC = 0.8357, 95 % CI: 0.7158-0.9556). Meanwhile, patients predicted to be CR by Model-COR showed significantly longer overall survival than those predicted to be non-CR in both cohorts (Log-rank P = 0.0014 and 0.027, respectively). Furthermore, two nomogram models based on multi-omics data also performed well in predicting response to CCRT (AUC = 0.8398 and 0.8483, respectively). CONCLUSION We developed and validated a multi-omics based classification model and two nomogram models for predicting the response of ESCC patients to CCRT, which achieved the best prediction performance by integrating clinical, serum Olink proteomic, and radiomic data. These models could be useful for personalized treatment decisions and more precise clinical radiotherapy and chemotherapy for ESCC patients.
Collapse
Affiliation(s)
- Zhi-Mao Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Radiation Oncology, Shantou Central Hospital, Shantou 515041, Guangdong, PR China
| | - Wei Liu
- College of Science, Heilongjiang Institute of Technology, Harbin 150050, Heilongjiang, PR China
| | - Xu-Li Chen
- Department of Clinical Laboratory Medicine, Shantou Central Hospital, Shantou 515041, Guangdong, PR China
| | - Wen-Zhi Wu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Xiu-E Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Man-Yu Chu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Shuai-Xia Yu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - He-Cheng Huang
- Department of Radiation Oncology, Shantou Central Hospital, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
6
|
Tietz E, Müller-Franzes G, Zimmermann M, Kuhl CK, Keil S, Nebelung S, Truhn D. Evaluation of Pulmonary Nodules by Radiologists vs. Radiomics in Stand-Alone and Complementary CT and MRI. Diagnostics (Basel) 2024; 14:483. [PMID: 38472955 DOI: 10.3390/diagnostics14050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Increased attention has been given to MRI in radiation-free screening for malignant nodules in recent years. Our objective was to compare the performance of human readers and radiomic feature analysis based on stand-alone and complementary CT and MRI imaging in classifying pulmonary nodules. This single-center study comprises patients with CT findings of pulmonary nodules who underwent additional lung MRI and whose nodules were classified as benign/malignant by resection. For radiomic features analysis, 2D segmentation was performed for each lung nodule on axial CT, T2-weighted (T2w), and diffusion (DWI) images. The 105 extracted features were reduced by iterative backward selection. The performance of radiomics and human readers was compared by calculating accuracy with Clopper-Pearson confidence intervals. Fifty patients (mean age 63 +/- 10 years) with 66 pulmonary nodules (40 malignant) were evaluated. ACC values for radiomic features analysis vs. radiologists based on CT alone (0.68; 95%CI: 0.56, 0.79 vs. 0.59; 95%CI: 0.46, 0.71), T2w alone (0.65; 95%CI: 0.52, 0.77 vs. 0.68; 95%CI: 0.54, 0.78), DWI alone (0.61; 95%CI:0.48, 0.72 vs. 0.73; 95%CI: 0.60, 0.83), combined T2w/DWI (0.73; 95%CI: 0.60, 0.83 vs. 0.70; 95%CI: 0.57, 0.80), and combined CT/T2w/DWI (0.83; 95%CI: 0.72, 0.91 vs. 0.64; 95%CI: 0.51, 0.75) were calculated. This study is the first to show that by combining quantitative image information from CT, T2w, and DWI datasets, pulmonary nodule assessment through radiomics analysis is superior to using one modality alone, even exceeding human readers' performance.
Collapse
Affiliation(s)
- Eric Tietz
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52072 Aachen, Germany
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225 Dusseldorf, Germany
| | - Gustav Müller-Franzes
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52072 Aachen, Germany
| | - Markus Zimmermann
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52072 Aachen, Germany
| | - Christiane Katharina Kuhl
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52072 Aachen, Germany
| | - Sebastian Keil
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52072 Aachen, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52072 Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52072 Aachen, Germany
| |
Collapse
|
7
|
Li J, Li L, Tang S, Yu Q, Liu W, Liu N, Yang F, Zhang D, Yuan S. Novel model integrating computed tomography-based image markers with genetic markers for discriminating radiation pneumonitis in patients with unresectable stage III non-small cell lung cancer receiving radiotherapy: a retrospective multi-center radiogenomics study. BMC Cancer 2024; 24:78. [PMID: 38225543 PMCID: PMC10789008 DOI: 10.1186/s12885-023-11809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Chemoradiotherapy is a critical treatment for patients with locally advanced and unresectable non-small cell lung cancer (NSCLC), and it is essential to identify high-risk patients as early as possible owing to the high incidence of radiation pneumonitis (RP). Increasing attention is being paid to the effects of endogenous factors for RP. This study aimed to investigate the value of computed tomography (CT)-based radiomics combined with genomics in analyzing the risk of grade ≥ 2 RP in unresectable stage III NSCLC. METHODS In this retrospective multi-center observational study, 100 patients with unresectable stage III NSCLC who were treated with chemoradiotherapy were analyzed. Radiomics features of the entire lung were extracted from pre-radiotherapy CT images. The least absolute shrinkage and selection operator algorithm was used for optimal feature selection to calculate the Rad-score for predicting grade ≥ 2 RP. Genomic DNA was extracted from formalin-fixed paraffin-embedded pretreatment biopsy tissues. Univariate and multivariate logistic regression analyses were performed to identify predictors of RP for model development. The area under the receiver operating characteristic curve was used to evaluate the predictive capacity of the model. Statistical comparisons of the area under the curve values between different models were performed using the DeLong test. Calibration and decision curves were used to demonstrate discriminatory and clinical benefit ratios, respectively. RESULTS The Rad-score was constructed from nine radiomic features to predict grade ≥ 2 RP. Multivariate analysis demonstrated that histology, Rad-score, and XRCC1 (rs25487) allele mutation were independent high-risk factors correlated with RP. The area under the curve of the integrated model combining clinical factors, radiomics, and genomics was significantly higher than that of any single model (0.827 versus 0.594, 0.738, or 0.641). Calibration and decision curve analyses confirmed the satisfactory clinical feasibility and utility of the nomogram. CONCLUSION Histology, Rad-score, and XRCC1 (rs25487) allele mutation could predict grade ≥ 2 RP in patients with locally advanced unresectable NSCLC after chemoradiotherapy, and the integrated model combining clinical factors, radiomics, and genomics demonstrated the best predictive efficacy.
Collapse
Affiliation(s)
- Jiaran Li
- Shandong University Cancer Center, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Li Li
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shanshan Tang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qingxi Yu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenju Liu
- Department of Radiation Oncology, Liaocheng Pepole's Hospital, Liaocheng, Shandong, China
| | - Ning Liu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fengchang Yang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dexian Zhang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuanghu Yuan
- Shandong University Cancer Center, Jinan, Shandong, China.
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Zhang X, Yang P, Tian J, Wen F, Chen X, Muhammad T. Classification of benign and malignant pulmonary nodule based on local-global hybrid network. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:689-706. [PMID: 38277335 DOI: 10.3233/xst-230291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND The accurate classification of pulmonary nodules has great application value in assisting doctors in diagnosing conditions and meeting clinical needs. However, the complexity and heterogeneity of pulmonary nodules make it difficult to extract valuable characteristics of pulmonary nodules, so it is still challenging to achieve high-accuracy classification of pulmonary nodules. OBJECTIVE In this paper, we propose a local-global hybrid network (LGHNet) to jointly model local and global information to improve the classification ability of benign and malignant pulmonary nodules. METHODS First, we introduce the multi-scale local (MSL) block, which splits the input tensor into multiple channel groups, utilizing dilated convolutions with different dilation rates and efficient channel attention to extract fine-grained local information at different scales. Secondly, we design the hybrid attention (HA) block to capture long-range dependencies in spatial and channel dimensions to enhance the representation of global features. RESULTS Experiments are carried out on the publicly available LIDC-IDRI and LUNGx datasets, and the accuracy, sensitivity, precision, specificity, and area under the curve (AUC) of the LIDC-IDRI dataset are 94.42%, 94.25%, 93.05%, 92.87%, and 97.26%, respectively. The AUC on the LUNGx dataset was 79.26%. CONCLUSION The above classification results are superior to the state-of-the-art methods, indicating that the network has better classification performance and generalization ability.
Collapse
Affiliation(s)
- Xin Zhang
- Smart City College, Beijing Union University, Beijing, China
| | - Ping Yang
- Smart City College, Beijing Union University, Beijing, China
| | - Ji Tian
- Smart City College, Beijing Union University, Beijing, China
| | - Fan Wen
- Smart City College, Beijing Union University, Beijing, China
| | - Xi Chen
- Smart City College, Beijing Union University, Beijing, China
| | - Tayyab Muhammad
- School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China
| |
Collapse
|
9
|
Pal S, Singh RP, Kumar A. Analysis of Hybrid Feature Optimization Techniques Based on the Classification Accuracy of Brain Tumor Regions Using Machine Learning and Further Evaluation Based on the Institute Test Data. J Med Phys 2024; 49:22-32. [PMID: 38828069 PMCID: PMC11141750 DOI: 10.4103/jmp.jmp_77_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 06/05/2024] Open
Abstract
Aim The goal of this study was to get optimal brain tumor features from magnetic resonance imaging (MRI) images and classify them based on the three groups of the tumor region: Peritumoral edema, enhancing-core, and necrotic tumor core, using machine learning classification models. Materials and Methods This study's dataset was obtained from the multimodal brain tumor segmentation challenge. A total of 599 brain MRI studies were employed, all in neuroimaging informatics technology initiative format. The dataset was divided into training, validation, and testing subsets online test dataset (OTD). The dataset includes four types of MRI series, which were combined together and processed for intensity normalization using contrast limited adaptive histogram equalization methodology. To extract radiomics features, a python-based library called pyRadiomics was employed. Particle-swarm optimization (PSO) with varying inertia weights was used for feature optimization. Inertia weight with a linearly decreasing strategy (W1), inertia weight with a nonlinear coefficient decreasing strategy (W2), and inertia weight with a logarithmic strategy (W3) were different strategies used to vary the inertia weight for feature optimization in PSO. These selected features were further optimized using the principal component analysis (PCA) method to further reducing the dimensionality and removing the noise and improve the performance and efficiency of subsequent algorithms. Support vector machine (SVM), light gradient boosting (LGB), and extreme gradient boosting (XGB) machine learning classification algorithms were utilized for the classification of images into different tumor regions using optimized features. The proposed method was also tested on institute test data (ITD) for a total of 30 patient images. Results For OTD test dataset, the classification accuracy of SVM was 0.989, for the LGB model (LGBM) was 0.992, and for the XGB model (XGBM) was 0.994, using the varying inertia weight-PSO optimization method and the classification accuracy of SVM was 0.996 for the LGBM was 0.998, and for the XGBM was 0.994, using PSO and PCA-a hybrid optimization technique. For ITD test dataset, the classification accuracy of SVM was 0.994 for the LGBM was 0.993, and for the XGBM was 0.997, using the hybrid optimization technique. Conclusion The results suggest that the proposed method can be used to classify a brain tumor as used in this study to classify the tumor region into three groups: Peritumoral edema, enhancing-core, and necrotic tumor core. This was done by extracting the different features of the tumor, such as its shape, grey level, gray-level co-occurrence matrix, etc., and then choosing the best features using hybrid optimal feature selection techniques. This was done without much human expertise and in much less time than it would take a person.
Collapse
Affiliation(s)
- Soniya Pal
- Department of Physics, GLA University, Mathura, Uttar Pradesh, India
- Batra Hospital and Medical Research Center, New Delhi, India
| | - Raj Pal Singh
- Department of Physics, GLA University, Mathura, Uttar Pradesh, India
| | - Anuj Kumar
- Department of Radiotherapy, S. N. Medical College, Agra, Uttar Pradesh, India
| |
Collapse
|
10
|
Pan F, Feng L, Liu B, Hu Y, Wang Q. Application of radiomics in diagnosis and treatment of lung cancer. Front Pharmacol 2023; 14:1295511. [PMID: 38027000 PMCID: PMC10646419 DOI: 10.3389/fphar.2023.1295511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Radiomics has become a research field that involves the process of converting standard nursing images into quantitative image data, which can be combined with other data sources and subsequently analyzed using traditional biostatistics or artificial intelligence (Al) methods. Due to the capture of biological and pathophysiological information by radiomics features, these quantitative radiomics features have been proven to provide fast and accurate non-invasive biomarkers for lung cancer risk prediction, diagnosis, prognosis, treatment response monitoring, and tumor biology. In this review, radiomics has been emphasized and discussed in lung cancer research, including advantages, challenges, and drawbacks.
Collapse
Affiliation(s)
- Feng Pan
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of CT, Jilin Province FAW General Hospital, Changchun, China
| | - Li Feng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Wang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Rinaldi L, Guerini Rocco E, Spitaleri G, Raimondi S, Attili I, Ranghiero A, Cammarata G, Minotti M, Lo Presti G, De Piano F, Bellerba F, Funicelli G, Volpe S, Mora S, Fodor C, Rampinelli C, Barberis M, De Marinis F, Jereczek-Fossa BA, Orecchia R, Rizzo S, Botta F. Association between Contrast-Enhanced Computed Tomography Radiomic Features, Genomic Alterations and Prognosis in Advanced Lung Adenocarcinoma Patients. Cancers (Basel) 2023; 15:4553. [PMID: 37760521 PMCID: PMC10527057 DOI: 10.3390/cancers15184553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Non-invasive methods to assess mutational status, as well as novel prognostic biomarkers, are warranted to foster therapy personalization of patients with advanced non-small cell lung cancer (NSCLC). This study investigated the association of contrast-enhanced Computed Tomography (CT) radiomic features of lung adenocarcinoma lesions, alone or integrated with clinical parameters, with tumor mutational status (EGFR, KRAS, ALK alterations) and Overall Survival (OS). In total, 261 retrospective and 48 prospective patients were enrolled. A Radiomic Score (RS) was created with LASSO-Logistic regression models to predict mutational status. Radiomic, clinical and clinical-radiomic models were trained on retrospective data and tested (Area Under the Curve, AUC) on prospective data. OS prediction models were trained and tested on retrospective data with internal cross-validation (C-index). RS significantly predicted each alteration at training (radiomic and clinical-radiomic AUC 0.95-0.98); validation performance was good for EGFR (AUC 0.86), moderate for KRAS and ALK (AUC 0.61-0.65). RS was also associated with OS at univariate and multivariable analysis, in the latter with stage and type of treatment. The validation C-index was 0.63, 0.79, and 0.80 for clinical, radiomic, and clinical-radiomic models. The study supports the potential role of CT radiomics for non-invasive identification of gene alterations and prognosis prediction in patients with advanced lung adenocarcinoma, to be confirmed with independent studies.
Collapse
Affiliation(s)
- Lisa Rinaldi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Elena Guerini Rocco
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Sara Raimondi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Alberto Ranghiero
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
| | - Giulio Cammarata
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Marta Minotti
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Giuliana Lo Presti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Francesca De Piano
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Federica Bellerba
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Gianluigi Funicelli
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Stefania Volpe
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Serena Mora
- Data Management Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (S.M.); (C.F.)
| | - Cristiana Fodor
- Data Management Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (S.M.); (C.F.)
| | - Cristiano Rampinelli
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Massimo Barberis
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
| | - Filippo De Marinis
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Roberto Orecchia
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
- Scientific Direction, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefania Rizzo
- Clinica di Radiologia EOC, Istituto Imaging della Svizzera Italiana (IIMSI), Via Tesserete 46, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Via G. Buffi 13, 6900 Lugano, Switzerland
| | - Francesca Botta
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| |
Collapse
|
12
|
Guglielmo P, Marturano F, Bettinelli A, Sepulcri M, Pasello G, Gregianin M, Paiusco M, Evangelista L. Additional Value of PET and CT Image-Based Features in the Detection of Occult Lymph Node Metastases in Lung Cancer: A Systematic Review of the Literature. Diagnostics (Basel) 2023; 13:2153. [PMID: 37443547 DOI: 10.3390/diagnostics13132153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer represents the second most common malignancy worldwide and lymph node (LN) involvement serves as a crucial prognostic factor for tailoring treatment approaches. Invasive methods, such as mediastinoscopy and endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA), are employed for preoperative LN staging. Among the preoperative non-invasive diagnostic methods, computed tomography (CT) and, recently, positron emission tomography (PET)/CT with fluorine-18-fludeoxyglucose ([18F]FDG) are routinely recommended by several guidelines; however, they can both miss pathologically proven LN metastases, with an incidence up to 26% for patients staged with [18F]FDG PET/CT. These undetected metastases, known as occult LN metastases (OLMs), are usually cases of micro-metastasis or small LN metastasis (shortest radius below 10 mm). Hence, it is crucial to find novel approaches to increase their discovery rate. Radiomics is an emerging field that seeks to uncover and quantify the concealed information present in biomedical images by utilising machine or deep learning approaches. The extracted features can be integrated into predictive models, as numerous reports have emphasised their usefulness in the staging of lung cancer. However, there is a paucity of studies examining the detection of OLMs using quantitative features derived from images. Hence, the objective of this review was to investigate the potential application of PET- and/or CT-derived quantitative radiomic features for the identification of OLMs.
Collapse
Affiliation(s)
- Priscilla Guglielmo
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Francesca Marturano
- Medical Physics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Andrea Bettinelli
- Medical Physics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Matteo Sepulcri
- Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Michele Gregianin
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Marta Paiusco
- Medical Physics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| |
Collapse
|
13
|
Adelsmayr G, Janisch M, Müller H, Holzinger A, Talakic E, Janek E, Streit S, Fuchsjäger M, Schöllnast H. Three dimensional computed tomography texture analysis of pulmonary lesions: Does radiomics allow differentiation between carcinoma, neuroendocrine tumor and organizing pneumonia? Eur J Radiol 2023; 165:110931. [PMID: 37399666 DOI: 10.1016/j.ejrad.2023.110931] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE To investigate whether CT texture analysis allows differentiation between adenocarcinomas, squamous cell carcinomas, carcinoids, small cell lung cancers and organizing pneumonia and between carcinomas and neuroendocrine tumors. METHOD This retrospective study included patients 133 patients (30 patients with organizing pneumonia, 30 patients with adenocarcinoma, 30 patients with squamous cell carcinoma, 23 patients with small cell lung cancer, 20 patients with carcinoid), who underwent CT-guided biopsy of the lung and had a corresponding histopathologic diagnosis. Pulmonary lesions were segmented in consensus by two radiologists with and without a threshold of -50HU in three dimensions. Groupwise comparisons were performed to assess for differences between all five above-listed entities and between carcinomas and neuroendocrine tumors. RESULTS Pairwise comparisons of the five entities revealed 53 statistically significant texture features when using no HU-threshold and 6 statistically significant features with a threshold of -50HU. The largest AUC (0.818 [95%CI 0.706-0.930]) was found for the feature wavelet-HHH_glszm_SmallAreaEmphasis for discrimination of carcinoid from the other entities when using no HU-threshold. In differentiating neuroendocrine tumors from carcinomas, 173 parameters proved statistically significant when using no HU threshold versus 52 parameters when using a -50HU-threshold. The largest AUC (0.810 [95%CI 0.728-0,893]) was found for the parameter original_glcm_Correlation for discrimination of neuroendocrine tumors from carcinomas when using no HU-threshold. CONCLUSIONS CT texture analysis revealed features that differed significantly between malignant pulmonary lesions and organizing pneumonia and between carcinomas and neuroendocrine tumors of the lung. Applying a HU-threshold for segmentation substantially influenced the results of texture analysis.
Collapse
Affiliation(s)
- Gabriel Adelsmayr
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria
| | - Michael Janisch
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria
| | - Heimo Müller
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Andreas Holzinger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2/9/V, 8036 Graz, Austria
| | - Emina Talakic
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria
| | - Elmar Janek
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria
| | - Simon Streit
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria.
| | - Helmut Schöllnast
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria; Institute of Radiology, LKH Graz II, Göstinger Strasse 22, 8020 Graz, Austria
| |
Collapse
|
14
|
Adelsmayr G, Janisch M, Kaufmann-Bühler AK, Holter M, Talakic E, Janek E, Holzinger A, Fuchsjäger M, Schöllnast H. CT texture analysis reliability in pulmonary lesions: the influence of 3D vs. 2D lesion segmentation and volume definition by a Hounsfield-unit threshold. Eur Radiol 2023; 33:3064-3071. [PMID: 36947188 PMCID: PMC10121537 DOI: 10.1007/s00330-023-09500-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE Reproducibility problems are a known limitation of radiomics. The segmentation of the target lesion plays a critical role in texture analysis variability. This study's aim was to compare the interobserver reliability of manual 2D vs. 3D lung lesion segmentation with and without pre-definition of the volume using a threshold of - 50 HU. METHODS Seventy-five patients with histopathologically proven lung lesions (15 patients each with adenocarcinoma, squamous cell carcinoma, small cell lung cancer, carcinoid, and organizing pneumonia) who underwent an unenhanced CT scan of the chest were included. Three radiologists independently segmented each lesion manually in 3D and 2D with and without pre-segmentation volume definition by a HU threshold, and shape parameters and original, Laplacian of Gaussian-filtered, and wavelet-based texture features were derived. To assess interobserver reliability and identify the most robust texture features, intraclass correlation coefficients (ICCs) for different segmentation settings were calculated. RESULTS Shape parameters had high reliability (64-79% had excellent and good ICCs). Texture features had weak reliability levels, with the highest ICCs (38% excellent or good) found for original features in 3D segmentation without the use of a HU threshold. A small proportion (4.3-11.5%) of texture features had excellent or good ICC values at all segmentation settings. CONCLUSION Interobserver reliability of texture features from CT scans of a heterogeneous collection of manually segmented lung lesions was low with a small proportion of features demonstrating high reliability independent of the segmentation settings. These results indicate a limited applicability of texture analysis and the need to define robust texture features in patients with lung lesions. KEY POINTS • Our study showed a low reproducibility of texture features when 3 radiologists independently segmented lung lesions in CT images, which highlights a serious limitation of texture analysis. • Interobserver reliability of texture features was low regardless of whether the lesion was segmented in 2D and 3D with or without a HU threshold. • In contrast to texture features, shape parameters showed a high interobserver reliability when lesions were segmented in 2D vs. 3D with and without a HU threshold of - 50.
Collapse
Affiliation(s)
- Gabriel Adelsmayr
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Michael Janisch
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Ann-Katrin Kaufmann-Bühler
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Magdalena Holter
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2/9/V, 8036, Graz, Austria
| | - Emina Talakic
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Elmar Janek
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Andreas Holzinger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2/9/V, 8036, Graz, Austria
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria.
| | - Helmut Schöllnast
- Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
- Institute of Radiology, LKH Graz II, Göstinger Strasse 22, 8020, Graz, Austria
| |
Collapse
|
15
|
Guo Z, Yang J, Zhao L, Yuan J, Yu H. 3D SAACNet with GBM for the classification of benign and malignant lung nodules. Comput Biol Med 2023; 153:106532. [PMID: 36623436 DOI: 10.1016/j.compbiomed.2022.106532] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
In view of the low diagnostic accuracy of the current classification methods of benign and malignant pulmonary nodules, this paper proposes a 3D segmentation attention network integrating asymmetric convolution (SAACNet) classification model combined with a gradient boosting machine (GBM). This can make full use of the spatial information of pulmonary nodules. First, the asymmetric convolution (AC) designed in SAACNet can not only strengthen feature extraction but also improve the network's robustness to object flip and rotation detection and improve network performance. Second, the segmentation attention network integrating AC (SAAC) block can effectively extract more fine-grained multiscale spatial information while adaptively recalibrating multidimensional channel attention weights. The SAACNet also uses a dual-path connection for feature reuse, where the model makes full use of features. In addition, this article makes the loss function pay more attention to difficult and misclassified samples by adding adjustment factors. Third, the GBM is used to splice the nodule size, originally cropped nodule pixels, and the depth features learned by SAACNet to improve the prediction accuracy of the overall model. A comprehensive ablation experiment is carried out on the public dataset LUNA16 and compared with other lung nodule classification models. The classification accuracy (ACC) is 95.18%, and the area under the curve (AUC) is 0.977. The results show that this method effectively improves the classification performance of pulmonary nodules. The proposed method has advantages in the classification of benign and malignant pulmonary nodules, and it can effectively assist radiologists in pulmonary nodule classification.
Collapse
Affiliation(s)
- Zhitao Guo
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Jikai Yang
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Linlin Zhao
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Jinli Yuan
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
16
|
Zhang H, Wang S, Deng Z, Li Y, Yang Y, Huang H. Computed tomography-based radiomics machine learning models for prediction of histological invasiveness with sub-centimeter subsolid pulmonary nodules: a retrospective study. PeerJ 2023; 11:e14559. [PMID: 36643621 PMCID: PMC9838201 DOI: 10.7717/peerj.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 01/12/2023] Open
Abstract
To improve the accuracy of preoperative diagnoses and avoid over- or undertreatment, we aimed to develop and compare computed tomography-based radiomics machine learning models for the prediction of histological invasiveness using sub-centimeter subsolid pulmonary nodules. Three predictive models based on radiomics were built using three machine learning classifiers to discriminate the invasiveness of the sub-centimeter subsolid pulmonary nodules. A total of 203 sub-centimeter nodules from 177 patients were collected and assigned randomly to the training set (n = 143) or test set (n = 60). The areas under the curve of the predictive models were 0.743 (95% confidence interval CI [0.661-0.824]) for the logistic regression, 0.828 (95% CI [0.76-0.896]) for the support vector machine, and 0.917 (95% CI [0.869-0.965]) for the XGBoost classifier models in the training set, and 0.803 (95% CI [0.694-0.913]), 0.726 (95% CI [0.598-0.854]), and 0.874 (95% CI [0.776-0.972]) in the test set, respectively. In addition, the decision curve showed that the XGBoost model added more net benefit within the range of 0.06 to 0.93.
Collapse
|
17
|
Non-Invasive Biomarkers for Early Lung Cancer Detection. Cancers (Basel) 2022; 14:cancers14235782. [PMID: 36497263 PMCID: PMC9739091 DOI: 10.3390/cancers14235782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
Worldwide, lung cancer (LC) is the most common cause of cancer death, and any delay in the detection of new and relapsed disease serves as a major factor for a significant proportion of LC morbidity and mortality. Though invasive methods such as tissue biopsy are considered the gold standard for diagnosis and disease monitoring, they have several limitations. Therefore, there is an urgent need to identify and validate non-invasive biomarkers for the early diagnosis, prognosis, and treatment of lung cancer for improved patient management. Despite recent progress in the identification of non-invasive biomarkers, currently, there is a shortage of reliable and accessible biomarkers demonstrating high sensitivity and specificity for LC detection. In this review, we aim to cover the latest developments in the field, including the utility of biomarkers that are currently used in LC screening and diagnosis. We comment on their limitations and summarise the findings and developmental stages of potential molecular contenders such as microRNAs, circulating tumour DNA, and methylation markers. Furthermore, we summarise research challenges in the development of biomarkers used for screening purposes and the potential clinical applications of newly discovered biomarkers.
Collapse
|
18
|
Zhang R, Wei Y, Shi F, Ren J, Zhou Q, Li W, Chen B. The diagnostic and prognostic value of radiomics and deep learning technologies for patients with solid pulmonary nodules in chest CT images. BMC Cancer 2022; 22:1118. [PMID: 36319968 PMCID: PMC9628173 DOI: 10.1186/s12885-022-10224-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Solid pulmonary nodules are different from subsolid nodules and the diagnosis is much more challenging. We intended to evaluate the diagnostic and prognostic value of radiomics and deep learning technologies for solid pulmonary nodules. METHODS Retrospectively enroll patients with pathologically-confirmed solid pulmonary nodules and collect clinical data. Obtain pre-treatment high-resolution thoracic CT and manually delineate the nodule in 3D. Then, all patients were randomly divided into training and testing sets at a ratio of 7:3, and convolutional neural networks (CNN) models and random forest (RF) models were established. Survival analyses were performed for patients with solid adenocarcinomas. RESULTS Totally 720 solid pulmonary nodules were enrolled, 348 benign and 372 malignant. The CNN model with clinical features achieved the highest AUC [0.819, 95% confidence interval (CI): 0.760-0.877] with a sensitivity of 0.778, specificity of 0.788 and accuracy of 0.783. No significant differences were observed between the CNN and radiomics models. There were 295 solid adenocarcinomas in survival analysis. Different disease-free survival was observed between the low-risk and high-risk groups divided according to the radiomics Rad-score. However, the groups based on deep learning signatures showed similar survival. Cox regression analysis indicated that the radiomics Rad-score (hazard ratio: 5.08, 95% CI: 2.61-9.90) was an independent predictor of recurrence. CONCLUSIONS The radiomics and deep learning models can well predict the malignancy of solid pulmonary nodules. Radiomics signatures also demonstrate prognostic value in solid adenocarcinomas.
Collapse
Affiliation(s)
- Rui Zhang
- grid.13291.380000 0001 0807 1581Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, 37 GuoXue Alley, Wuhou District, Chengdu, Sichuan Province 610041 People’s Republic of China
| | - Ying Wei
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Jing Ren
- grid.13291.380000 0001 0807 1581Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, 37 GuoXue Alley, Wuhou District, Chengdu, Sichuan Province 610041 People’s Republic of China
| | - Qing Zhou
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Weimin Li
- grid.13291.380000 0001 0807 1581Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, 37 GuoXue Alley, Wuhou District, Chengdu, Sichuan Province 610041 People’s Republic of China
| | - Bojiang Chen
- grid.13291.380000 0001 0807 1581Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, 37 GuoXue Alley, Wuhou District, Chengdu, Sichuan Province 610041 People’s Republic of China
| |
Collapse
|
19
|
Qiao J, Zhang X, Du M, Wang P, Xin J. 18F-FDG PET/CT radiomics nomogram for predicting occult lymph node metastasis of non-small cell lung cancer. Front Oncol 2022; 12:974934. [PMID: 36249026 PMCID: PMC9554943 DOI: 10.3389/fonc.2022.974934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose To investigate the ability of a PET/CT-based radiomics nomogram to predict occult lymph node metastasis in patients with clinical stage N0 non-small cell lung cancer (NSCLC). Materials and methods This retrospective study included 228 patients with surgically confirmed NSCLC (training set, 159 patients; testing set, 69 patients). ITKsnap3.8.0 was used for image(CT and PET images) segmentation, AK version 3.2.0 was used for radiomics feature extraction, and Python3.7.0 was used for radiomics feature screening. A radiomics model for predicting occult lymph node metastasis was established using a logistic regression algorithm. A nomogram was constructed by combining radiomics scores with selected clinical predictors. Receiver operating characteristic (ROC) curves were used to verify the performance of the radiomics model and nomogram in the training and testing sets. Results The radiomics nomogram comprising six selected features achieved good prediction efficiency, including radiomics characteristics and tumor location information (central or peripheral), which demonstrated good calibration and discrimination ability in the training (area under the ROC curve [AUC] = 0.884, 95% confidence interval [CI]: 0.826-0.941) and testing (AUC = 0.881, 95% CI: 0.8031-0.959) sets. Clinical decision curves demonstrated that the nomogram was clinically useful. Conclusion The PET/CT-based radiomics nomogram is a noninvasive tool for predicting occult lymph node metastasis in NSCLC.
Collapse
Affiliation(s)
- Jianyi Qiao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pengyuan Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Xin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jun Xin,
| |
Collapse
|
20
|
Clustering based lung lobe segmentation and optimization based lung cancer classification using CT images. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Waldman CE, Hermel M, Hermel JA, Allinson F, Pintea MN, Bransky N, Udoh E, Nicholson L, Robinson A, Gonzalez J, Suhar C, Nayak K, Wesbey G, Bhavnani SP. Artificial intelligence in healthcare: a primer for medical education in radiomics. Per Med 2022; 19:445-456. [PMID: 35880428 DOI: 10.2217/pme-2022-0014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of artificial intelligence (AI) to healthcare has garnered significant enthusiasm in recent years. Despite the adoption of new analytic approaches, medical education on AI is lacking. We aim to create a usable AI primer for medical education. We discuss how to generate a clinical question involving AI, what data are suitable for AI research, how to prepare a dataset for training and how to determine if the output has clinical utility. To illustrate this process, we focused on an example of how medical imaging is employed in designing a machine learning model. Our proposed medical education curriculum addresses AI's potential and limitations for enhancing clinicians' skills in research, applied statistics and care delivery.
Collapse
Affiliation(s)
- Carly E Waldman
- Division of Internal Medicine, Scripps Clinic, La Jolla, CA 92037, USA
| | - Melody Hermel
- Division of Cardiology, Scripps Clinic, La Jolla, CA 92037, USA
| | - Jonathan A Hermel
- Medical Student, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Francis Allinson
- Division of Internal Medicine, Scripps Clinic, La Jolla, CA 92037, USA
| | - Mark N Pintea
- Medical Student, California University of Science & Medicine, Colton, CA 95757, USA
| | - Natalie Bransky
- Medical Student, University of California, San Diego School of Medicine, San Diego, CA 92037, USA
| | - Emem Udoh
- Division of Internal Medicine, Scripps Clinic, La Jolla, CA 92037, USA
| | - Laura Nicholson
- Associate Program Director for Resident Research, Division of Internal Medicine, Scripps Clinic, La Jolla, CA 92037, USA
| | - Austin Robinson
- Advanced Cardiovascular Imaging, Divisions of Cardiology & Radiology, Scripps Clinic, La Jolla, CA 92037, USA
| | - Jorge Gonzalez
- Advanced Cardiovascular Imaging, Divisions of Cardiology & Radiology, Scripps Clinic, La Jolla, CA 92037, USA
| | - Christopher Suhar
- Fellowship Program Co-Director, Division of Cardiology, Scripps Clinic, La Jolla, CA 92037, USA
| | - Keshav Nayak
- Director, Structural Heart Program, Division of Cardiology, Scripps Mercy, San Diego, CA 92037, USA
| | - George Wesbey
- Advanced Cardiovascular Imaging, Divisions of Cardiology & Radiology, Scripps Clinic, La Jolla, CA 92037, USA
| | - Sanjeev P Bhavnani
- Principal Investigator Healthcare Innovation & Practice Transformation Laboratory, Division of Cardiology, Scripps Clinic, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Radiomic Analysis of Pulmonary Nodules for Distinguishing Malignancy From Benignancy: The Value of Using Iodine Maps From Dual-Energy Computed Tomography. J Comput Assist Tomogr 2022; 46:878-883. [PMID: 35830384 DOI: 10.1097/rct.0000000000001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of the study is to investigate the diagnostic accuracy of radiomics on iodine maps from dual-energy computed tomography (DECT) in distinguishing lung cancer from benign pulmonary nodules. METHODS This retrospective study was approved by the institutional review board, and written informed consent was waived. A total of 109 patients with 55 malignant nodules and 62 benign nodules underwent contrast-enhanced DECT. Eight iodine uptake parameters on iodine maps generated by DECT were calculated and established a predictive model. Eighty-seven radiomics features of entire tumor were extracted from iodine maps and established a radiomics model. The iodine uptake model and radiomics model were independently built based on the highly reproducible features using the least absolute shrinkage and selection operator method. The diagnostic accuracy of 2 models were assessed using receiver operating curve analysis. For external validation, 47 patients (25 benign and 22 malignant) from another hospital were assigned to testing data set. RESULTS All iodine uptake features showed significant association with malignancy (P < 0.01) and 2 selected features (mean value of virtual noncontrast images and mean value of vital part on contrast-enhanced image) constituted the iodine model. The radiomics model comprised 2 features (original shape sphericity and original glszm small area high gray level emphasis), which showed good discrimination both in the training cohort (area under the curve, 0.957) and validation cohort (area under the curve, 0.800). Radiomics model showed superior performance than iodine uptake model (accuracy, 89.7% vs 80.6%). CONCLUSIONS Radiomics model extracted from iodine maps provided a robust diagnostic tool for discriminating pulmonary malignant nodules and had high potential in clinical application.
Collapse
|
23
|
Maller B, Tanvetyanon T. Emerging Approaches to Complement Low-Dose Computerized Tomography for Lung Cancer Screening: A Narrative Review. Cureus 2022; 14:e27309. [PMID: 36042989 PMCID: PMC9410538 DOI: 10.7759/cureus.27309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer screening by low-dose computed tomography (LDCT) can save lives. Nevertheless, the test suffers from low accuracy. Improving its accuracy will reduce unnecessary invasive procedures and allow lung cancer treatment to be delivered sooner. This review describes the principles, advantages, and disadvantages of selected emerging modalities potentially useful to improve the accuracy of LDCT. A literature search was conducted using PubMed and Google scholar for relevant publications. We identified four key emerging approaches: radiomics, breath analysis, urine test, and blood test. Radiomics, which uses a computer program to extract various radiological features from radiographic images, holds the potential to improve the accuracy of LDCT. However, to date, there remains no adequately validated system. Breath analysis and urine tests represent a noninvasive and convenient means of screening by detecting substances such as volatile organic compounds associated with lung cancer. However, the results can be confounded by diets, medications, and concurrent medical conditions. Finally, a blood test to screen for protein biomarkers or methylation profiles such as Galleri® has high specificity. However, its sensitivity is low, especially for detecting early-stage lung cancer. Furthermore, the cost for mass public use can be significant. Based on our review, blood tests may have potential for future clinical utility. Its high specificity may be useful to rule in a suspicious lung nodule as malignant, so that other additional tests can be omitted. Data from a well-designed clinical trial will be needed to understand the clinical utility of this strategy.
Collapse
Affiliation(s)
- Bradley Maller
- Internal Medicine, Virginia Commonwealth University, Richmond, USA
| | | |
Collapse
|
24
|
Zhu YQ, Liu C, Mo Y, Dong H, Huang C, Duan YN, Tang LL, Chu YY, Qin J. Radiomics for differentiating minimally invasive adenocarcinoma from precursor lesions in pure ground-glass opacities on chest computed tomography. Br J Radiol 2022; 95:20210768. [PMID: 35262392 PMCID: PMC10996418 DOI: 10.1259/bjr.20210768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To explore the correlation between radiomic features and the pathology of pure ground-glass opacities (pGGOs), we established a radiomics model for predicting the pathological subtypes of minimally invasive adenocarcinoma (MIA) and precursor lesions. METHODS CT images of 1521 patients with lung adenocarcinoma or precursor lesions appearing as pGGOs on CT in our hospital (The Third Affiliated Hospital of Sun Yat-sen University) from January 2015 to March 2021 were analyzed retrospectively and selected based on inclusion and exclusion criteria. pGGOs were divided into an atypical adenomatous hyperplasia (AAH)/adenocarcinoma in situ (AIS) group and an MIA group. Radiomic features were extracted from the original and preprocessed images of the region of interest. ANOVA and least absolute shrinkage and selection operator feature selection algorithm were used for feature selection. Logistic regression algorithm was used to construct radiomics prediction model. Receiver operating characteristic curves were used to evaluate the classification efficiency. RESULTS 129 pGGOs were included. 2107 radiomic features were extracted from each region of interest. 18 radiomic features were eventually selected for model construction. The area under the curve of the radiomics model was 0.884 [95% confidence interval (CI), 0.818-0.949] in the training set and 0.872 (95% CI, 0.756-0.988) in the test set, with a sensitivity of 72.73%, specificity of 88.24% and accuracy of 79.47%. The decision curve indicated that the model had a high net benefit rate. CONCLUSION The prediction model for pathological subtypes of MIA and precursor lesions in pGGOs demonstrated a high diagnostic accuracy. ADVANCES IN KNOWLEDGE We focused on lesions appearing as pGGOs on CT and revealed the differences in radiomic features between MIA and precursor lesions. We constructed a radiomics prediction model and improved the diagnostic accuracy for the pathology of MIA and precursor lesions.
Collapse
Affiliation(s)
- Yan-qiu Zhu
- Department of Radiology, The Third Affiliated Hospital of Sun
Yat-sen University, No. 600 Tianhe Road, Tianhe District,
Guangzhou, China
| | - Chaohui Liu
- Department of Research Collaboration, R&D Center, Beijing
Deepwise & League of PHD Technology Co. Ltd,
Beijing, China
| | - Yan Mo
- Department of Research Collaboration, R&D Center, Beijing
Deepwise & League of PHD Technology Co. Ltd,
Beijing, China
| | - Hao Dong
- Department of Research Collaboration, R&D Center, Beijing
Deepwise & League of PHD Technology Co. Ltd,
Beijing, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing
Deepwise & League of PHD Technology Co. Ltd,
Beijing, China
| | - Ya-ni Duan
- Department of Radiology, The Third Affiliated Hospital of Sun
Yat-sen University, No. 600 Tianhe Road, Tianhe District,
Guangzhou, China
| | - Lei-lei Tang
- Department of Radiology, The Third Affiliated Hospital of Sun
Yat-sen University, No. 600 Tianhe Road, Tianhe District,
Guangzhou, China
| | - Yuan-yuan Chu
- Department of Radiology, The Third Affiliated Hospital of Sun
Yat-sen University, No. 600 Tianhe Road, Tianhe District,
Guangzhou, China
| | - Jie Qin
- Department of Radiology, The Third Affiliated Hospital of Sun
Yat-sen University, No. 600 Tianhe Road, Tianhe District,
Guangzhou, China
| |
Collapse
|
25
|
Wu YJ, Wu FZ, Yang SC, Tang EK, Liang CH. Radiomics in Early Lung Cancer Diagnosis: From Diagnosis to Clinical Decision Support and Education. Diagnostics (Basel) 2022; 12:diagnostics12051064. [PMID: 35626220 PMCID: PMC9139351 DOI: 10.3390/diagnostics12051064] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the most frequent cause of cancer-related death around the world. With the recent introduction of low-dose lung computed tomography for lung cancer screening, there has been an increasing number of smoking- and non-smoking-related lung cancer cases worldwide that are manifesting with subsolid nodules, especially in Asian populations. However, the pros and cons of lung cancer screening also follow the implementation of lung cancer screening programs. Here, we review the literature related to radiomics for early lung cancer diagnosis. There are four main radiomics applications: the classification of lung nodules as being malignant/benign; determining the degree of invasiveness of the lung adenocarcinoma; histopathologic subtyping; and prognostication in lung cancer prediction models. In conclusion, radiomics offers great potential to improve diagnosis and personalized risk stratification in early lung cancer diagnosis through patient–doctor cooperation and shared decision making.
Collapse
Affiliation(s)
- Yun-Ju Wu
- Department of Software Engineering and Management, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan;
| | - Fu-Zong Wu
- Institute of Education, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 804241, Taiwan;
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Faculty of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence:
| | - Shu-Ching Yang
- Institute of Education, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 804241, Taiwan;
| | - En-Kuei Tang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Chia-Hao Liang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| |
Collapse
|
26
|
Chen J, Bermejo I, Dekker A, Wee L. Generative models improve radiomics performance in different tasks and different datasets: An experimental study. Phys Med 2022; 98:11-17. [PMID: 35468494 DOI: 10.1016/j.ejmp.2022.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/11/2022] [Accepted: 04/17/2022] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Radiomics is an active area of research focusing on high throughput feature extraction from medical images with a wide array of applications in clinical practice, such as clinical decision support in oncology. However, noise in low dose computed tomography (CT) scans can impair the accurate extraction of radiomic features. In this article, we investigate the possibility of using deep learning generative models to improve the performance of radiomics from low dose CTs. METHODS We used two datasets of low dose CT scans - NSCLC Radiogenomics and LIDC-IDRI - as test datasets for two tasks - pre-treatment survival prediction and lung cancer diagnosis. We used encoder-decoder networks and conditional generative adversarial networks (CGANs) trained in a previous study as generative models to transform low dose CT images into full dose CT images. Radiomic features extracted from the original and improved CT scans were used to build two classifiers - a support vector machine (SVM) and a deep attention based multiple instance learning model - for survival prediction and lung cancer diagnosis respectively. Finally, we compared the performance of the models derived from the original and improved CT scans. RESULTS Denoising with the encoder-decoder network and the CGAN improved the area under the curve (AUC) of survival prediction from 0.52 to 0.57 (p-value < 0.01). On the other hand, the encoder-decoder network and the CGAN improved the AUC of lung cancer diagnosis from 0.84 to 0.88 and 0.89 respectively (p-value < 0.01). Finally, there are no statistically significant improvements in AUC using encoder-decoder networks and CGAN (p-value = 0.34) when networks trained at 75 and 100 epochs. CONCLUSION Generative models can improve the performance of low dose CT-based radiomics in different tasks. Hence, denoising using generative models seems to be a necessary pre-processing step for calculating radiomic features from low dose CTs.
Collapse
Affiliation(s)
- Junhua Chen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, Netherlands.
| | - Inigo Bermejo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, Netherlands
| | - Leonard Wee
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, Netherlands
| |
Collapse
|
27
|
Deep Multi-Objective Learning from Low-Dose CT for Automatic Lung-RADS Report Generation. J Pers Med 2022; 12:jpm12030417. [PMID: 35330417 PMCID: PMC8951579 DOI: 10.3390/jpm12030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Radiology report generation through chest radiography interpretation is a time-consuming task that involves the interpretation of images by expert radiologists. It is common for fatigue-induced diagnostic error to occur, and especially difficult in areas of the world where radiologists are not available or lack diagnostic expertise. In this research, we proposed a multi-objective deep learning model called CT2Rep (Computed Tomography to Report) for generating lung radiology reports by extracting semantic features from lung CT scans. A total of 458 CT scans were used in this research, from which 107 radiomics features and 6 slices of segmentation related nodule features were extracted for the input of our model. The CT2Rep can simultaneously predict position, margin, and texture, which are three important indicators of lung cancer, and achieves remarkable performance with an F1-score of 87.29%. We conducted a satisfaction survey for estimating the practicality of CT2Rep, and the results show that 95% of the reports received satisfactory ratings. The results demonstrate the great potential in this model for the production of robust and reliable quantitative lung diagnosis reports. Medical personnel can obtain important indicators simply by providing the lung CT scan to the system, which can bring about the widespread application of the proposed framework.
Collapse
|
28
|
D'Arnese E, Donato GWD, Sozzo ED, Sollini M, Sciuto D, Santambrogio MD. On the Automation of Radiomics-Based Identification and Characterization of NSCLC. IEEE J Biomed Health Inform 2022; 26:2670-2679. [PMID: 35255001 DOI: 10.1109/jbhi.2022.3156984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proper detection and accurate characterization of Non-Small Cell Lung Cancer (NSCLC) are an open challenge in the imaging field. Biomedical imaging is fundamental in lung cancer assessment and offers the possibility of calculating predictive biomarkers impacting patients' management. Within this context, radiomics, which consists of extracting quantitative features from digital images, shows encouraging results for clinical applications, but the sub-optimal standardization of the procedure and the lack of definitive results are still a concern in the field. For these reasons, this work proposes the design and development of LuCIFEx, a fully-automated pipeline for non-invasive in-vivo characterization of NSCLC, aiming to speed up the analysis process and enable an early diagnosis of the tumor.LuCIFEx pipeline relies on routinely acquired [18F]FDG-PET/CT images for the automatic segmentation of the cancer lesion, allowing the computation of accurate radiomic features, then employed for cancer characterization through Machine Learning algorithms. The proposed multi-stage segmentation process can identify the lesion with a mean accuracy of 94.2±5.0%. Finally, the proposed data analysis pipeline demonstrates the potential of PET/CT features for the automatic recognition of lung metastases and NSCLC histological subtypes, while highlighting the main current limitations of the radiomic approach.
Collapse
|
29
|
Deep Convolutional Neural Network Based Analysis of Liver Tissues Using Computed Tomography Images. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Liver disease is one of the most prominent causes of the increase in the death rate worldwide. These death rates can be reduced by early liver diagnosis. Computed tomography (CT) is a method for the analysis of liver images in clinical practice. To analyze a large number of liver images, radiologists face problems that sometimes lead to the wrong classifications of liver diseases, eventually resulting in severe conditions, such as liver cancer. Thus, a machine-learning-based method is needed to classify such problems based on their texture features. This paper suggests two different kinds of algorithms to address this challenging task of liver disease classification. Our first method, which is based on conventional machine learning, uses texture features for classification. This method uses conventional machine learning through automated texture analysis and supervised machine learning methods. For this purpose, 3000 clinically verified CT image samples were obtained from 71 patients. Appropriate image classes belonging to the same disease were trained to confirm the abnormalities in liver tissues by using supervised learning methods. Our proposed method correctly quantified asymmetric patterns in CT images using machine learning. We evaluated the effectiveness of the feature vector with the K Nearest Neighbor (KNN), Naive Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF) classifiers. The second algorithm proposes a semantic segmentation model for liver disease identification. Our model is based on semantic image segmentation (SIS) using a convolutional neural network (CNN). The model encodes high-density maps through a specific guided attention method. The trained model classifies CT images into five different categories of various diseases. The compelling results obtained confirm the effectiveness of the proposed model. The study concludes that abnormalities in the human liver could be discriminated and diagnosed by texture analysis techniques, which may also assist radiologists and medical physicists in predicting the severity and proliferation of abnormalities in liver diseases.
Collapse
|
30
|
Bhattacharjee S, Prakash D, Kim CH, Kim HC, Choi HK. Texture, Morphology, and Statistical Analysis to Differentiate Primary Brain Tumors on Two-Dimensional Magnetic Resonance Imaging Scans Using Artificial Intelligence Techniques. Healthc Inform Res 2022; 28:46-57. [PMID: 35172090 PMCID: PMC8850171 DOI: 10.4258/hir.2022.28.1.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives A primary brain tumor starts to grow from brain cells, and it occurs as a result of errors in the DNA of normal cells. Therefore, this study was carried out to analyze the two-dimensional (2D) texture, morphology, and statistical features of brain tumors and to perform a classification using artificial intelligence (AI) techniques. Methods AI techniques can help radiologists to diagnose primary brain tumors without using any invasive measurement techniques. In this paper, we focused on deep learning (DL) and machine learning (ML) techniques for texture, morphological, and statistical feature classification of three tumor types (namely, glioma, meningioma, and pituitary). T1-weighted magnetic resonance imaging (MRI) 2D scans were used for analysis and classification (multiclass and binary). A total of 102 features were calculated for each tumor, and the 20 most significant features were selected using the three-step feature selection method, which included removing duplicate features, Pearson correlations, and recursive feature elimination. Results From the predicted results of multiclass and binary classification, a long short-term memory binary classification (glioma vs. meningioma) showed the best performance, with an average accuracy, recall, precision, F1-score, and kappa coefficient of 97.7%, 97.2%, 97.5%, 97.0%, and 94.7%, respectively. Conclusions The early diagnosis of primary brain tumors is very important because it can be the key to effective treatment. Therefore, this research presents a method for early diagnoses by effectively classifying three types of primary brain tumors.
Collapse
Affiliation(s)
| | - Deekshitha Prakash
- Department of Computer Engineering, u-AHRC, Inje University, Gimhae, Korea
| | - Cho-Hee Kim
- Department of Digital Anti-Aging Healthcare, Inje University, Gimhae, Korea
| | - Hee-Cheol Kim
- Department of Digital Anti-Aging Healthcare, Inje University, Gimhae, Korea
| | - Heung-Kook Choi
- Department of Computer Engineering, u-AHRC, Inje University, Gimhae, Korea
- AI R&D Center, JLK Inc., Seoul, Korea
| |
Collapse
|
31
|
Astaraki M, Yang G, Zakko Y, Toma-Dasu I, Smedby Ö, Wang C. A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images. Front Oncol 2021; 11:737368. [PMID: 34976794 PMCID: PMC8718670 DOI: 10.3389/fonc.2021.737368] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Both radiomics and deep learning methods have shown great promise in predicting lesion malignancy in various image-based oncology studies. However, it is still unclear which method to choose for a specific clinical problem given the access to the same amount of training data. In this study, we try to compare the performance of a series of carefully selected conventional radiomics methods, end-to-end deep learning models, and deep-feature based radiomics pipelines for pulmonary nodule malignancy prediction on an open database that consists of 1297 manually delineated lung nodules. METHODS Conventional radiomics analysis was conducted by extracting standard handcrafted features from target nodule images. Several end-to-end deep classifier networks, including VGG, ResNet, DenseNet, and EfficientNet were employed to identify lung nodule malignancy as well. In addition to the baseline implementations, we also investigated the importance of feature selection and class balancing, as well as separating the features learned in the nodule target region and the background/context region. By pooling the radiomics and deep features together in a hybrid feature set, we investigated the compatibility of these two sets with respect to malignancy prediction. RESULTS The best baseline conventional radiomics model, deep learning model, and deep-feature based radiomics model achieved AUROC values (mean ± standard deviations) of 0.792 ± 0.025, 0.801 ± 0.018, and 0.817 ± 0.032, respectively through 5-fold cross-validation analyses. However, after trying out several optimization techniques, such as feature selection and data balancing, as well as adding context features, the corresponding best radiomics, end-to-end deep learning, and deep-feature based models achieved AUROC values of 0.921 ± 0.010, 0.824 ± 0.021, and 0.936 ± 0.011, respectively. We achieved the best prediction accuracy from the hybrid feature set (AUROC: 0.938 ± 0.010). CONCLUSION The end-to-end deep-learning model outperforms conventional radiomics out of the box without much fine-tuning. On the other hand, fine-tuning the models lead to significant improvements in the prediction performance where the conventional and deep-feature based radiomics models achieved comparable results. The hybrid radiomics method seems to be the most promising model for lung nodule malignancy prediction in this comparative study.
Collapse
Affiliation(s)
- Mehdi Astaraki
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Mehdi Astaraki,
| | - Guang Yang
- Cardiovascular Research Centre, Royal Brompton Hospital, London, United Kingdom,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Yousuf Zakko
- Imaging and Function, Radiology Department, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Iuliana Toma-Dasu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden,Department of Physics, Stockholm University, Stockholm, Sweden
| | - Örjan Smedby
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Chunliang Wang
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden
| |
Collapse
|
32
|
Wan Q, Zhou J, Xia X, Hu J, Wang P, Peng Y, Zhang T, Sun J, Song Y, Yang G, Li X. Diagnostic Performance of 2D and 3D T2WI-Based Radiomics Features With Machine Learning Algorithms to Distinguish Solid Solitary Pulmonary Lesion. Front Oncol 2021; 11:683587. [PMID: 34868905 PMCID: PMC8637439 DOI: 10.3389/fonc.2021.683587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate the performance of 2D and 3D radiomics features with different machine learning approaches to classify SPLs based on magnetic resonance(MR) T2 weighted imaging (T2WI). Material and Methods A total of 132 patients with pathologically confirmed SPLs were examined and randomly divided into training (n = 92) and test datasets (n = 40). A total of 1692 3D and 1231 2D radiomics features per patient were extracted. Both radiomics features and clinical data were evaluated. A total of 1260 classification models, comprising 3 normalization methods, 2 dimension reduction algorithms, 3 feature selection methods, and 10 classifiers with 7 different feature numbers (confined to 3–9), were compared. The ten-fold cross-validation on the training dataset was applied to choose the candidate final model. The area under the receiver operating characteristic curve (AUC), precision-recall plot, and Matthews Correlation Coefficient were used to evaluate the performance of machine learning approaches. Results The 3D features were significantly superior to 2D features, showing much more machine learning combinations with AUC greater than 0.7 in both validation and test groups (129 vs. 11). The feature selection method Analysis of Variance(ANOVA), Recursive Feature Elimination(RFE) and the classifier Logistic Regression(LR), Linear Discriminant Analysis(LDA), Support Vector Machine(SVM), Gaussian Process(GP) had relatively better performance. The best performance of 3D radiomics features in the test dataset (AUC = 0.824, AUC-PR = 0.927, MCC = 0.514) was higher than that of 2D features (AUC = 0.740, AUC-PR = 0.846, MCC = 0.404). The joint 3D and 2D features (AUC=0.813, AUC-PR = 0.926, MCC = 0.563) showed similar results as 3D features. Incorporating clinical features with 3D and 2D radiomics features slightly improved the AUC to 0.836 (AUC-PR = 0.918, MCC = 0.620) and 0.780 (AUC-PR = 0.900, MCC = 0.574), respectively. Conclusions After algorithm optimization, 2D feature-based radiomics models yield favorable results in differentiating malignant and benign SPLs, but 3D features are still preferred because of the availability of more machine learning algorithmic combinations with better performance. Feature selection methods ANOVA and RFE, and classifier LR, LDA, SVM and GP are more likely to demonstrate better diagnostic performance for 3D features in the current study.
Collapse
Affiliation(s)
- Qi Wan
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaxuan Zhou
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoying Xia
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianfeng Hu
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Peng
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | | - Yang Song
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Xinchun Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Tang Y, Yang CM, Su S, Wang WJ, Fan LP, Shu J. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. BMC Cancer 2021; 21:1268. [PMID: 34819043 PMCID: PMC8611922 DOI: 10.1186/s12885-021-08947-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Radiomics may provide more objective and accurate predictions for extrahepatic cholangiocarcinoma (ECC). In this study, we developed radiomics models based on magnetic resonance imaging (MRI) and machine learning to preoperatively predict differentiation degree (DD) and lymph node metastasis (LNM) of ECC. Methods A group of 100 patients diagnosed with ECC was included. The ECC status of all patients was confirmed by pathology. A total of 1200 radiomics features were extracted from axial T1 weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), and apparent diffusion coefficient (ADC) images. A systematical framework considering combinations of five feature selection methods and ten machine learning classification algorithms (classifiers) was developed and investigated. The predictive capabilities for DD and LNM were evaluated in terms of area under precision recall curve (AUPRC), area under the receiver operating characteristic (ROC) curve (AUC), negative predictive value (NPV), accuracy (ACC), sensitivity, and specificity. The prediction performance among models was statistically compared using DeLong test. Results For DD prediction, the feature selection method joint mutual information (JMI) and Bagging Classifier achieved the best performance (AUPRC = 0.65, AUC = 0.90 (95% CI 0.75–1.00), ACC = 0.85 (95% CI 0.69–1.00), sensitivity = 0.75 (95% CI 0.30–0.95), and specificity = 0.88 (95% CI 0.64–0.97)), and the radiomics signature was composed of 5 selected features. For LNM prediction, the feature selection method minimum redundancy maximum relevance and classifier eXtreme Gradient Boosting achieved the best performance (AUPRC = 0.95, AUC = 0.98 (95% CI 0.94–1.00), ACC = 0.90 (95% CI 0.77–1.00), sensitivity = 0.75 (95% CI 0.30–0.95), and specificity = 0.94 (95% CI 0.72–0.99)), and the radiomics signature was composed of 30 selected features. However, these two chosen models were not significantly different to other models of higher AUC values in DeLong test, though they were significantly different to most of all models. Conclusion MRI radiomics analysis based on machine learning demonstrated good predictive accuracies for DD and LNM of ECC. This shed new light on the noninvasive diagnosis of ECC.
Collapse
Affiliation(s)
- Yong Tang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
| | - Chun Mei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, China
| | - Wei Jia Wang
- School of Information and Software Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
| | - Li Ping Fan
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, China.
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
34
|
Jing R, Wang J, Li J, Wang X, Li B, Xue F, Shao G, Xue H. A wavelet features derived radiomics nomogram for prediction of malignant and benign early-stage lung nodules. Sci Rep 2021; 11:22330. [PMID: 34785692 PMCID: PMC8595377 DOI: 10.1038/s41598-021-01470-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
This study was to develop a radiomics nomogram mainly using wavelet features for identifying malignant and benign early-stage lung nodules for high-risk screening. A total of 116 patients with early-stage solitary pulmonary nodules (SPNs) (≤ 3 cm) were divided into a training set (N = 70) and a validation set (N = 46). Radiomics features were extracted from plain LDCT images of each patient. A radiomics signature was then constructed with the LASSO with the training set. Combined with independent risk factors, a radiomics nomogram was built with a multivariate logistic regression model. This radiomics signature, consisting of one original and nine wavelet features, achieved favorable predictive efficacy than Mayo Clinic Model. The radiomics nomogram with radiomics signature and age also showed good calibration and discrimination in the training set (AUC 0.9406; 95% CI 0.8831-0.9982) and the validation set (AUC 0.8454; 95% CI 0.7196-0.9712). The decision curve indicated the clinical usefulness of our nomogram. The presented radiomics nomogram shows favorable predictive accuracy for identifying malignant and benign lung nodules in early-stage patients and is much better than the Mayo Clinic Model.
Collapse
Affiliation(s)
- Rui Jing
- Department of Radiology, Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Jingtao Wang
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jiangbing Li
- Department of Cardiology, Shandong Provincial Hospital, Jinan, Shandong, People's Republic of China
| | - Xiaojuan Wang
- Department of Radiology, Second Hospital of Shandong University Zhaoyuan Branch, Zhaoyuan, Shandong, People's Republic of China
| | - Baijie Li
- Department of Radiology, Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, People's Republic of China
| | - Guangrui Shao
- Department of Radiology, Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China.
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
35
|
Yan Q, Yi Y, Shen J, Shan F, Zhang Z, Yang G, Shi Y. Preliminary study of 3 T-MRI native T1-mapping radiomics in differential diagnosis of non-calcified solid pulmonary nodules/masses. Cancer Cell Int 2021; 21:539. [PMID: 34663307 PMCID: PMC8522214 DOI: 10.1186/s12935-021-02195-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022] Open
Abstract
Background Cumulative CT radiation damage was positively correlated with increased tumor risks. Although it has recently been known that non-radiation MRI is alternative for pulmonary imaging. There is little known about the value of MRI T1-mapping in the diagnosis of pulmonary nodules. This article aimed to investigate the value of native T1-mapping-based radiomics features in differential diagnosis of pulmonary lesions. Methods 73 patients underwent 3 T-MRI examination in this prospective study. The 99 pulmonary lesions on native T1-mapping images were segmented twice by one radiologist at indicated time points utilizing the in-house semi-automated software, followed by extraction of radiomics features. The inter-class correlation coefficient (ICC) was used for analyzing intra-observer’s agreement. Dimensionality reduction and feature selection were performed via univariate analysis, and least absolute shrinkage and selection operator (LASSO) analysis. Then, the binary logical regression (LR), support vector machine (SVM) and decision tree classifiers with the input of optimal features were selected for differentiating malignant from benign lesions. The receiver operative characteristics (ROC) curve, area under the curve (AUC), sensitivity, specificity and accuracy were calculated. Z-test was used to compare differences among AUCs. Results 107 features were obtained, of them, 19.5% (n = 21) had relatively good reliability (ICC ≥ 0.6). The remained 5 features (3 GLCM, 1 GLSZM and 1 shape features) by dimensionality reduction were useful. The AUC of LR was 0.82(95%CI: 0.67–0.98), with sensitivity, specificity and accuracy of 70%, 85% and 80%. The AUC of SVM was 0.82(95%CI: 0.67–0.98), with sensitivity, specificity and accuracy of 70, 85 and 80%. The AUC of decision tree was 0.69(95%CI: 0.49–0.87), with sensitivity, specificity and accuracy of 50, 85 and 73.3%. Conclusions The LR and SVM models using native T1-mapping-based radiomics features can differentiate pulmonary malignant from benign lesions, especially for uncertain nodules requiring long-term follow-ups.
Collapse
Affiliation(s)
- Qinqin Yan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yinqiao Yi
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Jie Shen
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zhiyong Zhang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China.
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
36
|
Effect of CT image acquisition parameters on diagnostic performance of radiomics in predicting malignancy of pulmonary nodules of different sizes. Eur Radiol 2021; 32:1517-1527. [PMID: 34549324 DOI: 10.1007/s00330-021-08274-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate the effect of CT image acquisition parameters on the performance of radiomics in classifying benign and malignant pulmonary nodules (PNs) with respect to nodule size. METHODS We retrospectively collected CT images of 696 patients with PNs from March 2015 to March 2018. PNs were grouped by nodule diameter: T1a (diameter ≤ 1.0 cm), T1b (1.0 cm < diameter ≤ 2.0 cm), and T1c (2.0 cm < diameter ≤ 3.0 cm). CT images were divided into four settings according to slice-thickness-convolution-kernels: setting 1 (slice thickness/reconstruction type: 1.25 mm sharp), setting 2 (5 mm sharp), setting 3 (5 mm smooth), and random setting. We created twelve groups from two interacting conditions. Each PN was segmented and had 1160 radiomics features extracted. Non-redundant features with high predictive ability in training were selected to build a distinct model under each of the twelve subsets. RESULTS The performance (AUCs) on predicting PN malignancy were as follows: T1a group: 0.84, 0.64, 0.68, and 0.68; T1b group: 0.68, 0.74, 0.76, and 0.70; T1c group: 0.66, 0.64, 0.63, and 0.70, for the setting 1, setting 2, setting 3, and random setting, respectively. In the T1a group, the AUC of radiomics model in setting 1 was statistically significantly higher than all others; In the T1b group, AUCs of radiomics models in setting 3 were statistically significantly higher than some; and in the T1c group, there were no statistically significant differences among models. CONCLUSIONS For PNs less than 1 cm, CT image acquisition parameters have a significant influence on diagnostic performance of radiomics in predicting malignancy, and a model created using images reconstructed with thin section and a sharp kernel algorithm achieved the best performance. For PNs larger than 1 cm, CT reconstruction parameters did not affect diagnostic performance substantially. KEY POINTS • CT image acquisition parameters have a significant influence on the diagnostic performance of radiomics in pulmonary nodules less than 1 cm. • In pulmonary nodules less than 1 cm, a radiomics model created by using images reconstructed with thin section and a sharp kernel algorithm achieved the best diagnostic performance. • For PNs larger than 1 cm, CT image acquisition parameters do not affect diagnostic performance substantially.
Collapse
|
37
|
Palumbo B, Bianconi F, Palumbo I. Solitary pulmonary nodule: Is positron emission tomography/computed tomography radiomics a valid diagnostic approach? Lung India 2021; 38:405-407. [PMID: 34472516 PMCID: PMC8509171 DOI: 10.4103/lungindia.lungindia_266_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Barbara Palumbo
- Department of Medicine and Surgery, Section of Nuclear Medicine and Health Physics, University of Perugia, Perugia, Italy
| | | | - Isabella Palumbo
- Department of Medicine and Surgery, Section of Radiotherapy, University of Perugia, Perugia, Italy
| |
Collapse
|
38
|
Shakir H, Khan T, Rasheed H, Deng Y. Radiomics Based Bayesian Inversion Method for Prediction of Cancer and Pathological Stage. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2021; 9:4300208. [PMID: 34522470 PMCID: PMC8428789 DOI: 10.1109/jtehm.2021.3108390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To develop a Bayesian inversion framework on longitudinal chest CT scans which can perform efficient multi-class classification of lung cancer. METHODS While the unavailability of large number of training medical images impedes the performance of lung cancer classifiers, the purpose built deep networks have not performed well in multi-class classification. The presented framework employs particle filtering approach to address the non-linear behaviour of radiomic features towards benign and cancerous (stages I, II, III, IV) nodules and performs efficient multi-class classification (benign, early stage cancer, advanced stage cancer) in terms of posterior probability function. A joint likelihood function incorporating diagnostic radiomic features is formulated which can compute likelihood of cancer and its pathological stage. The proposed research study also investigates and validates diagnostic features to discriminate accurately between early stage (I, II) and advanced stage (III, IV) cancer. RESULTS The proposed stochastic framework achieved 86% accuracy on the benchmark database which is better than the other prominent cancer detection methods. CONCLUSION The presented classification framework can aid radiologists in accurate interpretation of lung CT images at an early stage and can lead to timely medical treatment of cancer patients.
Collapse
Affiliation(s)
- Hina Shakir
- Department of Electrical EngineeringBahria UniversityKarachi75620Pakistan
| | - Tariq Khan
- Department of Electrical and Power EngineeringNational University of Science and TechnologyIslamabad75350Pakistan
| | - Haroon Rasheed
- Department of Electrical EngineeringBahria UniversityKarachi75620Pakistan
| | - Yiming Deng
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
39
|
Impact of Lesion Delineation and Intensity Quantisation on the Stability of Texture Features from Lung Nodules on CT: A Reproducible Study. Diagnostics (Basel) 2021; 11:diagnostics11071224. [PMID: 34359305 PMCID: PMC8304812 DOI: 10.3390/diagnostics11071224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Computer-assisted analysis of three-dimensional imaging data (radiomics) has received a lot of research attention as a possible means to improve the management of patients with lung cancer. Building robust predictive models for clinical decision making requires the imaging features to be stable enough to changes in the acquisition and extraction settings. Experimenting on 517 lung lesions from a cohort of 207 patients, we assessed the stability of 88 texture features from the following classes: first-order (13 features), Grey-level Co-Occurrence Matrix (24), Grey-level Difference Matrix (14), Grey-level Run-length Matrix (16), Grey-level Size Zone Matrix (16) and Neighbouring Grey-tone Difference Matrix (five). The analysis was based on a public dataset of lung nodules and open-access routines for feature extraction, which makes the study fully reproducible. Our results identified 30 features that had good or excellent stability relative to lesion delineation, 28 to intensity quantisation and 18 to both. We conclude that selecting the right set of imaging features is critical for building clinical predictive models, particularly when changes in lesion delineation and/or intensity quantisation are involved.
Collapse
|
40
|
Xu Z, Tao B, Liu C, Han D, Zhang J, Liu J, Li S, Li W, Wang J, Liang J, Cao F. Three-dimensional quantitative assessment of myocardial infarction via multimodality fusion imaging: methodology, validation, and preliminary clinical application. Quant Imaging Med Surg 2021; 11:3175-3189. [PMID: 34249644 PMCID: PMC8250027 DOI: 10.21037/qims-20-702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/24/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND The precise assessment of myocardial infarction (MI) is crucial both for therapeutic interventions in old MI and the development of new and effective techniques to repair injured myocardium. A novel method was developed to assess left ventricular (LV) quantitatively infarction through three-dimensional (3D) multimodality fusion based on computed tomography angiography (CTA) and technetium-99m methoxyisobutylisonitrile (99mTc-MIBI) single-photon emission computed tomography (SPECT) images. This study sought to develop a 3D quantitative method for MI for pre-clinical study and clinical application. METHODS Three months after the MI models were established in 20 minipigs, CTA and SPECT images were acquired separately, which were then aligned automatically with the constraints of the shape and the whole heart and LV myocardium position. Infarct ratios were quantified based on the 3D fusion images. The quantitative assessment was then experimentally validated via an ex vivo histology analysis using triphenyl-tetrazolium-chloride staining and subsequently applied to post-MI patients (n=8). RESULTS The location of an infarct identified by the SPECT was consistent with that identified by an ex vivo heart in a 3D space. Infarct size determined by CTA-SPECT was correlated with infarct size assessed by triphenyl-tetrazolium-chloride pathology {27.6% [interquartile range (IQR) 17.1-34.7%] vs. 24.1% (IQR 14.7-32.5%), r2=0.99, P<0.01}. In clinical cases, the CTA-SPECT 3D fusion quantitative results were significantly correlated with the quantitative perfusion SPECT results (r=0.976, P<0.01). CONCLUSIONS The proposed 3D fusion quantitative assessment method provides reliable and intuitive evaluations of infarction. This novel quantification technique enables whole heart quantification for the pre-operation evaluation and post-diagnosis management of old MI patients. It could also be applied to the design of 3D-printed cardiac patches.
Collapse
Affiliation(s)
- Zhenzhen Xu
- School of Life Science and Technology, Xidian University, Xi’an, China
| | - Bo Tao
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Chuanbin Liu
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Dong Han
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jibin Zhang
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Junsong Liu
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Sulei Li
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weijie Li
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jimin Liang
- School of Electronic Engineering, Xidian University, Xi’an, China
| | - Feng Cao
- Department of Geriatric Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
41
|
Bianconi F, Fravolini ML, Pizzoli S, Palumbo I, Minestrini M, Rondini M, Nuvoli S, Spanu A, Palumbo B. Comparative evaluation of conventional and deep learning methods for semi-automated segmentation of pulmonary nodules on CT. Quant Imaging Med Surg 2021; 11:3286-3305. [PMID: 34249654 DOI: 10.21037/qims-20-1356] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Background Accurate segmentation of pulmonary nodules on computed tomography (CT) scans plays a crucial role in the evaluation and management of patients with suspicion of lung cancer (LC). When performed manually, not only the process requires highly skilled operators, but is also tiresome and time-consuming. To assist the physician in this task several automated and semi-automated methods have been proposed in the literature. In recent years, in particular, the appearance of deep learning has brought about major advances in the field. Methods Twenty-four (12 conventional and 12 based on deep learning) semi-automated-'one-click'-methods for segmenting pulmonary nodules on CT were evaluated in this study. The experiments were carried out on two datasets: a proprietary one (383 images from a cohort of 111 patients) and a public one (259 images from a cohort of 100). All the patients had a positive transcript for suspect pulmonary nodules. Results The methods based on deep learning clearly outperformed the conventional ones. The best performance [Sørensen-Dice coefficient (DSC)] in the two datasets was, respectively, 0.853 and 0.763 for the deep learning methods, and 0.761 and 0.704 for the traditional ones. Conclusions Deep learning is a viable approach for semi-automated segmentation of pulmonary nodules on CT scans.
Collapse
Affiliation(s)
- Francesco Bianconi
- Department of Engineering, Università degli Studi di Perugia, Perugia, Italy
| | | | - Sofia Pizzoli
- Department of Engineering, Università degli Studi di Perugia, Perugia, Italy
| | - Isabella Palumbo
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy.,Radiotherapy Unit, Perugia General Hospital, Perugia, Italy
| | - Matteo Minestrini
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy.,Nuclear Medicine Unit, Perugia General Hospital, Perugia, Italy
| | - Maria Rondini
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, Università degli Studi di Sassari, Sassari, Italy
| | - Susanna Nuvoli
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, Università degli Studi di Sassari, Sassari, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, Università degli Studi di Sassari, Sassari, Italy
| | - Barbara Palumbo
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy.,Nuclear Medicine Unit, Perugia General Hospital, Perugia, Italy
| |
Collapse
|
42
|
Gürsoy Çoruh A, Yenigün B, Uzun Ç, Kahya Y, Büyükceran EU, Elhan A, Orhan K, Kayı Cangır A. A comparison of the fusion model of deep learning neural networks with human observation for lung nodule detection and classification. Br J Radiol 2021; 94:20210222. [PMID: 34111976 PMCID: PMC8248221 DOI: 10.1259/bjr.20210222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To compare the diagnostic performance of a newly developed artificial intelligence (AI) algorithm derived from the fusion of convolution neural networks (CNN) versus human observers in the estimation of malignancy risk in pulmonary nodules. METHODS The study population consists of 158 nodules from 158 patients. All nodules (81 benign and 77 malignant) were determined to be malignant or benign by a radiologist based on pathologic assessment and/or follow-up imaging. Two radiologists and an AI platform analyzed the nodules based on the Lung-RADS classification. The two observers also noted the size, location, and morphologic features of the nodules. An intraclass correlation coefficient was calculated for both observers and the AI; ROC curve analysis was performed to determine diagnostic performances. RESULTS Nodule size, presence of spiculation, and presence of fat were significantly different between the malignant and benign nodules (p < 0.001, for all three). Eighteen (11.3%) nodules were not detected and analyzed by the AI. Observer 1, observer 2, and the AI had an AUC of 0.917 ± 0.023, 0.870 ± 0.033, and 0.790 ± 0.037 in the ROC analysis of malignity probability, respectively. The observers were in almost perfect agreement for localization, nodule size, and lung-RADS classification [κ (95% CI)=0.984 (0.961-1.000), 0.978 (0.970-0.984), and 0.924 (0.878-0.970), respectively]. CONCLUSION The performance of the fusion AI algorithm in estimating the risk of malignancy was slightly lower than the performance of the observers. Fusion AI algorithms might be applied in an assisting role, especially for inexperienced radiologists. ADVANCES IN KNOWLEDGE In this study, we proposed a fusion model using four state-of-art object detectors for lung nodule detection and discrimination. The use of fusion of deep learning neural networks might be used in a supportive role for radiologists when interpreting lung nodule discrimination.
Collapse
Affiliation(s)
| | - Bülent Yenigün
- Department of Thoracic Surgery, School of Medicine, Ankara University, Ankara, Turkey
| | - Çağlar Uzun
- Department of Radiology, School of Medicine, Ankara University, Ankara, Turkey
| | - Yusuf Kahya
- Department of Thoracic Surgery, School of Medicine, Ankara University, Ankara, Turkey
| | | | - Atilla Elhan
- Department of Biostatistics, School of Medicine, Ankara University, Ankara, Turkey
| | - Kaan Orhan
- Dentomaxillofacial Radiology, Ankara University, Faculty of Dentistry and Ankara University Medical Design Application and Research Center, Ankara, Turkey
| | - Ayten Kayı Cangır
- Department of Thoracic Surgery, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
43
|
Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians. J Pers Med 2021; 11:jpm11070602. [PMID: 34202096 PMCID: PMC8306026 DOI: 10.3390/jpm11070602] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Artificial intelligence (AI) has increasingly been serving the field of radiology over the last 50 years. As modern medicine is evolving towards precision medicine, offering personalized patient care and treatment, the requirement for robust imaging biomarkers has gradually increased. Radiomics, a specific method generating high-throughput extraction of a tremendous amount of quantitative imaging data using data-characterization algorithms, has shown great potential in individuating imaging biomarkers. Radiomic analysis can be implemented through the following two methods: hand-crafted radiomic features extraction or deep learning algorithm. Its application in lung diseases can be used in clinical decision support systems, regarding its ability to develop descriptive and predictive models in many respiratory pathologies. The aim of this article is to review the recent literature on the topic, and briefly summarize the interest of radiomics in chest Computed Tomography (CT) and its pertinence in the field of pulmonary diseases, from a clinician's perspective.
Collapse
|
44
|
A Novel Nodule Edge Sharpness Radiomic Biomarker Improves Performance of Lung-RADS for Distinguishing Adenocarcinomas from Granulomas on Non-Contrast CT Scans. Cancers (Basel) 2021; 13:cancers13112781. [PMID: 34205005 PMCID: PMC8199879 DOI: 10.3390/cancers13112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The great majority of pulmonary nodules on screening CT scans are benign (95%). Due to inaccurate diagnoses of granulomas from adenocarcinomas on CT scans, many patients with benign nodules are subjected to unnecessary surgical procedures. The aim of this retrospective study is to evaluate the discriminability of a new radiomic feature, nodule edge/interface sharpness (NIS), for distinguishing lung adenocarcinomas from benign granulomas on non-contrast CT scans. Moreover, we aim to evaluate whether NIS can improve the performance of Lung-RADS, by reclassifying benign nodules that were initially assessed as suspicious. In a cohort of 352 patients with diagnostic non-contrast CT scans, NIS radiomics was able to classify nodules with an area under the receiver operating characteristic curve (ROC AUC) of 0.77, and when combined with intra-tumoral textural and shape features, classification performance increased to AUC of 0.84. Additionally, the NIS classifier correctly reclassified 46% of those lesions that were actually benign but deemed suspicious by Lung-RADS. Combining NIS with Lung-RADS has the potential to alter patient management by significantly decreasing unnecessary biopsies/follow up imaging. Abstract The aim of this study is to evaluate whether NIS radiomics can distinguish lung adenocarcinomas from granulomas on non-contrast CT scans, and also to improve the performance of Lung-RADS by reclassifying benign nodules that were initially assessed as suspicious. The screening or standard diagnostic non-contrast CT scans of 362 patients was divided into training (St, N = 145), validation (Sv, N = 145), and independent validation (Siv, N = 62) sets from different institutions. Nodules were identified and manually segmented on CT images by a radiologist. A series of 264 features relating to the edge sharpness transition from the inside to the outside of the nodule were extracted. The top 10 features were used to train a linear discriminant analysis (LDA) machine learning classifier on St. In conjunction with the LDA classifier, NIS radiomics classified nodules with an AUC of 0.82 ± 0.04, 0.77, and 0.71 respectively on St, Sv, and Siv. We evaluated the ability of the NIS classifier to determine the proportion of the patients in Sv that were identified initially as suspicious by Lung-RADS but were reclassified as benign by applying the NIS scores. The NIS classifier was able to correctly reclassify 46% of those lesions that were actually benign but deemed suspicious by Lung-RADS alone on Sv.
Collapse
|
45
|
Shah RP, Selby HM, Mukherjee P, Verma S, Xie P, Xu Q, Das M, Malik S, Gevaert O, Napel S. Machine Learning Radiomics Model for Early Identification of Small-Cell Lung Cancer on Computed Tomography Scans. JCO Clin Cancer Inform 2021; 5:746-757. [PMID: 34264747 PMCID: PMC8812622 DOI: 10.1200/cci.21.00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/26/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Small-cell lung cancer (SCLC) is the deadliest form of lung cancer, partly because of its short doubling time. Delays in imaging identification and diagnosis of nodules create a risk for stage migration. The purpose of our study was to determine if a machine learning radiomics model can detect SCLC on computed tomography (CT) among all nodules at least 1 cm in size. MATERIALS AND METHODS Computed tomography scans from a single institution were selected and resampled to 1 × 1 × 1 mm. Studies were divided into SCLC and other scans comprising benign, adenocarcinoma, and squamous cell carcinoma that were segregated into group A (noncontrast scans) and group B (contrast-enhanced scans). Four machine learning classification models, support vector classifier, random forest (RF), XGBoost, and logistic regression, were used to generate radiomic models using 59 quantitative first-order and texture Imaging Biomarker Standardization Initiative compliant PyRadiomics features, which were found to be robust between two segmenters with minimum Redundancy Maximum Relevance feature selection within each leave-one-out-cross-validation to avoid overfitting. The performance was evaluated using a receiver operating characteristic curve. A final model was created using the RF classifier and aggregate minimum Redundancy Maximum Relevance to determine feature importance. RESULTS A total of 103 studies were included in the analysis. The area under the receiver operating characteristic curve for RF, support vector classifier, XGBoost, and logistic regression was 0.81, 0.77, 0.84, and 0.84 in group A, and 0.88, 0.87, 0.85, and 0.81 in group B, respectively. Nine radiomic features in group A and 14 radiomic features in group B were predictive of SCLC. Six radiomic features overlapped between groups A and B. CONCLUSION A machine learning radiomics model may help differentiate SCLC from other lung lesions.
Collapse
Affiliation(s)
- Rajesh P. Shah
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
- Department of Radiology, Stanford University, Stanford, CA
| | - Heather M. Selby
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
- Department of Medicine, Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA
| | - Pritam Mukherjee
- Department of Medicine, Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA
| | - Shefali Verma
- Palo Alto Veterans Institute for Research, Palo Alto, CA
| | - Peiyi Xie
- Department of Medicine, Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA
- Present address: Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qinmei Xu
- Department of Medicine, Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA
- Present address: Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Millie Das
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
- Department of Medicine—Oncology, Stanford University, Stanford, CA
| | - Sachin Malik
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
- Department of Radiology, Stanford University, Stanford, CA
| | - Olivier Gevaert
- Department of Medicine, Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA
| | - Sandy Napel
- Department of Radiology, Stanford University, Stanford, CA
| |
Collapse
|
46
|
El Ayachy R, Giraud N, Giraud P, Durdux C, Giraud P, Burgun A, Bibault JE. The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up. Front Oncol 2021; 11:603595. [PMID: 34026602 PMCID: PMC8131863 DOI: 10.3389/fonc.2021.603595] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Lung cancer represents the first cause of cancer-related death in the world. Radiomics studies arise rapidly in this late decade. The aim of this review is to identify important recent publications to be synthesized into a comprehensive review of the current status of radiomics in lung cancer at each step of the patients' care. METHODS A literature review was conducted using PubMed/Medline for search of relevant peer-reviewed publications from January 2012 to June 2020. RESULTS We identified several studies at each point of patient's care: detection and classification of lung nodules (n=16), determination of histology and genomic (n=10) and finally treatment outcomes predictions (=23). We reported the methodology of those studies and their results and discuss the limitations and the progress to be made for clinical routine applications. CONCLUSION Promising perspectives arise from machine learning applications and radiomics based models in lung cancers, yet further data are necessary for their implementation in daily care. Multicentric collaboration and attention to quality and reproductivity of radiomics studies should be further consider.
Collapse
Affiliation(s)
- Radouane El Ayachy
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Nicolas Giraud
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
- Radiation Oncology Department, Haut-Lévêque Hospital, CHU de Bordeaux, Pessac, France
| | - Paul Giraud
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Philippe Giraud
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Anita Burgun
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| | - Jean Emmanuel Bibault
- Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
- INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Cordeliers Research Centre, Paris Descartes University, Paris, France
| |
Collapse
|
47
|
Maldonado F, Varghese C, Rajagopalan S, Duan F, Balar AB, Lakhani DA, Antic SL, Massion PP, Johnson TF, Karwoski RA, Robb RA, Bartholmai BJ, Peikert T. Validation of the BRODERS classifier (Benign versus aggRessive nODule Evaluation using Radiomic Stratification), a novel HRCT-based radiomic classifier for indeterminate pulmonary nodules. Eur Respir J 2021; 57:13993003.02485-2020. [PMID: 33303552 DOI: 10.1183/13993003.02485-2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Implementation of low-dose chest computed tomography (CT) lung cancer screening and the ever-increasing use of cross-sectional imaging are resulting in the identification of many screen- and incidentally detected indeterminate pulmonary nodules. While the management of nodules with low or high pre-test probability of malignancy is relatively straightforward, those with intermediate pre-test probability commonly require advanced imaging or biopsy. Noninvasive risk stratification tools are highly desirable. METHODS We previously developed the BRODERS classifier (Benign versus aggRessive nODule Evaluation using Radiomic Stratification), a conventional predictive radiomic model based on eight imaging features capturing nodule location, shape, size, texture and surface characteristics. Herein we report its external validation using a dataset of incidentally identified lung nodules (Vanderbilt University Lung Nodule Registry) in comparison to the Brock model. Area under the curve (AUC), as well as sensitivity, specificity, negative and positive predictive values were calculated. RESULTS For the entire Vanderbilt validation set (n=170, 54% malignant), the AUC was 0.87 (95% CI 0.81-0.92) for the Brock model and 0.90 (95% CI 0.85-0.94) for the BRODERS model. Using the optimal cut-off determined by Youden's index, the sensitivity was 92.3%, the specificity was 62.0%, the positive (PPV) and negative predictive values (NPV) were 73.7% and 87.5%, respectively. For nodules with intermediate pre-test probability of malignancy, Brock score of 5-65% (n=97), the sensitivity and specificity were 94% and 46%, respectively, the PPV was 78.4% and the NPV was 79.2%. CONCLUSIONS The BRODERS radiomic predictive model performs well on an independent dataset and may facilitate the management of indeterminate pulmonary nodules.
Collapse
Affiliation(s)
- Fabien Maldonado
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,These authors contributed equally to this work
| | - Cyril Varghese
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA.,These authors contributed equally to this work
| | - Srinivasan Rajagopalan
- Dept of Physiology and Biomechanical Engineering, Mayo Clinic, Rochester, MN, USA.,These authors contributed equally to this work
| | - Fenghai Duan
- Pulmonary Section, Medical Service, Tennessee Valley Healthcare Systems, Nashville Campus, Nashville, TN, USA
| | - Aneri B Balar
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dhairya A Lakhani
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sanja L Antic
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pierre P Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Dept of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, Providence, RI, USA
| | | | - Ronald A Karwoski
- Dept of Physiology and Biomechanical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Richard A Robb
- Dept of Physiology and Biomechanical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
48
|
Radiomic Model Predicts Lymph Node Response to Induction Chemotherapy in Locally Advanced Head and Neck Cancer. Diagnostics (Basel) 2021; 11:diagnostics11040588. [PMID: 33806029 PMCID: PMC8064478 DOI: 10.3390/diagnostics11040588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
This study developed a pretreatment CT-based radiomic model of lymph node response to induction chemotherapy in locally advanced head and neck squamous cell carcinoma (HNSCC) patients. This was a single-center retrospective study of patients with locally advanced HPV+ HNSCC. Forty-one enlarged lymph nodes were found from 27 patients on pretreatment CT and were split into 3:1 training and testing cohorts. Ninety-three radiomic features were extracted. A radiomic model and a combined radiomic-clinical model predicting lymph node response to induction chemotherapy were developed using multivariable logistic regression. Median age was 57 years old, and 93% of patients were male. Post-treatment evaluation was 32 days after treatment, with a median reduction in lymph node volume of 66%. A three-feature radiomic model (minimum, skewness, and low gray level run emphasis) and a combined radiomic-clinical model were developed. The combined model performed the best, with AUC = 0.85 on the training cohort and AUC = 0.75 on the testing cohort. A pretreatment CT-based lymph node radiomic signature combined with clinical parameters was able to predict nodal response to induction chemotherapy for patients with locally advanced HNSCC.
Collapse
|
49
|
Xu QQ, Shan WL, Zhu Y, Huang CC, Bao SY, Guo LL. Prediction efficacy of feature classification of solitary pulmonary nodules based on CT radiomics. Eur J Radiol 2021; 139:109667. [PMID: 33867180 DOI: 10.1016/j.ejrad.2021.109667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the relationship between CT radiomic features, pathological classification of pulmonary nodules, and evaluate the prediction effect of different stratified progressive radiomic models on the pathological classification of pulmonary nodules. METHODS Altogether, 189 patients pathologically confirmed with pulmonary nodules from July 2017 to August 2019 who had complete data were enrolled, including 71 patients with benign nodules, 51 with malignant non-invasive nodules, and 67 with invasive nodules. Three CT radiomic models were established respectively. Model 1 classified benign and malignant nodules (including malignant non-invasive and invasive nodules). Model 2 classified malignant non-invasive and invasive nodules. Model 3 classified benign, malignant non-invasive, and invasive nodules. High-throughput feature collection was carried out for all delineated regions of interest (ROIs), and the best models were established by screening features and classifiers using intelligent methods. ROC curves and areas under the curve (AUCs) were used to evaluate the prediction efficacy of the models by calculating the sensitivity, specificity, accuracies, positive predictive values, and negative predictive values. RESULTS Through Models 1, 2, and 3, we screened out 20, 2, and 20 radiomic features, respectively, and plotted the ROC curves. In the test group, the AUC values were 0.85, 0.89, and 0.84, respectively; the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 79.66 %, 70.42 %, 84.59 %, and 81.74 % and 67.57% for Model 1, 88.06 %, 74.51 %, 82.2 %, 81.94 %, and 82.61 % for Model 2, and 71.34 %, 85.05 %, 70.37 %, 83.2 %, and 76.3 % for Model 3. CONCLUSION The radiomic feature models based on CT images could well reflect the differences between benign nodules, malignant non-invasive nodules, and invasive nodules, and assist in their classification.
Collapse
Affiliation(s)
- Qing-Qing Xu
- Department of Radiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Wen-Li Shan
- Department of Radiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Yan Zhu
- Department of Radiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Chen-Cui Huang
- Department of research collaboration, Beijing Deepwise &League of PHD technology Co. LTD, R&D center, Beijing, 100089, China
| | - Si-Yu Bao
- Department of research collaboration, Beijing Deepwise &League of PHD technology Co. LTD, R&D center, Beijing, 100089, China
| | - Li-Li Guo
- Department of Radiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
50
|
On the performance of lung nodule detection, segmentation and classification. Comput Med Imaging Graph 2021; 89:101886. [PMID: 33706112 DOI: 10.1016/j.compmedimag.2021.101886] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 01/10/2023]
Abstract
Computed tomography (CT) screening is an effective way for early detection of lung cancer in order to improve the survival rate of such a deadly disease. For more than two decades, image processing techniques such as nodule detection, segmentation, and classification have been extensively studied to assist physicians in identifying nodules from hundreds of CT slices to measure shapes and HU distributions of nodules automatically and to distinguish their malignancy. Thanks to new parallel computation, multi-layer convolution, nonlinear pooling operation, and the big data learning strategy, recent development of deep-learning algorithms has shown great progress in lung nodule screening and computer-assisted diagnosis (CADx) applications due to their high sensitivity and low false positive rates. This paper presents a survey of state-of-the-art deep-learning-based lung nodule screening and analysis techniques focusing on their performance and clinical applications, aiming to help better understand the current performance, the limitation, and the future trends of lung nodule analysis.
Collapse
|