1
|
Jabbar ZR, Sahib HB. The Effects of Abscisic Acid on Angiogenesis in Both ex vivo and in vivo Assays. Asian Pac J Cancer Prev 2022; 23:4193-4203. [PMID: 36580002 PMCID: PMC9971465 DOI: 10.31557/apjcp.2022.23.12.4193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Angiogenesis is a complex biological process wherein novel capillary blood vessels mature from pre-existing vasculature for delivering tissues with oxygen and nutrients. Natural molecules that have anti-angiogenic activity and toxicity can raise the focus on using plant sources as essential therapeutic agent. OBJECTIVE The current research was intended to estimate the probable anti-angiogenic activity of abscisic acid alone and in combination with prednisolone, a well-known angiostatic glucocorticoid. METHODS two months old albino rats were used in this study. ABA and prednisolone stock solutions were prepared and added after embedding aortic rings in growth media. The ex vivo rat aorta ring assay (RAR) was applied to explore the anti-angiogenic effect of ABA. The in vivo chorioallantoic membrane assay (CAM) was applied to quantify the blood vessels inhibition zone by ABA effect. That zone was calculated as the mean inhibition region on eggs in mm ± SD. RESULTS Abscisic acid screened byex vivo and in vivo assays, revealed a significant dose-dependent blood vessels inhibition in comparison to the negative control with IC50= 7.5µg/ml and a synergism effect when combined with prednisolone. CONCLUSION The synergism activity of ABA with prednisolone can significantly inhibit blood vessels growth in RAR and CAM assays. These results shed the light on the potential clinic values of ABA, and prednisolone combination in angiogenesis-dependent tumors.
Collapse
Affiliation(s)
| | - Hayder B Sahib
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| |
Collapse
|
2
|
Abernethie AJ, Gastaldello A, Maltese G, Morgan RA, McInnes KJ, Small GR, Walker BR, Livingstone DE, Hadoke PW, Andrew R. Comparison of mechanisms of angiostasis caused by the anti-inflammatory steroid 5α-tetrahydrocorticosterone versus conventional glucocorticoids. Eur J Pharmacol 2022; 929:175111. [PMID: 35738450 DOI: 10.1016/j.ejphar.2022.175111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
5α-Tetrahydrocorticosterone (5αTHB) is an effective topical anti-inflammatory agent in mouse, with less propensity to cause skin thinning and impede new blood vessel growth compared with corticosterone. Its anti-inflammatory effects were not prevented by RU38486, a glucocorticoid receptor antagonist, suggesting alternative mechanisms. The hypothesis that 5αTHB directly inhibits angiogenesis to a lesser extent than hydrocortisone was tested, focussing on glucocorticoid receptor mediated actions. New vessel growth from aortae from C57BL/6 male mice was monitored in culture, in the presence of 5αTHB, hydrocortisone (mixed glucocorticoid/mineralocorticoid receptor agonist) or the selective glucocorticoid receptor agonist dexamethasone. Transcript profiles were studied, as was the role of the glucocorticoid receptor, using the antagonist, RU38486. Ex vivo, 5αTHB suppressed vessel growth from aortic rings, but was less potent than hydrocortisone (EC50 2512 nM 5αTHB, versus 762 nM hydrocortisone). In contrast to conventional glucocorticoids, 5αTHB did not alter expression of genes related to extracellular matrix integrity or inflammatory signalling, but caused a small increase in Per1 transcript, and decreased transcript abundance of Pecam1 gene. RU38486 did not antagonise the residual effects of 5αTHB to suppress vessel growth or regulate gene expression, but modified effects of dexamethasone. 5αTHB did not alter expression of glucocorticoid-regulated genes Fkbp51 and Hsd11b1, unlike hydrocortisone and dexamethasone. In conclusion, compared with hydrocortisone, 5αTHB exhibits limited suppression of angiogenesis, at least directly in blood vessels and probably independent of the glucocorticoid receptor. Discriminating the mechanisms employed by 5αTHB may provide the basis for the development of novel safer anti-inflammatory drugs for topical use.
Collapse
Affiliation(s)
- Amber J Abernethie
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Annalisa Gastaldello
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Giorgia Maltese
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Ruth A Morgan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Kerry J McInnes
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Gary R Small
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Brian R Walker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK; Translational and Clinical Research Institute, Newcastle University, King's Gate, Newcastle Upon Tyne, NE1 7RU, UK
| | - Dawn Ew Livingstone
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK; Centre for Discovery Brain Science, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Patrick Wf Hadoke
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Ruth Andrew
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
3
|
Gross DA, Cheng HS, Zhuang R, McCoy MG, Pérez-Cremades D, Salyers Z, Wara AKMK, Haemmig S, Ryan TE, Feinberg MW. Deficiency of lncRNA SNHG12 impairs ischemic limb neovascularization by altering an endothelial cell cycle pathway. JCI Insight 2021; 7:150761. [PMID: 34793334 PMCID: PMC8765056 DOI: 10.1172/jci.insight.150761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023] Open
Abstract
SNHG12, a long noncoding RNA (lncRNA) dysregulated in atherosclerosis, is known to be a key regulator of vascular senescence in endothelial cells (ECs). However, its role in angiogenesis and peripheral artery disease has not been elucidated. Hind-limb ischemia studies using femoral artery ligation (FAL) in mice showed that SNHG12 expression falls readily in the acute phase of the response to limb ischemia in gastrocnemius muscle and recovers to normal when blood flow recovery is restored to ischemic muscle, indicating that it likely plays a role in the angiogenic response to ischemia. Gain- and loss-of-function studies demonstrated that SNHG12 regulated angiogenesis — SNHG12 deficiency reduced cell proliferation, migration, and endothelial sprouting, whereas overexpression promoted these angiogenic functions. We identified SNHG12 binding partners by proteomics that may contribute to its role in angiogenesis, including IGF-2 mRNA–binding protein 3 (IGF2BP3, also known as IMP3). RNA-Seq profiling of SNHG12-deficient ECs showed effects on angiogenesis pathways and identified a strong effect on cell cycle regulation, which may be modulated by IMP3. Knockdown of SNHG12 in mice undergoing FAL using injected gapmeRs) decreased angiogenesis, an effect that was more pronounced in a model of insulin-resistant db/db mice. RNA-Seq profiling of the EC and non-EC compartments in these mice revealed a likely role of SNHG12 knockdown on Wnt, Notch, and angiopoietin signaling pathways. Together, these findings indicate that SNHG12 plays an important role in the angiogenic EC response to ischemia.
Collapse
Affiliation(s)
- David A Gross
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States of America
| | - Henry S Cheng
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States of America
| | - Rulin Zhuang
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States of America
| | - Michael G McCoy
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States of America
| | - Daniel Pérez-Cremades
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States of America
| | - Zachary Salyers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, United States of America
| | - A K M Khyrul Wara
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States of America
| | - Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States of America
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, United States of America
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States of America
| |
Collapse
|
4
|
Millares-Ramirez EM, Lavoie JP. Bronchial angiogenesis in horses with severe asthma and its response to corticosteroids. J Vet Intern Med 2021; 35:2026-2034. [PMID: 34048095 PMCID: PMC8295704 DOI: 10.1111/jvim.16159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Background Severe asthma in horses is characterized by structural changes that thicken the lower airway wall, a change that is only partially reversible by current treatments. Increased vascularization contributes to the thickening of the bronchial wall in humans with asthma and is considered a potential new therapeutic target. Objective To determine the presence of angiogenesis in the bronchi of severely asthmatic horses, and if present, to evaluate its reversibility by treatment with corticosteroids. Animals Study 1: Bronchial samples from asthmatic horses in exacerbation (7), in remission (7), and aged‐matched healthy horses. Study 2: Endobronchial biopsy samples from asthmatic horses in exacerbation (6) and healthy horses (6) before and after treatment with dexamethasone. Methods Blinded, randomized controlled study. Immunohistochemistry was performed using collagen IV as a marker for vascular basement membranes. Number of vessels, vascular area, and mean vessel size in the bronchial lamina propria were measured by histomorphometry. Reversibility of vascular changes in Study 2 was assessed after 2 weeks of treatment with dexamethasone. Results The number of vessels and vascular area were increased in the airway walls of asthmatic horses in exacerbation (P = .01 and P = .02, respectively) and in remission (P = .02 and P = .04, respectively) when compared to controls. In Study 2, the differences observed between groups disappeared after 2 weeks of treatment with corticosteroids because of the increased number of vessels in healthy horses. Conclusions and Clinical Importance Angiogenesis contributes to thickening of the airway wall in asthmatic horses and was not reversed by a 2‐week treatment with corticosteroids.
Collapse
Affiliation(s)
- Esther M Millares-Ramirez
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
5
|
Chu B, He JM, Liu LL, Wu CX, You LL, Li XL, Wang S, Chen CS, Tu M. Proangiogenic Peptide Nanofiber Hydrogels for Wound Healing. ACS Biomater Sci Eng 2021; 7:1100-1110. [PMID: 33512985 DOI: 10.1021/acsbiomaterials.0c01264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rapid vascularization is vital for dermal regeneration, nutrient and nutrition transfer, metabolic waste removal, and prevention of infection. This study reports on a series of proangiogenic peptides designed to undergo self-assembly and promote angiogenesis and hence skin regeneration. The proangiogenic peptides comprised an angiogenic peptide segment, GEETEVTVEGLEPG, and a β-sheet structural peptide sequence. These peptides dissolved easily in ultrapure water and rapidly self-assembled into hydrogels in a pH-dependent manner, creating three-dimensional fibril network structures and nanofibers as revealed by a scanning microscope and a transmission electron microscope. In vitro experiments showed that the peptide hydrogels favored adhesion and proliferation of mouse fibroblasts (L929) and human umbilical vein endothelial cells (HUVECs). In particular, many connected tubes were formed in the HUVECs after 8 h of culture on the peptide hydrogels. In vivo experiments demonstrated that new blood vessels grew into the proangiogenic peptide hydrogels within 2 weeks after subcutaneous implantation in mice. Moreover, the proangiogenic-combined hydrogels exhibited faster repair cycles and better healing of skin defects. Collectively, the results indicate that the proangiogenic peptide hydrogels are a promising therapeutic option for skin regeneration.
Collapse
Affiliation(s)
- Bin Chu
- Department of Biomedical Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.,Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Jin-Mei He
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Lan-Lan Liu
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Chao-Xi Wu
- Department of Biomedical Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Ling-Ling You
- Department of Biomedical Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao-Li Li
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Song Wang
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Chang-Sheng Chen
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Mei Tu
- Department of Biomedical Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
6
|
Mohamady S, Galal M, Eldehna WM, Gutierrez DC, Ibrahim HS, Elmazar MM, Ali HI. Dual Targeting of VEGFR2 and C-Met Kinases via the Design and Synthesis of Substituted 3-(Triazolo-thiadiazin-3-yl)indolin-2-one Derivatives as Angiogenesis Inhibitors. ACS OMEGA 2020; 5:18872-18886. [PMID: 32775889 PMCID: PMC7408256 DOI: 10.1021/acsomega.0c02038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/03/2020] [Indexed: 05/07/2023]
Abstract
The vascular endothelial growth factor receptor 2 (VEGFR2) and c-mesenchymal epithelial transition factor (c-Met) are members of receptor tyrosine kinases which have a crucial role in the process of angiogenesis. Isatin moiety is a versatile group that is shared in many compounds targeting both c-Met and VEGFR2 kinases. In this study, we designed and synthesized different derivatives of substituted 3-(triazolo-thiadiazin-3-yl)indolin-2-one derivatives (6a-y) as dual inhibitors for c-Met and VEGFR2 enzymes. Eight compounds 6a, 6b, 6e, 6l, 6n, 6r, 6v, and 6y were assessed for their anticancer activities against a panel of 58 cancer cell lines according to the US-NCI protocol. Compound 6b revealed the most effective antiproliferative potency (GI %), with broad-spectrum activity against different subpanels of the most NCI 58 tumor cell lines. An in vivo hen's egg-chorioallantoic membrane (HET-CAM) angiogenic study was carried out for 21 compounds 6a, b, d, f, h, i, k-o, t, and 6x to check their mortality and toxicity. At 100 μM concentration, all compounds produced 100% mortality of the chick embryos. At 40 μM concentration, 13 compounds did not exhibit any detectable mortality (nontoxic) and revealed a potent antiangiogenic effect. Seven compounds 6b, 6d, 6f, 6n, 6o, 6t, and 6x significantly decreased the number of blood vessels, and compound 6b was the most effective antiangiogenic agent comparable to dexamethasone. Molecular docking studies were conducted for compound 6b to investigate its mode of interaction within the binding site of both c-Met and VEGFR2 kinases.
Collapse
Affiliation(s)
- Samy Mohamady
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk City, Cairo 11837, Egypt
| | - Mahmoud Galal
- Department
of Pharmacology, Faculty of Pharmacy, Helwan
University, Helwan, Cairo, Egypt
| | - Wagdy M. Eldehna
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt
| | - David C. Gutierrez
- Department
of Pharmaceutical Sciences, Rangel College of Pharmacy, Health Science
Center, Texas A&M University, Kingsville, Kingsville, Texas 78363, United States
| | - Hany S. Ibrahim
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr
City, Cairo 11829, Egypt
| | - Mohey M. Elmazar
- Department
of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk City, Cairo 11837, Egypt
| | - Hamed I. Ali
- Department
of Pharmaceutical Sciences, Rangel College of Pharmacy, Health Science
Center, Texas A&M University, Kingsville, Kingsville, Texas 78363, United States
| |
Collapse
|
7
|
Rieger J, Kaessmeyer S, Al Masri S, Hünigen H, Plendl J. Endothelial cells and angiogenesis in the horse in health and disease-A review. Anat Histol Embryol 2020; 49:656-678. [PMID: 32639627 DOI: 10.1111/ahe.12588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/04/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
The cardiovascular system is the first functional organ in the embryo, and its blood vessels form a widespread conductive network within the organism. Blood vessels develop de novo, by the differentiation of endothelial progenitor cells (vasculogenesis) or by angiogenesis, which is the formation of new blood vessels from existing ones. This review presents an overview of the current knowledge on physiological and pathological angiogenesis in the horse including studies on equine endothelial cells. Principal study fields in equine angiogenesis research were identified: equine endothelial progenitor cells; equine endothelial cells and angiogenesis (heterogeneity, markers and assessment); endothelial regulatory molecules in equine angiogenesis; angiogenesis research in equine reproduction (ovary, uterus, placenta and conceptus, testis); angiogenesis research in pathological conditions (tumours, ocular pathologies, equine wound healing, musculoskeletal system and laminitis). The review also includes a table that summarizes in vitro studies on equine endothelial cells, either describing the isolation procedure or using previously isolated endothelial cells. A particular challenge of the review was that results published are fragmentary and sometimes even contradictory, raising more questions than they answer. In conclusion, angiogenesis is a major factor in several diseases frequently occurring in horses, but relatively few studies focus on angiogenesis in the horse. The challenge for the future is therefore to continue exploring new therapeutic angiogenesis strategies for horses to fill in the missing pieces of the puzzle.
Collapse
Affiliation(s)
- Juliane Rieger
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Sabine Kaessmeyer
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Salah Al Masri
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Hana Hünigen
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Khosravi A, Sharifi I, Tavakkoli H, Keyhani AR, Afgar A, Salari Z, Mosallanejad SS, Bamorovat M, Sharifi F, Hassanzadeh S, Sadeghi B, Dabiri S, Mortazaeizdeh A, Sheikhshoaie Z, Salarkia E. Vascular apoptosis associated with meglumine antimoniate: In vivo investigation of a chick embryo model. Biochem Biophys Res Commun 2018; 505:794-800. [PMID: 30297110 DOI: 10.1016/j.bbrc.2018.09.152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 09/22/2018] [Indexed: 01/01/2023]
Abstract
The vasculo-toxic effect of meglumine antimoniate (MA) was confirmed in our previous investigation. The current study investigates the association of this effect with altered VEGF-A and VEGF-R2 expression. Additional mechanisms by which MA causes vascular toxicity are not clearly understood. We hypothesized that MA may alter normal expression of apoptotic genes and cause vascular toxicity. The current investigation was designed to address this issue using a chick embryo model. Fertile chicken eggs were treated with MA and the extra-embryonic membrane (EEM) vasculature was evaluated by morphometric, molecular and immunohistochemistry assays. The results showed that MA not only altered apoptotic gene expression, but that this alteration may disturb the normal development of the vascular network and cause embryo malformation. The relative expression level of the CASP3, CASP7, CASP9, APAF1, AIF1 and TP53 genes increased in drug-exposed EEMs. In addition, IHC assay confirmed the low expression BCL2 and increased expression of Bax, which are associated with a high rate of apoptosis. We suggest that induction of an apoptotic signaling pathway can lead to vascular defects during embryo development and the consecutive cascade of events can lead to the embryo malformation.
Collapse
Affiliation(s)
- Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hadi Tavakkoli
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Ali Reza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Salari
- Obstetrics & Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Hassanzadeh
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Balal Sadeghi
- Food Hygiene and Public Health Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine &Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Mortazaeizdeh
- Afzalipour School of Medicine &Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Sheikhshoaie
- Afzalipour School of Medicine &Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|