1
|
Barough RE, Javidnia J, Davoodi A, Talebpour Amiri F, Moazeni M, Sarvi S, Valadan R, Siahposht-Khachaki A, Moosazadeh M, Nosratabadi M, Haghani I, Meis JF, Abastabar M, Badali H. Metabolic Patterns of Fluconazole Resistant and Susceptible Candida auris Clade V and I. J Fungi (Basel) 2024; 10:518. [PMID: 39194844 DOI: 10.3390/jof10080518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Candida auris, an emerging non-albicans multidrug-resistant yeast, has become a significant cause of invasive candidiasis in healthcare settings. So far, data on the metabolites of C. auris in different clades are minimal, and no studies have focused on clade V metabolites. Therefore, Gas chromatography-mass spectrometry (GC-MS) was used for the metabolomic profiling of clade I C. auris compared with fluconazole-resistant and susceptible C. auris in clade V strains. GC-MS chromatography revealed 28, 22, and 30 compounds in methanolic extracts of the fluconazole-susceptible and fluconazole-resistant C. auris clade V and C. auris clade I strain, respectively. Some compounds, such as acetamide and metaraminol, were found in fluconazole-susceptible and resistant C. auris clade V and clade I. N-methyl-ethanamine and bis(2-ethylhexyl) phthalate metabolites were found in both fluconazole -susceptible and resistant C. auris clade V, as well as 3-methyl-4-isopropylphenol, 3,5-bis(1,1-dimethyl)-1,2-benzenediol, and diisostyl phthalate metabolites in both fluconazole resistant C. auris clade V and I. Identifying these metabolites contributes to understanding the morphogenesis and pathogenesis of C. auris, highlighting their potential role in antifungal drug resistance and the control of fungal growth. However, further experiments are warranted to fully comprehend the identified metabolites' regulatory responses, and there may be potential challenges in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Robab Ebrahimi Barough
- Student Research Committee, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Javad Javidnia
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Ali Davoodi
- Department of Pharmacognosy and Biotechnology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Maryam Moazeni
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, Communicable Diseases Institute, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Reza Valadan
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Molecular and Cell-Biology Research Center, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Ali Siahposht-Khachaki
- Department of Physiology and Pharmacology, Mazandaran University of Medical Sciences, Ramsar International Branch, Sari 48157-33971, Iran
| | - Mahmood Moosazadeh
- Health Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Mohsen Nosratabadi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Jacques F Meis
- Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, 50923 Cologne, Germany
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
2
|
Venice F, Spina F, Davolos D, Ghignone S, Varese GC. The genomes of Scedosporium between environmental challenges and opportunism. IMA Fungus 2023; 14:25. [PMID: 38049914 PMCID: PMC10694956 DOI: 10.1186/s43008-023-00128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Emerging fungal pathogens are a global challenge for humankind. Many efforts have been made to understand the mechanisms underlying pathogenicity in bacteria, and OMICs techniques are largely responsible for those advancements. By contrast, our limited understanding of opportunism and antifungal resistance is preventing us from identifying, limiting and interpreting the emergence of fungal pathogens. The genus Scedosporium (Microascaceae) includes fungi with high tolerance to environmental pollution, whilst some species can be considered major human pathogens, such as Scedosporium apiospermum and Scedosporium boydii. However, unlike other fungal pathogens, little is known about the genome evolution of these organisms. We sequenced two novel genomes of Scedosporium aurantiacum and Scedosporium minutisporum isolated from extreme, strongly anthropized environments. We compared all the available Scedosporium and Microascaceae genomes, that we systematically annotated and characterized ex novo in most cases. The genomes in this family were integrated in a Phylum-level comparison to infer the presence of putative, shared genomic traits in filamentous ascomycetes with pathogenic potential. The analysis included the genomes of 100 environmental and clinical fungi, revealing poor evolutionary convergence of putative pathogenicity traits. By contrast, several features in Microascaceae and Scedosporium were detected that might have a dual role in responding to environmental challenges and allowing colonization of the human body, including chitin, melanin and other cell wall related genes, proteases, glutaredoxins and magnesium transporters. We found these gene families to be impacted by expansions, orthologous transposon insertions, and point mutations. With RNA-seq, we demonstrated that most of these anciently impacted genomic features responded to the stress imposed by an antifungal compound (voriconazole) in the two environmental strains S. aurantiacum MUT6114 and S. minutisporum MUT6113. Therefore, the present genomics and transcriptomics investigation stands on the edge between stress resistance and pathogenic potential, to elucidate whether fungi were pre-adapted to infect humans. We highlight the strengths and limitations of genomics applied to opportunistic human pathogens, the multifactoriality of pathogenicity and resistance to drugs, and suggest a scenario where pressures other than anthropic contributed to forge filamentous human pathogens.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Federica Spina
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Domenico Davolos
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), INAIL, Research Area, Via R. Ferruzzi 38/40, 00143, Rome, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP), SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125, Turin, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy.
| |
Collapse
|
3
|
Trentin G, Bitencourt TA, Guedes A, Pessoni AM, Brauer VS, Pereira AK, Costa JH, Fill TP, Almeida F. Mass Spectrometry Analysis Reveals Lipids Induced by Oxidative Stress in Candida albicans Extracellular Vesicles. Microorganisms 2023; 11:1669. [PMID: 37512842 PMCID: PMC10383470 DOI: 10.3390/microorganisms11071669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/30/2023] Open
Abstract
Candida albicans is a commensal fungus in healthy humans that causes infection in immunocompromised individuals through the secretion of several virulence factors. The successful establishment of infection is owing to elaborate strategies to cope with defensive molecules secreted by the host, including responses toward oxidative stress. Extracellular vesicle (EV) release is considered an alternative to the biomolecule secretory mechanism that favors fungal interactions with the host cells. During candidiasis establishment, the host environment becomes oxidative, and it impacts EV release and cargo. To simulate the host oxidative environment, we added menadione (an oxidative stress inducer) to the culture medium, and we explored C. albicans EV metabolites by metabolomics analysis. This study characterized lipidic molecules transported to an extracellular milieu by C. albicans after menadione exposure. Through Liquid Chromatography coupled with Mass Spectrometry (LC-MS) analyses, we identified biomolecules transported by EVs and supernatant. The identified molecules are related to several biological processes, such as glycerophospholipid and sphingolipid pathways, which may act at different levels by tuning compound production in accordance with cell requirements that favor a myriad of adaptive responses. Taken together, our results provide new insights into the role of EVs in fungal biology and host-pathogen interactions.
Collapse
Affiliation(s)
- Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Tamires A Bitencourt
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Arthur Guedes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - André M Pessoni
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Veronica S Brauer
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Alana Kelyene Pereira
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Jonas Henrique Costa
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Taicia Pacheco Fill
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
4
|
Druseikis M, Mottola A, Berman J. The Metabolism of Susceptibility: Clearing the FoG Between Tolerance and Resistance in Candida albicans. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:36-46. [DOI: 10.1007/s40588-023-00189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Metabolic Plasticity of Candida albicans in Response to Different Environmental Conditions. J Fungi (Basel) 2022; 8:jof8070723. [PMID: 35887478 PMCID: PMC9322845 DOI: 10.3390/jof8070723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
The ubiquitous commensal Candida albicans, part of the human microbiota, is an opportunistic pathogen able to cause a wide range of diseases, from cutaneous mycoses to life-threatening infections in immunocompromised patients. Candida albicans adapts to different environments and survives long-time starvation. The ability to switch from yeast to hyphal morphology under specific environmental conditions is associated with its virulence. Using hydrogen nuclear magnetic resonance spectroscopy, we profiled the intracellular and extracellular metabolome of C. albicans kept in water, yeast extract–peptone–dextrose (YPD), and M199 media, at selected temperatures. Experiments were carried out in hypoxia to mimic a condition present in most colonized niches and fungal infection sites. Comparison of the intracellular metabolites measured in YPD and M199 at 37 °C highlighted differences in specific metabolic pathways: (i) alanine, aspartate, glutamate metabolism, (ii) arginine and proline metabolism, (iii) glycerolipid metabolism, attributable to the diverse composition of the media. Moreover, we hypothesized that the subtle differences in the M199 metabolome, observed at 30 °C and 37 °C, are suggestive of modifications propaedeutic to a subsequent transition from yeast to hyphal form. The analysis of the metabolites’ profiles of C. albicans allows envisaging a molecular model to better describe its ability to sense and adapt to environmental conditions.
Collapse
|
6
|
Barantsevich N, Barantsevich E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics (Basel) 2022; 11:antibiotics11060718. [PMID: 35740125 PMCID: PMC9219674 DOI: 10.3390/antibiotics11060718] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Candida species, belonging to commensal microbial communities in humans, cause opportunistic infections in individuals with impaired immunity. Pathogens encountered in more than 90% cases of invasive candidiasis include C. albicans, C. glabrata, C. krusei, C. tropicalis, and C. parapsilosis. The most frequently diagnosed invasive infection is candidemia. About 50% of candidemia cases result in deep-seated infection due to hematogenous spread. The sensitivity of blood cultures in autopsy-proven invasive candidiasis ranges from 21% to 71%. Non-cultural methods (beta-D-glucan, T2Candida assays), especially beta-D-glucan in combination with procalcitonin, appear promising in the exclusion of invasive candidiasis with high sensitivity (98%) and negative predictive value (95%). There is currently a clear deficiency in approved sensitive and precise diagnostic techniques. Omics technologies seem promising, though require further development and study. Therapeutic options for invasive candidiasis are generally limited to four classes of systemic antifungals (polyenes, antimetabolite 5-fluorocytosine, azoles, echinocandins) with the two latter being highly effective and well-tolerated and hence the most widely used. Principles and methods of treatment are discussed in this review. The emergence of pan-drug-resistant C. auris strains indicates an insufficient choice of available medications. Further surveillance, alongside the development of diagnostic and therapeutic methods, is essential.
Collapse
|
7
|
A Proteomic Landscape of Candida albicans in the Stepwise Evolution to Fluconazole Resistance. Antimicrob Agents Chemother 2022; 66:e0210521. [PMID: 35343782 DOI: 10.1128/aac.02105-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As an opportunistic fungal pathogen, Candida albicans is a major cause of superficial and systemic infections in immunocompromised patients. The increasing rate of azole resistance in C. albicans has brought further challenges to clinical therapy. In this study, we collected five isogenic C. albicans strains recovered over discrete intervals from an HIV-infected patient who suffered 2-year recurrent oropharyngeal candidiasis. Azole resistance was known from the clinical history to have developed gradually in this patient, and this was confirmed by MIC assays of each strain. Proteomic techniques can be used to investigate more comprehensively how resistance develops in pathogenic fungi over time. Our study is the first to use tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology to investigate the acquired resistance mechanisms of serial C. albicans isolates at the proteomic level. A total of 4,029 proteins have been identified, of which 3,766 have been quantified. Compared with Ca1, bioinformatics analysis showed that differentially expressed proteins were mainly associated with aspects such as the downregulation of glycolysis/gluconeogenesis, pyruvate metabolism, fatty acid degradation, and oxidative stress response proteins in all four subsequent strains but, remarkably, the activation of amino acid metabolism in Ca8 and Ca14 and increased protection against osmotic stress or excessive copper toxicity, upregulation of respiratory chain activity, and suppression of iron transport in Ca17. By tracing proteomic alterations in this set of isogenic resistance isolates, we acquire mechanistic insight into the steps involved in the acquisition of azole resistance in C. albicans.
Collapse
|
8
|
A. L. Bataineh MT, Soares NC, Semreen MH, Cacciatore S, Dash NR, Hamad M, Mousa MK, Salam JSA, Al Gharaibeh MF, Zerbini LF, Hamad M. Candida albicans PPG1, a serine/threonine phosphatase, plays a vital role in central carbon metabolisms under filament-inducing conditions: A multi-omics approach. PLoS One 2021; 16:e0259588. [PMID: 34874940 PMCID: PMC8651141 DOI: 10.1371/journal.pone.0259588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023] Open
Abstract
Candida albicans is the leading cause of life-threatening bloodstream candidiasis, especially among immunocompromised patients. The reversible morphological transition from yeast to hyphal filaments in response to host environmental cues facilitates C. albicans tissue invasion, immune evasion, and dissemination. Hence, it is widely considered that filamentation represents one of the major virulence properties in C. albicans. We have previously characterized Ppg1, a PP2A-type protein phosphatase that controls filament extension and virulence in C. albicans. This study conducted RNA sequencing analysis of samples obtained from C. albicans wild type and ppg1Δ/Δ strains grown under filament-inducing conditions. Overall, ppg1Δ/Δ strain showed 1448 upregulated and 710 downregulated genes, representing approximately one-third of the entire annotated C. albicans genome. Transcriptomic analysis identified significant downregulation of well-characterized genes linked to filamentation and virulence, such as ALS3, HWP1, ECE1, and RBT1. Expression analysis showed that essential genes involved in C. albicans central carbon metabolisms, including GDH3, GPD1, GPD2, RHR2, INO1, AAH1, and MET14 were among the top upregulated genes. Subsequent metabolomics analysis of C. albicans ppg1Δ/Δ strain revealed a negative enrichment of metabolites with carboxylic acid substituents and a positive enrichment of metabolites with pyranose substituents. Altogether, Ppg1 in vitro analysis revealed a link between metabolites substituents and filament formation controlled by a phosphatase to regulate morphogenesis and virulence.
Collapse
Affiliation(s)
- Mohammad Tahseen A. L. Bataineh
- College of Medicine, University of Sharjah, Sharjah, UAE
- Research Institute for Medical & Health Sciences at University of Sharjah, Sharjah, UAE
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
- Department of Genetics and Molecular Biology, College Of Medicine And Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Nelson Cruz Soares
- Research Institute for Medical & Health Sciences at University of Sharjah, Sharjah, UAE
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Mohammad Harb Semreen
- Research Institute for Medical & Health Sciences at University of Sharjah, Sharjah, UAE
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Stefano Cacciatore
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Institute for Reproductive and Developmental Biology, Imperial College, London, United Kingdom
| | | | - Mohamad Hamad
- Research Institute for Medical & Health Sciences at University of Sharjah, Sharjah, UAE
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Muath Khairi Mousa
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | | | | | - Luiz F. Zerbini
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Mawieh Hamad
- Research Institute for Medical & Health Sciences at University of Sharjah, Sharjah, UAE
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, UAE
| |
Collapse
|
9
|
Galdiero E, Salvatore MM, Maione A, Carraturo F, Galdiero S, Falanga A, Andolfi A, Salvatore F, Guida M. Impact of the Peptide WMR-K on Dual-Species Biofilm Candida albicans/Klebsiella pneumoniae and on the Untargeted Metabolomic Profile. Pathogens 2021; 10:214. [PMID: 33669279 PMCID: PMC7920046 DOI: 10.3390/pathogens10020214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
In recent years, the scientific community has focused on the development of new antibiotics to address the difficulties linked to biofilm-forming microorganisms and drug-resistant infections. In this respect, synthetic antimicrobial peptides (AMPs) are particularly regarded for their therapeutic potential against a broad spectrum of pathogens. In this work, the antimicrobial and antibiofilm activities of the peptide WMR-K towards single and dual species cultures of Candida albicans and Klebsiella pneumoniae were investigated. We found minimum inhibitory concentration (MIC) values for WMR-K of 10 µM for K. pneumoniae and of 200 µM for C. albicans. Furthermore, sub-MIC concentrations of peptide showed an in vitro inhibition of biofilm formation of mono and polymicrobial systems and also a good biofilm eradication even if higher concentrations of it are needed. In order to provide additional evidence for the effect of the examined peptide, a study of changes in extracellular metabolites excreted and/or uptaken from the culture medium (metabolomic footprinting) in the poly-microbial association of C. albicans and K. pneumoniae in presence and absence of WMR-K was performed. Comparing to the untreated dual species biofilm culture, the metabolomic profile of the WMR-K treated culture appears significantly altered. The differentially expressed compounds are mainly related to the primary metabolic pathways, including amino acids, trehalose, pyruvic acid, glycerol and vitamin B6.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (A.A.); (F.S.)
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| | - Federica Carraturo
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples ‘Federico II’, Via dell’ Università 100, 80055 Naples, Italy;
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (A.A.); (F.S.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80055 Naples, Italy
| | - Francesco Salvatore
- Department of Chemical Sciences, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (A.A.); (F.S.)
| | - Marco Guida
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| |
Collapse
|
10
|
Chen M, Zhong G, Wang S, Zhu J, Tang L, Li L. tpo3 and dur3, Aspergillus fumigatus Plasma Membrane Regulators of Polyamines, Regulate Polyamine Homeostasis and Susceptibility to Itraconazole. Front Microbiol 2021; 11:563139. [PMID: 33391196 PMCID: PMC7772357 DOI: 10.3389/fmicb.2020.563139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fumigatus is a well-known opportunistic pathogen that causes invasive aspergillosis (IA) infections, which have high mortality rates in immunosuppressed individuals. Long-term antifungal drug azole use in clinical treatment and agriculture results in loss of efficacy or drug resistance. Drug resistance is related to cellular metabolites and the corresponding gene transcription. In this study, through untargeted metabolomics and transcriptomics under itraconazole (ITC) treatment, we identified two plasma membrane-localized polyamine regulators tpo3 and dur3, which were important for polyamine homeostasis and susceptibility to ITC in A. fumigatus. In the absence of tpo3 and/or dur3, the levels of cytoplasmic polyamines had a moderate increase, which enhanced the tolerance of A. fumigatus to ITC. In comparison, overexpression of tpo3 or dur3 induced a drastic increase in polyamines, which increased the sensitivity of A. fumigatus to ITC. Further analysis revealed that polyamines concentration-dependently affected the susceptibility of A. fumigatus to ITC by scavenging reactive oxygen species (ROS) at a moderate concentration and promoting the production of ROS at a high concentration rather than regulating drug transport. Moreover, inhibition of polyamine biosynthesis reduced the intracellular polyamine content, resulted in accumulation of ROS and enhanced the antifungal activity of ITC. Interestingly, A. fumigatus produces much lower levels of ROS under voriconazole (VOC) treatment than under ITC-treatment. Accordingly, our study established the link among the polyamine regulators tpo3 and dur3, polyamine homeostasis, ROS content, and ITC susceptibility in A. fumigatus.
Collapse
Affiliation(s)
- Mingcong Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guowei Zhong
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sha Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou, China
| | - Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Tang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Domenick TM, Gill EL, Vedam-Mai V, Yost RA. Mass Spectrometry-Based Cellular Metabolomics: Current Approaches, Applications, and Future Directions. Anal Chem 2020; 93:546-566. [PMID: 33146525 DOI: 10.1021/acs.analchem.0c04363] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Taylor M Domenick
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Emily L Gill
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4283, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4283, United States
| | - Vinata Vedam-Mai
- Department of Neurology, University of Florida, Gainesville, Florida 32610, United States
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
12
|
Oliver JC, Laghi L, Parolin C, Foschi C, Marangoni A, Liberatore A, Dias ALT, Cricca M, Vitali B. Metabolic profiling of Candida clinical isolates of different species and infection sources. Sci Rep 2020; 10:16716. [PMID: 33028931 PMCID: PMC7541501 DOI: 10.1038/s41598-020-73889-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Candida species are the most common cause of opportunistic fungal infections. Rapid identification and novel approaches for the characterization of these fungi are of great interest to improve the diagnosis and the knowledge about their pathogenic properties. This study aimed to characterize clinical isolates of Candida spp. by proteomics (MALDI-TOF MS) and metabolomics (1H-NMR), and to correlate their metabolic profiles with Candida species, source of infection and different virulence associated parameters. In particular, 49 Candida strains from different sources (blood, n = 15; vagina, n = 18; respiratory tract, n = 16), belonging mainly to C. albicans complex (61%), C. glabrata (20%) and C. parapsilosis (12%) species were used. Several extracellular and intracellular metabolites showed significantly different concentrations among isolates recovered from different sources of infection, as well as among different Candida species. These metabolites were mainly related to the glycolysis or gluconeogenesis, tricarboxylic acid cycle, nucleic acid synthesis and amino acid and lipid metabolism. Moreover, we found specific metabolic fingerprints associated with the ability to form biofilm, the antifungal resistance (i.e. caspofungin and fluconazole) and the production of secreted aspartyl proteinase. In conclusion, 1H-NMR-based metabolomics can be useful to deepen Candida spp. virulence and pathogenicity properties.
Collapse
Affiliation(s)
- Josidel Conceição Oliver
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Claudio Foschi
- Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Antonella Marangoni
- Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea Liberatore
- Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Monica Cricca
- Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Fun(gi)omics: Advanced and Diverse Technologies to Explore Emerging Fungal Pathogens and Define Mechanisms of Antifungal Resistance. mBio 2020; 11:mBio.01020-20. [PMID: 33024032 PMCID: PMC7542357 DOI: 10.1128/mbio.01020-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. Hence, the alarming frequency of fungal infections in medical and agricultural settings requires effective research to understand the virulent nature of fungal pathogens and improve the outcome of infection in susceptible hosts. Mycology-driven research has benefited from a contemporary and unified approach of omics technology, deepening the biological, biochemical, and biophysical understanding of these emerging fungal pathogens. Here, we review the current state-of-the-art multi-omics technologies, explore the power of data integration strategies, and highlight discovery-based revelations of globally important and taxonomically diverse fungal pathogens. This information provides new insight for emerging pathogens through an in-depth understanding of well-characterized fungi and provides alternative therapeutic strategies defined through novel findings of virulence, adaptation, and resistance.
Collapse
|
14
|
Affiliation(s)
- Philipp Brandt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Enrico Garbe
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| |
Collapse
|
15
|
Mba IE, Nweze EI. Mechanism of Candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis 2020; 39:1797-1819. [PMID: 32372128 DOI: 10.1007/s10096-020-03912-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Candida is the most implicated fungal pathogen in the clinical setting. Several factors play important roles in the pathogenesis of Candida spp. Multiple transcriptional circuits, morphological and phenotypic switching, biofilm formation, tissue damaging extracellular hydrolytic enzymes, metabolic flexibility, genome plasticity, adaptation to environmental pH fluctuation, robust nutrient acquisition system, adherence and invasions (mediated by adhesins and invasins), heat shock proteins (HSPs), cytolytic proteins, escape from phagocytosis, evasion from host immune system, synergistic coaggregation with resident microbiota, resistance to antifungal agents, and the ability to efficiently respond to multiple stresses are some of the major pathogenic determinants of Candida species. The existence of multiple connections, in addition to the interactions and associations among all of these factors, are distinctive features that play important roles in the establishment of Candida infections. This review describes all the underlying factors and mechanisms involved in Candida pathogenesis by evaluating pathogenic determinants of Candida species. It reinforces the already available pool of data on the pathogenesis of Candida species by providing a clear and simplified understanding of the most important factors implicated in the pathogenesis of Candida species. The Candida pathogenesis network, an illustration linking all the major determinants of Candida pathogenesis, is also presented. Taken together, they will further improve our current understanding of how these factors modulate virulence and consequent infection(s). Development of new antifungal drugs and better therapeutic approaches to candidiasis can be achieved in the near future with continuing progress in the understanding of the mechanisms of Candida pathogenesis.
Collapse
|
16
|
Wang J, Liu Y, Zhao G, Gao J, Liu J, Wu X, Xu C, Li Y. Integrated proteomic and metabolomic analysis to study the effects of spaceflight on Candida albicans. BMC Genomics 2020; 21:57. [PMID: 31952470 PMCID: PMC6969454 DOI: 10.1186/s12864-020-6476-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/09/2020] [Indexed: 11/23/2022] Open
Abstract
Background Candida albicans is an opportunistic pathogenic yeast, which could become pathogenic in various stressful environmental factors including the spaceflight environment. In this study, we aim to explore the phenotypic changes and possible mechanisms of C. albicans after exposure to spaceflight conditions. Results The effect of C. albicans after carried on the “SJ-10” satellite for 12 days was evaluated by proliferation, morphology, environmental resistance and virulence experiment. The result showed that the proliferation rate, biofilm formation, antioxidant capacity, cytotoxicity and filamentous morphology of C. albicans were increased in the spaceflight group compared to the control group. Proteomics and metabolomics technologies were used to analyze the profiles of proteins and metabolites in C. albicans under spaceflight conditions. Proteomic analysis identified 548 up-regulated proteins involved in the ribosome, DNA replication, base excision repair and sulfur metabolism in the spaceflight group. Moreover, 332 down-regulated proteins related to metabolic processes were observed. The metabolomic analysis found five differentially expressed metabolites. The combined analysis of proteomic and metabolomic revealed the accumulation of cysteine and methionine in C. albicans after spaceflight. Conclusions Mechanisms that could explain the results in the phenotypic experiment of C. albicans were found through proteomic and metabolomic analysis. And our data provide an important basis for the assessment of the risk that C. albicans could cause under spaceflight environment.
Collapse
Affiliation(s)
- Jiaping Wang
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yu Liu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Guangxian Zhao
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Jianyi Gao
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaorui Wu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing, 100094, China.
| |
Collapse
|