1
|
He X, Liao Y, Yu G, Wang S, Bao Y. Genome-wide association study reveals the underlying regulatory mechanisms of red blood traits in Anadara granosa. BMC Genomics 2024; 25:931. [PMID: 39367301 PMCID: PMC11452991 DOI: 10.1186/s12864-024-10857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Anadara granosa, commonly known as the blood clam, exhibits the unusual characteristic of having red blood among invertebrates. There is significant individual variation in blood color intensity among blood clams; individuals with vibrant red blood are deemed healthier and exhibit stronger stress resistance. However, the molecular basis underlying these red blood traits (RBTs) remains poorly understood. RESULTS In this study, we performed genome-wide association studies (GWAS) in a population of 300 A. granosa individuals, focusing on RBTs as measured by hemoglobin concentration (HC), total hemocyte count (THC), and heme concentration (HEME). Our analysis identified 18 single nucleotide polymorphisms (SNPs) correlated with RBTs, subsequently selected 117 candidate genes within a 100 kb flanking region of these SNPs, potentially involved in the RBTs of A. granosa. Moreover, we discovered two haplotype blocks specifically associated with THC and HEME. Further analysis revealed eight genes (Septin7, Hox5, Cbfa2t3, Avpr1b, Hhex, Eif2ak3, Glrk, and Rpl35a) that significantly influence RBTs. Notably, a heterozygous A/T mutation in the 3'UTR of Cbfa2t3 was found to promote blood cell proliferation. These genes suggest that the hematopoietic function plays a significant role in the variability of RBTs in A. granosa. CONCLUSIONS Our findings reveal a conservation of the regulatory mechanisms of RBTs between blood clams and vertebrates. The results not only provide a scientific basis for selective breeding in blood clams, but also offer deeper insights into the evolutionary mechanisms of RBTs in invertebrates.
Collapse
Affiliation(s)
- Xin He
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yushan Liao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Gaowei Yu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yongbo Bao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China.
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
2
|
Gonzalez-Menendez P, Phadke I, Olive ME, Joly A, Papoin J, Yan H, Galtier J, Platon J, Kang SWS, McGraw KL, Daumur M, Pouzolles M, Kondo T, Boireau S, Paul F, Young DJ, Lamure S, Mirmira RG, Narla A, Cartron G, Dunbar CE, Boyer-Clavel M, Porat-Shliom N, Dardalhon V, Zimmermann VS, Sitbon M, Dever TE, Mohandas N, Da Costa L, Udeshi ND, Blanc L, Kinet S, Taylor N. Arginine metabolism regulates human erythroid differentiation through hypusination of eIF5A. Blood 2023; 141:2520-2536. [PMID: 36735910 PMCID: PMC10273172 DOI: 10.1182/blood.2022017584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.
Collapse
Affiliation(s)
- Pedro Gonzalez-Menendez
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Ira Phadke
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
- Pediatric Oncology Branch, National Cancer Institute (NCI), Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, MD
| | - Meagan E. Olive
- Proteomics Platform, Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Axel Joly
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Julien Papoin
- Feinstein Institute for Medical Research, Manhasset, NY
- EA4666 HEMATIM, Université Picardie Jules Verne, Amiens, France
| | | | - Jérémy Galtier
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Jessica Platon
- EA4666 HEMATIM, Université Picardie Jules Verne, Amiens, France
| | | | - Kathy L. McGraw
- Laboratory of Receptor Biology and Gene Expression, NCI, CCR, NIH, Bethesda, MD
| | - Marie Daumur
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marie Pouzolles
- Pediatric Oncology Branch, National Cancer Institute (NCI), Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, MD
| | - Taisuke Kondo
- Pediatric Oncology Branch, National Cancer Institute (NCI), Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, MD
| | - Stéphanie Boireau
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Franciane Paul
- Department of Clinical Hematology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - David J. Young
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Sylvain Lamure
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Department of Clinical Hematology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Anupama Narla
- Division of Pediatric Hematology/Oncology, Stanford University, Stanford, CA
| | - Guillaume Cartron
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Department of Clinical Hematology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Myriam Boyer-Clavel
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | | | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Valérie S. Zimmermann
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Thomas E. Dever
- Section on Protein Biosynthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | | | - Lydie Da Costa
- Laboratory of Excellence GR-Ex, Paris, France
- EA4666 HEMATIM, Université Picardie Jules Verne, Amiens, France
- Service d'Hématologie Biologique (Hematology Diagnostic Laboratory), Assistance Publique–Hôpitaux de Paris, Robert Debr Hôpital, Paris, France
- Paris Cité University, Paris, France
| | - Namrata D. Udeshi
- Proteomics Platform, Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Lionel Blanc
- Feinstein Institute for Medical Research, Manhasset, NY
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
- Pediatric Oncology Branch, National Cancer Institute (NCI), Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
3
|
Gallego-Murillo JS, Yağcı N, Pinho EM, Wahl SA, van den Akker E, von Lindern M. Iron-loaded deferiprone can support full hemoglobinization of cultured red blood cells. Sci Rep 2023; 13:6960. [PMID: 37117329 PMCID: PMC10147612 DOI: 10.1038/s41598-023-32706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/31/2023] [Indexed: 04/30/2023] Open
Abstract
Iron, supplemented as iron-loaded transferrin (holotransferrin), is an essential nutrient in mammalian cell cultures, particularly for erythroid cultures. The high cost of human transferrin represents a challenge for large scale production of red blood cells (RBCs) and for cell therapies in general. We evaluated the use of deferiprone, a cell membrane-permeable drug for iron chelation therapy, as an iron carrier for erythroid cultures. Iron-loaded deferiprone (Def3·Fe3+, at 52 µmol/L) could eliminate the need for holotransferrin supplementation during in vitro expansion and differentiation of erythroblast cultures to produce large numbers of enucleated RBC. Only the first stage, when hematopoietic stem cells committed to erythroblasts, required holotransferrin supplementation. RBCs cultured in presence of Def3·Fe3+ or holotransferrin (1000 µg/mL) were similar with respect to differentiation kinetics, expression of cell-surface markers CD235a and CD49d, hemoglobin content, and oxygen association/dissociation. Replacement of holotransferrin supplementation by Def3·Fe3+ was also successful in cultures of myeloid cell lines (MOLM13, NB4, EOL1, K562, HL60, ML2). Thus, iron-loaded deferiprone can partially replace holotransferrin as a supplement in chemically defined cell culture medium. This holds promise for a significant decrease in medium cost and improved economic perspectives of the large scale production of red blood cells for transfusion purposes.
Collapse
Affiliation(s)
- Joan Sebastián Gallego-Murillo
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- Meatable, Alexander Fleminglaan 1, 2613AX, Delft, The Netherlands
| | - Nurcan Yağcı
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Eduardo Machado Pinho
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
- Department of Bioengineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sebastian Aljoscha Wahl
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- Lehrstuhl Für Bioverfahrenstechnik, Friedrich-Alexander Universität Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052, Erlangen, Germany
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Smirnova VV, Shestakova ED, Nogina DS, Mishchenko PA, Prikazchikova TA, Zatsepin TS, Kulakovskiy IV, Shatsky IN, Terenin IM. Ribosomal leaky scanning through a translated uORF requires eIF4G2. Nucleic Acids Res 2022; 50:1111-1127. [PMID: 35018467 PMCID: PMC8789081 DOI: 10.1093/nar/gkab1286] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
eIF4G2 (DAP5 or Nat1) is a homologue of the canonical translation initiation factor eIF4G1 in higher eukaryotes but its function remains poorly understood. Unlike eIF4G1, eIF4G2 does not interact with the cap-binding protein eIF4E and is believed to drive translation under stress when eIF4E activity is impaired. Here, we show that eIF4G2 operates under normal conditions as well and promotes scanning downstream of the eIF4G1-mediated 40S recruitment and cap-proximal scanning. Specifically, eIF4G2 facilitates leaky scanning for a subset of mRNAs. Apparently, eIF4G2 replaces eIF4G1 during scanning of 5′ UTR and the necessity for eIF4G2 only arises when eIF4G1 dissociates from the scanning complex. In particular, this event can occur when the leaky scanning complexes interfere with initiating or elongating 80S ribosomes within a translated uORF. This mechanism is therefore crucial for higher eukaryotes which are known to have long 5′ UTRs with highly frequent uORFs. We suggest that uORFs are not the only obstacle on the way of scanning complexes towards the main start codon, because certain eIF4G2 mRNA targets lack uORF(s). Thus, higher eukaryotes possess two distinct scanning complexes: the principal one that binds mRNA and initiates scanning, and the accessory one that rescues scanning when the former fails.
Collapse
Affiliation(s)
- Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ekaterina D Shestakova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Daria S Nogina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Polina A Mishchenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | | | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow 121205, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ivan V Kulakovskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, Sochi, Olimpiyskiy ave. b.1, 354349, Russia
| |
Collapse
|
5
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
6
|
Suresh S, Chen B, Zhu J, Golden RJ, Lu C, Evers BM, Novaresi N, Smith B, Zhan X, Schmid V, Jun S, Karacz CM, Peyton M, Zhong L, Wen Z, Sathe AA, Xing C, Behrens C, Wistuba II, Xiao G, Xie Y, Fu YX, Minna JD, Mendell JT, O'Donnell KA. eIF5B drives integrated stress response-dependent translation of PD-L1 in lung cancer. NATURE CANCER 2020; 1:533-545. [PMID: 32984844 PMCID: PMC7511089 DOI: 10.1038/s43018-020-0056-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022]
Abstract
Cancer cells express high levels of PD-L1, a ligand of the PD-1 receptor on T cells, allowing tumors to suppress T cell activity. Clinical trials utilizing antibodies that disrupt the PD-1/PD-L1 checkpoint have yielded remarkable results, with anti-PD-1 immunotherapy approved as first-line therapy for lung cancer patients. We used CRISPR-based screening to identify regulators of PD-L1 in human lung cancer cells, revealing potent induction of PD-L1 upon disruption of heme biosynthesis. Impairment of heme production activates the integrated stress response (ISR), allowing bypass of inhibitory upstream open reading frames in the PD-L1 5' UTR, resulting in enhanced PD-L1 translation and suppression of anti-tumor immunity. We demonstrated that ISR-dependent PD-L1 translation requires the translation initiation factor eIF5B. eIF5B overexpression, which is frequent in lung adenocarcinomas and associated with poor prognosis, is sufficient to induce PD-L1. These findings illuminate mechanisms of immune checkpoint activation and identify targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shruthy Suresh
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - BeiBei Chen
- Quantitative Biomedical Research Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jingfei Zhu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ryan J Golden
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Changzheng Lu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Bret M Evers
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Nicole Novaresi
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bethany Smith
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaowei Zhan
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Vanessa Schmid
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sojeong Jun
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chelsea M Karacz
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Michael Peyton
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lin Zhong
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhuoyu Wen
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Adwait Amod Sathe
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carmen Behrens
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Guanghua Xiao
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| | - John D Minna
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joshua T Mendell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kathryn A O'Donnell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Klann K, Tascher G, Münch C. Functional Translatome Proteomics Reveal Converging and Dose-Dependent Regulation by mTORC1 and eIF2α. Mol Cell 2020; 77:913-925.e4. [PMID: 31812349 PMCID: PMC7033560 DOI: 10.1016/j.molcel.2019.11.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022]
Abstract
Regulation of translation is essential during stress. However, the precise sets of proteins regulated by the key translational stress responses-the integrated stress response (ISR) and mTORC1-remain elusive. We developed multiplexed enhanced protein dynamics (mePROD) proteomics, adding signal amplification to dynamic-SILAC and multiplexing, to enable measuring acute changes in protein synthesis. Treating cells with ISR/mTORC1-modulating stressors, we showed extensive translatome modulation with ∼20% of proteins synthesized at highly reduced rates. Comparing translation-deficient sub-proteomes revealed an extensive overlap demonstrating that target specificity is achieved on protein level and not by pathway activation. Titrating cap-dependent translation inhibition confirmed that synthesis of individual proteins is controlled by intrinsic properties responding to global translation attenuation. This study reports a highly sensitive method to measure relative translation at the nascent chain level and provides insight into how the ISR and mTORC1, two key cellular pathways, regulate the translatome to guide cellular survival upon stress.
Collapse
Affiliation(s)
- Kevin Klann
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Frankfurt am Main, Germany; Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Alfedi G, Luffarelli R, Condò I, Pedini G, Mannucci L, Massaro DS, Benini M, Toschi N, Alaimo G, Panarello L, Pacini L, Fortuni S, Serio D, Malisan F, Testi R, Rufini A. Drug repositioning screening identifies etravirine as a potential therapeutic for friedreich's ataxia. Mov Disord 2019; 34:323-334. [PMID: 30624801 DOI: 10.1002/mds.27604] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Friedreich's ataxia is an autosomal-recessive cerebellar ataxia caused by mutation of the frataxin gene, resulting in decreased frataxin expression, mitochondrial dysfunction, and oxidative stress. Currently, no treatment is available for Friedreich's ataxia patients. Given that levels of residual frataxin critically affect disease severity, the main goal of a specific therapy for Friedreich's ataxia is to increase frataxin levels. OBJECTIVES With the aim to accelerate the development of a new therapy for Friedreich's ataxia, we took a drug repositioning approach to identify market-available drugs able to increase frataxin levels. METHODS Using a cell-based reporter assay to monitor variation in frataxin amount, we performed a high-throughput screening of a library containing 853 U.S. Food and Drug Administration-approved drugs. RESULTS Among the potentially interesting candidates isolated from the screening, we focused our attention on etravirine, an antiviral drug currently in use as an anti-human immunodeficiency virus therapy. Here, we show that etravirine can promote a significant increase in frataxin levels in cells derived from Friedreich's ataxia patients, by enhancing frataxin messenger RNA translation. Importantly, frataxin accumulation in treated patient cell lines is comparable to frataxin levels in unaffected carrier cells, suggesting that etravirine could be therapeutically relevant. Indeed, etravirine treatment restores the activity of the iron-sulphur cluster containing enzyme aconitase and confers resistance to oxidative stress in cells derived from Friedreich's ataxia patients. CONCLUSIONS Considering its excellent safety profile along with its ability to increase frataxin levels and correct some of the disease-related defects, etravirine represents a promising candidate as a therapeutic for Friedreich's ataxia. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Alfedi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Riccardo Luffarelli
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Ivano Condò
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giorgia Pedini
- Laboratory of Molecular Neurobiology, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Liliana Mannucci
- Laboratory of Molecular Neurobiology, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Damiano S Massaro
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Monica Benini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- Fratagene Therapeutics Srl, Rome, Italy
| | - Nicola Toschi
- Medical Physics Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, Massachusetts, USA
| | - Giorgia Alaimo
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- Fratagene Therapeutics Srl, Rome, Italy
| | - Luca Panarello
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Pacini
- Laboratory of Molecular Neurobiology, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Fortuni
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Dario Serio
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Florence Malisan
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Roberto Testi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- Fratagene Therapeutics Srl, Rome, Italy
| | - Alessandra Rufini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- Fratagene Therapeutics Srl, Rome, Italy
| |
Collapse
|
9
|
Tahmasebi S, Amiri M, Sonenberg N. Translational Control in Stem Cells. Front Genet 2019; 9:709. [PMID: 30697227 PMCID: PMC6341023 DOI: 10.3389/fgene.2018.00709] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Simultaneous measurements of mRNA and protein abundance and turnover in mammalian cells, have revealed that a significant portion of the cellular proteome is controlled by mRNA translation. Recent studies have demonstrated that both embryonic and somatic stem cells are dependent on low translation rates to maintain an undifferentiated state. Conversely, differentiation requires increased protein synthesis and failure to do so prevents differentiation. Notably, the low translation in stem cell populations is independent of the cell cycle, indicating that stem cells use unique strategies to decouple these fundamental cellular processes. In this chapter, we discuss different mechanisms used by stem cells to control translation, as well as the developmental consequences of translational deregulation.
Collapse
Affiliation(s)
- Soroush Tahmasebi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mehdi Amiri
- Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Moore KS, Yagci N, van Alphen F, Meijer AB, ‘t Hoen PAC, von Lindern M. Strap associates with Csde1 and affects expression of select Csde1-bound transcripts. PLoS One 2018; 13:e0201690. [PMID: 30138317 PMCID: PMC6107111 DOI: 10.1371/journal.pone.0201690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/22/2018] [Indexed: 02/06/2023] Open
Abstract
Erythropoiesis is regulated at many levels, including control of mRNA translation. Changing environmental conditions, such as hypoxia or the availability of nutrients and growth factors, require a rapid response enacted by the enhanced or repressed translation of existing transcripts. Cold shock domain protein e1 (Csde1/Unr) is an RNA-binding protein required for erythropoiesis and strongly upregulated in erythroblasts relative to other hematopoietic progenitors. The aim of this study is to identify the Csde1-containing protein complexes and investigate their role in post-transcriptional expression control of Csde1-bound transcripts. We show that Serine/Threonine kinase receptor-associated protein (Strap/Unrip), was the protein most strongly associated with Csde1 in erythroblasts. Strap is a WD40 protein involved in signaling and RNA splicing, but its role when associated with Csde1 is unknown. Reduced expression of Strap did not alter the pool of transcripts bound by Csde1. Instead, it altered the mRNA and/or protein expression of several Csde1-bound transcripts that encode for proteins essential for translational regulation during hypoxia, such as Hmbs, eIF4g3 and Pabpc4. Also affected by Strap knockdown were Vim, a Gata-1 target crucial for erythrocyte enucleation, and Elavl1, which stabilizes Gata-1 mRNA. The major cellular processes affected by both Csde1 and Strap were ribosome function and cell cycle control.
Collapse
Affiliation(s)
- Kat S. Moore
- Sanquin Research, Department of Hematopoiesis, and Landsteiner Laboratory Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nurcan Yagci
- Sanquin Research, Department of Hematopoiesis, and Landsteiner Laboratory Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Floris van Alphen
- Sanquin Research, Department of Research Facilities, Amsterdam, The Netherlands
| | - Alexander B. Meijer
- Sanquin Research, Department of Research Facilities, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Peter A. C. ‘t Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marieke von Lindern
- Sanquin Research, Department of Hematopoiesis, and Landsteiner Laboratory Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
11
|
Moore KS, von Lindern M. RNA Binding Proteins and Regulation of mRNA Translation in Erythropoiesis. Front Physiol 2018; 9:910. [PMID: 30087616 PMCID: PMC6066521 DOI: 10.3389/fphys.2018.00910] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Control of gene expression in erythropoiesis has to respond to signals that may emerge from intracellular processes or environmental factors. Control of mRNA translation allows for relatively rapid modulation of protein synthesis from the existing transcriptome. For instance, the protein synthesis rate needs to be reduced when reactive oxygen species or unfolded proteins accumulate in the cells, but also when iron supply is low or when growth factors are lacking in the environment. In addition, regulation of mRNA translation can be important as an additional layer of control on top of gene transcription, in which RNA binding proteins (RBPs) can modify translation of a set of transcripts to the cell’s actual protein requirement. The 5′ and 3′ untranslated regions of mRNA (5′UTR, 3′UTR) contain binding sites for general and sequence specific translation factors. They also contain secondary structures that may hamper scanning of the 5′UTR by translation complexes or may help to recruit translation factors. In addition, the term 5′UTR is not fully correct because many transcripts contain small open reading frames in their 5′UTR that are translated and contribute to regulation of mRNA translation. It is becoming increasingly clear that the transcriptome only partly predicts the proteome. The aim of this review is (i) to summarize how the availability of general translation initiation factors can selectively regulate transcripts because the 5′UTR contains secondary structures or short translated sequences, (ii) to discuss mechanisms that control the length of the mRNA poly(A) tail in relation to mRNA translation, and (iii) to give examples of sequence specific RBPs and their targets. We focused on transcripts and RBPs required for erythropoiesis. Whereas differentiation of erythroblasts to erythrocytes is orchestrated by erythroid transcription factors, the production of erythrocytes needs to respond to the availability of growth factors and nutrients, particularly the availability of iron.
Collapse
Affiliation(s)
- Kat S Moore
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|