1
|
Ji YW, Wen XY, Tang HP, Jin ZS, Su WT, Zhou L, Xia ZY, Xia ZY, Lei SQ. DJ-1: Potential target for treatment of myocardial ischemia-reperfusion injury. Biomed Pharmacother 2024; 179:117383. [PMID: 39232383 DOI: 10.1016/j.biopha.2024.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Ischemic heart disease (IHD) is a significant global health concern, resulting in high rates of mortality and disability among patients. Although coronary blood flow reperfusion is a key treatment for IHD, it often leads to acute myocardial ischemia-reperfusion injury (IRI). Current intervention strategies have limitations in providing adequate protection for the ischemic myocardium. DJ-1, originally known as a Parkinson's disease related protein, is a highly conserved cytoprotective protein. It is involved in enhancing mitochondrial function, scavenging reactive oxygen species (ROS), regulating autophagy, inhibiting apoptosis, modulating anaerobic metabolism, and exerting anti-inflammatory effects. DJ-1 is also required for protective strategies, such as ischemic preconditioning, ischemic postconditioning, remote ischemic preconditioning and pharmacological conditioning. Therefore, DJ-1 emerges as a potential target for the treatment of myocardial IRI. Our comprehensive review delves into its protective mechanisms in myocardial IRI and the structural foundations underlying its functions.
Collapse
Affiliation(s)
- Yan-Wei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - He-Peng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen-Shuai Jin
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wa-Ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheng-Yuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Mușat MI, Cătălin B, Hadjiargyrou M, Popa-Wagner A, Greșiță A. Advancing Post-Stroke Depression Research: Insights from Murine Models and Behavioral Analyses. Life (Basel) 2024; 14:1110. [PMID: 39337894 PMCID: PMC11433193 DOI: 10.3390/life14091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Post-stroke depression (PSD) represents a significant neuropsychiatric complication that affects between 39% and 52% of stroke survivors, leading to impaired recovery, decreased quality of life, and increased mortality. This comprehensive review synthesizes our current knowledge of PSD, encompassing its epidemiology, risk factors, underlying neurochemical mechanisms, and the existing tools for preclinical investigation, including animal models and behavioral analyses. Despite the high prevalence and severe impact of PSD, challenges persist in accurately modeling its complex symptomatology in preclinical settings, underscoring the need for robust and valid animal models to better understand and treat PSD. This review also highlights the multidimensional nature of PSD, where both biological and psychosocial factors interplay to influence its onset and course. Further, we examine the efficacy and limitations of the current animal models in mimicking the human PSD condition, along with behavioral tests used to evaluate depressive-like behaviors in rodents. This review also sets a new precedent by integrating the latest findings across multidisciplinary studies, thereby offering a unique and comprehensive perspective of existing knowledge. Finally, the development of more sophisticated models that closely replicate the clinical features of PSD is crucial in order to advance translational research and facilitate the discovery of future effective therapies.
Collapse
Affiliation(s)
- Mădălina Iuliana Mușat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Aurel Popa-Wagner
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Neurology, Vascular Neurology and Dementia, University of Medicine Essen, 45122 Essen, Germany
| | - Andrei Greșiță
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
3
|
Sandrelli F, Bisaglia M. Molecular and Physiological Determinants of Amyotrophic Lateral Sclerosis: What the DJ-1 Protein Teaches Us. Int J Mol Sci 2023; 24:ijms24087674. [PMID: 37108835 PMCID: PMC10144135 DOI: 10.3390/ijms24087674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset disease which causes the progressive degeneration of cortical and spinal motoneurons, leading to death a few years after the first symptom onset. ALS is mainly a sporadic disorder, and its causative mechanisms are mostly unclear. About 5-10% of cases have a genetic inheritance, and the study of ALS-associated genes has been fundamental in defining the pathological pathways likely also involved in the sporadic forms of the disease. Mutations affecting the DJ-1 gene appear to explain a subset of familial ALS forms. DJ-1 is involved in multiple molecular mechanisms, acting primarily as a protective agent against oxidative stress. Here, we focus on the involvement of DJ-1 in interconnected cellular functions related to mitochondrial homeostasis, reactive oxygen species (ROS) levels, energy metabolism, and hypoxia response, in both physiological and pathological conditions. We discuss the possibility that impairments in one of these pathways may affect the others, contributing to a pathological background in which additional environmental or genetic factors may act in favor of the onset and/or progression of ALS. These pathways may represent potential therapeutic targets to reduce the likelihood of developing ALS and/or slow disease progression.
Collapse
Affiliation(s)
| | - Marco Bisaglia
- Department of Biology, University of Padova, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35100 Padova, Italy
| |
Collapse
|
4
|
Chen M, Zhao J, Ding X, Qin Y, Wu X, Li X, Wang L, Jiang G. Ketogenic diet and calorie-restricted diet attenuate ischemic brain injury via UBR4 and downstream CamkⅡ/TAK1/JNK signaling. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
5
|
Wang T, Xue Y, Li Y, Gao S, Peng L, Zhao Y, Yu S. DJ-1 Protein Inhibits Apoptosis in Cerebral Ischemia by Regulating the Notch1 and Nuclear Factor Erythroid2-Related Factor 2 Signaling Pathways. Neuroscience 2022; 504:33-46. [PMID: 36167256 DOI: 10.1016/j.neuroscience.2022.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
DJ-1 plays a neuroprotective role in cerebral ischemia- reperfusion (I/R) injury and participates in the apoptosis of brain nerve cells, but the underlying mechanism is unclear. We explored the molecular pathways underlying this role using in vivo and in vitro approaches. Middle cerebral artery occlusion- reperfusion (MCAO/R) rat models and oxygen- glucose deprivation- reoxygenation (OGD/R) HAPI cell cultures were used to simulate cerebral ischemia-reperfusion injury. The interaction between DJ-1 and Notch1 was enhanced after MCAO/R in rats. After treatment of rats with DJ-1 siRNA, the expression of Notch1 and Nrf2 was down-regulated, and apoptosis was promoted. In contrast, the DJ-1 based peptide ND-13 upregulated the expression of Notch1 and Nrf2, and prevented apoptosis. In vitro, the Notch1 signaling pathway inhibitor DAPT reversed the neuroprotective effect of ND-13 and promoted apoptosis, weakened the interaction between DJ-1 and Notch1, and decreased the expression of proteins in the Notch1 and Nrf2 pathways. Thus, we found that DJ-1 inhibits apoptosis by regulating the Notch1 signaling pathway and Nrf2 expression in cerebral I/R injury. These results imply that DJ-1 is a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pathology, Chongqing Medical University, 400016 Chongqing, People's Republic of China; Department of Pathology, Lu'an Hospital of Anhui Medical University, 237000 Anhui, People's Republic of China
| | - Ying Xue
- Department of Pathology, Chongqing Medical University, 400016 Chongqing, People's Republic of China
| | - Yumei Li
- Department of Pathology, Chongqing Medical University, 400016 Chongqing, People's Republic of China
| | - Sihao Gao
- Children's Hospital, Chongqing Medical University, 400014 Chongqing, People's Republic of China
| | - Li Peng
- Department of Pathology, Chongqing Medical University, 400016 Chongqing, People's Republic of China
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, 400016 Chongqing, People's Republic of China
| | - Shanshan Yu
- Department of Pathology, Chongqing Medical University, 400016 Chongqing, People's Republic of China.
| |
Collapse
|
6
|
Pap D, Veres-Székely A, Szebeni B, Vannay Á. PARK7/DJ-1 as a Therapeutic Target in Gut-Brain Axis Diseases. Int J Mol Sci 2022; 23:6626. [PMID: 35743072 PMCID: PMC9223539 DOI: 10.3390/ijms23126626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
It is increasingly known that Parkinson's (PD) and Alzheimer's (AD) diseases occur more frequently in patients with inflammatory gastrointestinal diseases including inflammatory bowel (IBD) or celiac disease, indicating a pathological link between them. Although epidemiological observations suggest the existence of the gut-brain axis (GBA) involving systemic inflammatory and neural pathways, little is known about the exact molecular mechanisms. Parkinson's disease 7 (PARK7/DJ-1) is a multifunctional protein whose protective role has been widely demonstrated in neurodegenerative diseases, including PD, AD, or ischemic stroke. Recent studies also revealed the importance of PARK7/DJ-1 in the maintenance of the gut microbiome and also in the regulation of intestinal inflammation. All these findings suggest that PARK7/DJ-1 may be a link and also a potential therapeutic target in gut and brain diseases. In this review, therefore, we discuss our current knowledge about PARK7/DJ-1 in the context of GBA diseases.
Collapse
Grants
- TKP2020-NKA-09 Ministry for Innovation and Technology, Hungary
- TKP2020-NKA-13 Ministry for Innovation and Technology, Hungary
- K125470 National Research, Development and Innovation Office (NKFI), Hungary
- STIA-KFI-2020 Semmelweis Science and Innovation Fund, Hungary
- 20382-3/2018 FEKUTSTRAT National Research, Development and Innovation Office, Hungary
- STIA-KFI-2021 (1492-15/IKP/2022) Semmelweis Science and Innovation Fund, Hungary
- K124549 National Research, Development and Innovation Office (NKFI), Hungary
Collapse
Affiliation(s)
- Domonkos Pap
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Apor Veres-Székely
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Ádám Vannay
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
7
|
Zhao N, Li Y, Wang C, Xue Y, Peng L, Wang T, Zhao Y, Xu G, Yu S. DJ-1 activates the Atg5-Atg12-Atg16L1 complex via Sirt1 to influence microglial polarization and alleviate cerebral ischemia/reperfusion-induced inflammatory injury. Neurochem Int 2022; 157:105341. [PMID: 35429577 DOI: 10.1016/j.neuint.2022.105341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
|
8
|
Zhao N, Wang T, Peng L, Li Y, Zhao Y, Yu S. Attenuation of Inflammation by DJ-1 May Be a Drug Target for Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2021; 46:1470-1479. [PMID: 33683631 DOI: 10.1007/s11064-021-03288-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022]
Abstract
The pathophysiological process of cerebral apoplexy is complex, and there are currently no specific drugs for this condition. The study of effective drug targets has become a hot topic in neuroscience. Currently, adeno-associated viruses (AAVs) and polypeptides are commonly used in drug research. DJ-1 has been widely considered a neuroprotective target in recent times, but the mechanism of its neuroprotective effects is unclear. In this study, we simulated ischemic injury by establishing a middle cerebral artery occlusion reperfusion (MCAO/R) model to compare the protective effect of DJ-1 overexpression induced by DJ-1 AAV and ND-13 on cerebral ischemia-reperfusion (I/R) injury. We found that DJ-1 overexpression and ND-13 significantly reduced the neurological function scores and infarct volume and alleviated pathological damage to brain tissue. In addition, Western blotting, ELISA and immunofluorescence labeling revealed that DJ-1 overexpression and ND-13 increased the expression of the anti-inflammatory cytokines IL-10 and IL-4, and decreased the levels of the pro-inflammatory cytokines IL-1β and TNF-α. In summary, our study shows that DJ-1 overexpression and ND-13 can regulate the expression of inflammatory factors and alleviate cerebral I/R injury. Thus, DJ-1 is a possible drug target for cerebral I/R injury.
Collapse
Affiliation(s)
- Na Zhao
- Department of Pathology, Basic Medical College, Chongqing Medical University, Yixueyuan Road 1, Chongqing, 400016, People's Republic of China
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tingting Wang
- Department of Pathology, Basic Medical College, Chongqing Medical University, Yixueyuan Road 1, Chongqing, 400016, People's Republic of China
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Li Peng
- Department of Pathology, Basic Medical College, Chongqing Medical University, Yixueyuan Road 1, Chongqing, 400016, People's Republic of China
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yumei Li
- Department of Pathology, Basic Medical College, Chongqing Medical University, Yixueyuan Road 1, Chongqing, 400016, People's Republic of China
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yong Zhao
- Department of Pathology, Basic Medical College, Chongqing Medical University, Yixueyuan Road 1, Chongqing, 400016, People's Republic of China
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shanshan Yu
- Department of Pathology, Basic Medical College, Chongqing Medical University, Yixueyuan Road 1, Chongqing, 400016, People's Republic of China.
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
9
|
Yin L, Li H, Liu Z, Wu W, Cai J, Tang C, Dong Z. PARK7 Protects Against Chronic Kidney Injury and Renal Fibrosis by Inducing SOD2 to Reduce Oxidative Stress. Front Immunol 2021; 12:690697. [PMID: 34093596 PMCID: PMC8176114 DOI: 10.3389/fimmu.2021.690697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/06/2021] [Indexed: 11/27/2022] Open
Abstract
Renal fibrosis is the final common pathway to chronic kidney diseases regardless of etiology. Parkinson disease protein 7 (PARK7) is a multifunctional protein involved in various cellular processes, but its pathophysiological role in kidneys remain largely unknown. Here, we have determined the role of PARK7 in renal fibrosis and have further elucidated the underlying mechanisms by using the in vivo mouse model of unilateral ureteric obstruction (UUO) and the in vitro model of transforming growth factor-b (TGFB1) treatment of cultured kidney proximal tubular cells. PARK7 decreased markedly in atrophic kidney tubules in UUO mice, and Park7 deficiency aggravated UUO-induced renal fibrosis, tubular cell apoptosis, ROS production and inflammation. In vitro, TGFB1 treatment induced fibrotic changes in renal tubular cells, which was accompanied by alterations of PARK7. Park7 knockdown exacerbated TGFB1-induced fibrotic changes, cell apoptosis and ROS production, whereas Park7 overexpression or treatment with ND-13 (a PARK7-derived peptide) attenuated these TGFB1-induced changes. Mechanistically, PARK7 translocated into the nucleus of renal tubular cells following TGFB1 treatment or UUO, where it induced the expression of SOD2, an antioxidant enzyme. Taken together, these results indicate that PARK7 protects against chronic kidney injury and renal fibrosis by inducing SOD2 to reduce oxidative stress in tubular cells.
Collapse
Affiliation(s)
- Lijun Yin
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Honglin Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Wenwen Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, United States
| |
Collapse
|
10
|
De Lazzari F, Prag HA, Gruszczyk AV, Whitworth AJ, Bisaglia M. DJ-1: A promising therapeutic candidate for ischemia-reperfusion injury. Redox Biol 2021; 41:101884. [PMID: 33561740 PMCID: PMC7872972 DOI: 10.1016/j.redox.2021.101884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/31/2022] Open
Abstract
DJ-1 is a multifaceted protein with pleiotropic functions that has been implicated in multiple diseases, ranging from neurodegeneration to cancer and ischemia-reperfusion injury. Ischemia is a complex pathological state arising when tissues and organs do not receive adequate levels of oxygen and nutrients. When the blood flow is restored, significant damage occurs over and above that of ischemia alone and is termed ischemia-reperfusion injury. Despite great efforts in the scientific community to ameliorate this pathology, its complex nature has rendered it challenging to obtain satisfactory treatments that translate to the clinic. In this review, we will describe the recent findings on the participation of the protein DJ-1 in the pathophysiology of ischemia-reperfusion injury, firstly introducing the features and functions of DJ-1 and, successively highlighting the therapeutic potential of the protein. DJ-1 has been shown to confer protection in ischemia-reperfusion injury models. DJ-1 protection relies on the activation of antioxidant signaling pathways. DJ-1 regulates mitochondrial homeostasis during ischemia and reperfusion. DJ-1 seems to modulate ion homeostasis during ischemia and reperfusion. DJ-1 may represent a promising therapeutic target for ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Federica De Lazzari
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131, Padova, Italy
| | - Hiran A Prag
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Anja V Gruszczyk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Alexander J Whitworth
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Marco Bisaglia
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
11
|
Wang T, Zhao N, Peng L, Li Y, Huang X, Zhu J, Chen Y, Yu S, Zhao Y. DJ-1 Regulates Microglial Polarization Through P62-Mediated TRAF6/IRF5 Signaling in Cerebral Ischemia-Reperfusion. Front Cell Dev Biol 2020; 8:593890. [PMID: 33392187 PMCID: PMC7773790 DOI: 10.3389/fcell.2020.593890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022] Open
Abstract
The polarization of microglia/macrophage, the resident immune cells in the brain, plays an important role in the injury and repair associated with ischemia-reperfusion (I/R). Previous studies have shown that DJ-1 has a protective effect in cerebral I/R. We found that DJ-1 regulates the polarization of microglial cells/macrophages after cerebral I/R and explored the mechanism by which DJ-1 mediates microglial/macrophage polarization in cerebral I/R. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen and glucose deprivation/reoxygenation (OGD/R) models were used to simulate cerebral I/R in vivo and in vitro, respectively. DJ-1 siRNA and the DJ-1-based polypeptide ND13 were used to produce an effect on DJ-1, and the P62-specific inhibitor XRK3F2 was used to block the effect of P62. Enhancing the expression of DJ-1 induced anti-inflammatory (M2) polarization of microglia/macrophage, and the expression of the anti-inflammatory factors IL-10 and IL-4 increased. Interference with DJ-1 expression induced pro-inflammatory (M1) polarization of microglia/macrophage, and the expression of the proinflammatory factors TNF-α and IL-1β increased. DJ-1 inhibited the expression of P62, impeded the interaction between P62 and TRAF6, and blocked nuclear entry of IRF5. In subsequent experiments, XRK3F2 synergistically promoted the effect of DJ-1 on microglial/macrophage polarization, further attenuating the interaction between P62 and TRAF6.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Na Zhao
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Li Peng
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Yumei Li
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Xiaohuan Huang
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Jin Zhu
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Yanlin Chen
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Shanshan Yu
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Molecular Medical Laboratory, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Hill BG, Shiva S, Ballinger S, Zhang J, Darley-Usmar VM. Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biol Chem 2019; 401:3-29. [PMID: 31815377 PMCID: PMC6944318 DOI: 10.1515/hsz-2019-0268] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
It is now becoming clear that human metabolism is extremely plastic and varies substantially between healthy individuals. Understanding the biochemistry that underlies this physiology will enable personalized clinical interventions related to metabolism. Mitochondrial quality control and the detailed mechanisms of mitochondrial energy generation are central to understanding susceptibility to pathologies associated with aging including cancer, cardiac and neurodegenerative diseases. A precision medicine approach is also needed to evaluate the impact of exercise or caloric restriction on health. In this review, we discuss how technical advances in assessing mitochondrial genetics, cellular bioenergetics and metabolomics offer new insights into developing metabolism-based clinical tests and metabolotherapies. We discuss informatics approaches, which can define the bioenergetic-metabolite interactome and how this can help define healthy energetics. We propose that a personalized medicine approach that integrates metabolism and bioenergetics with physiologic parameters is central for understanding the pathophysiology of diseases with a metabolic etiology. New approaches that measure energetics and metabolomics from cells isolated from human blood or tissues can be of diagnostic and prognostic value to precision medicine. This is particularly significant with the development of new metabolotherapies, such as mitochondrial transplantation, which could help treat complex metabolic diseases.
Collapse
Affiliation(s)
- Bradford G. Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15143
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
13
|
DJ-1 in Parkinson's Disease: Clinical Insights and Therapeutic Perspectives. J Clin Med 2019; 8:jcm8091377. [PMID: 31484320 PMCID: PMC6780414 DOI: 10.3390/jcm8091377] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in the protein DJ-1 cause autosomal recessive forms of Parkinson’s disease (PD) and oxidized DJ-1 is found in the brains of idiopathic PD individuals. While several functions have been ascribed to DJ-1 (most notably protection from oxidative stress), its contribution to PD pathogenesis is not yet clear. Here we provide an overview of the clinical research to date on DJ-1 and the current state of knowledge regarding DJ-1 characterization in the human brain. The relevance of DJ-1 as a PD biomarker is also discussed, as are studies exploring DJ-1 as a possible therapeutic target for PD and neurodegeneration.
Collapse
|
14
|
Dysregulation in the Brain Protein Profile of Zebrafish Lacking the Parkinson’s Disease-Related Protein DJ-1. Mol Neurobiol 2019; 56:8306-8322. [DOI: 10.1007/s12035-019-01667-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
|