1
|
Tamaroff J, Joy N, Damon B, Markham LW, Donnelly T, Su K, Buchowski MS, Crum K, Slaughter JC, Xu M, Burnette WB, Soslow J. Physical Activity Correlates With Skeletal Muscle MRI Findings in Individuals With Duchenne Muscular Dystrophy. Muscle Nerve 2025; 71:353-359. [PMID: 39719383 PMCID: PMC11799400 DOI: 10.1002/mus.28323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/26/2024]
Abstract
INTRODUCTION/AIMS Skeletal muscle magnetic resonance imaging (MRI) is a validated noninvasive tool to assess Duchenne muscular dystrophy (DMD) progression. There is interest in finding DMD biomarkers that decrease the burden of clinical trial participation, such as wearable devices. Our aim was to evaluate the relationship between activity, via accelerometry, and skeletal muscle MRI, particularly T2 mapping. METHODS DMD children and young adults completed skeletal muscle MRI and were asked to wear an accelerometer on the dominant wrist for 7 days. MRI data included fat-suppressed transverse relaxation time (T2) mapping of the calves and longitudinal relaxation time (T1) mapping. Activity was assessed as vector magnitudes (VMs) and fraction of time (FOT) in activity groups (sedentary 1 or 2, low 1 or 2, moderate-to-vigorous physical activity (MVPA)). RESULTS Participants (n = 22; median age 11.4 years, 41% ambulatory) wore the accelerometer for a median of 7 days. Longer T2 in multiple lower extremity muscles was negatively correlated with VMs per minute (tibialis posterior Spearman's rho = -0.68, p < 0.001), even when accounting for age, ambulatory status, or glucocorticoid use. Longer T2 of the tibialis posterior was positively correlated with FOT in sedentary 1 (rho = 0.49, p = 0.02) and negatively correlated with FOT in higher activity levels (low 1 (rho = -0.58, p = 0.004), low 2 (rho = -0.67, p = 0.002), MVPA (rho = -0.7, p < 0.001)). DISCUSSION In individuals with DMD, longer T2 on skeletal muscle MRI of the calves moderately correlated with lower activity levels indicating the potential use of home accelerometry as a future clinical trial biomarker of skeletal muscle health and progression in DMD.
Collapse
Affiliation(s)
- Jaclyn Tamaroff
- Division of Pediatric Endocrinology and DiabetesVanderbilt University Medical CenterNashvilleTennesseeUS
| | - Nicholas Joy
- Division of Pediatric CardiologyVanderbilt University Medical CenterNashvilleTennesseeUS
| | - Bruce Damon
- Vanderbilt University Institute of Imaging Science and the Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUS
- Departments of Biomedical Engineering and Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUS
- Carle Clinical Imaging Research ProgramStephens Family Clinical Research Institute, Carle HealthUrbanaIllinoisUS
| | - Larry W. Markham
- Division of Pediatric CardiologyRiley Hospital for Children and Indiana University School of MedicineIndianapolisIndianaUS
| | - Thomas Donnelly
- Division of Pediatric CardiologyVanderbilt University Medical CenterNashvilleTennesseeUS
| | - Karry Su
- Division of Pediatric CardiologyVanderbilt University Medical CenterNashvilleTennesseeUS
| | - Maciej S. Buchowski
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUS
| | - Kimberly Crum
- Division of Pediatric CardiologyVanderbilt University Medical CenterNashvilleTennesseeUS
| | - James C. Slaughter
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUS
| | - Meng Xu
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUS
| | - W. Bryan Burnette
- Division of Pediatric NeurologyVanderbilt University Medical CenterNashvilleTennesseeUS
| | - Jonathan Soslow
- Division of Pediatric CardiologyVanderbilt University Medical CenterNashvilleTennesseeUS
| |
Collapse
|
2
|
Sherlock SP, McCrady A, Palmer J, Aghamolaey H, Ahlgren A, Widholm P, Dahlqvist Leinhard O, Karlsson M. Relationship Between Quantitative Magnetic Resonance Imaging Measures and Functional Changes in Patients With Duchenne Muscular Dystrophy. Muscle Nerve 2025; 71:343-352. [PMID: 39713935 PMCID: PMC11799397 DOI: 10.1002/mus.28321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION/AIMS Improved methodologies to monitor the progression of Duchenne muscular dystrophy (DMD) are needed, especially in the context of clinical trials. We report changes in muscle magnetic resonance imaging (MRI) parameters in participants with DMD, including changes in lean muscle volume (LMV), muscle fat fraction (MFF), and muscle fat infiltration (MFI) and their relationship to changes in functional parameters. METHODS MRI data were obtained as part of a clinical study (NCT02310763) of domagrozumab, an antibody-targeting myostatin that negatively regulates skeletal muscle mass. This post hoc analysis evaluated participants with Dixon MRI data and corresponding functional data at baseline and weeks 49 and 97. Images were analyzed to evaluate changes in adductors, hamstrings, and quadriceps. RESULTS There was a positive correlation between increases in LMV and function. LMV changes in adductors (R = 0.51) and quadriceps (R = 0.54) showed a stronger correlation with function than LMV changes in hamstrings (R = 0.30). There was a negative correlation between MFF and MFI, respectively, and function in adductors (R = -0.57, R = -0.42), quadriceps (R = -0.59, R = -0.50), and hamstrings (R = -0.53, R = -048). Participants with preserved North Star Ambulatory Assessment scores had high total LMV (LMVtot) and low total MFI (MFItot). Low ratios of LMVtot to MFItot, or participants with small LMVtot and high MFItot, appeared to have a rapid decline in function and loss of ambulation. DISCUSSION These findings support the use of MRI biomarkers as potential surrogate endpoints in clinical trials of patients with DMD. TRIAL REGISTRATION ClinicalTrials.gov identifiers: NCT02310763.
Collapse
Affiliation(s)
| | - Allison McCrady
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Haleh Aghamolaey
- Department of StatisticsQuanticate Clinical Research OrganizationOntarioCanada
| | | | | | | | | |
Collapse
|
3
|
Paik JJ, Christopher-Stine L, Boesen M, Carrino JA, Eggleton SP, Denis D, Kubassova O. The utility of muscle magnetic resonance imaging in idiopathic inflammatory myopathies: a scoping review. Front Immunol 2025; 16:1455867. [PMID: 39931069 PMCID: PMC11808160 DOI: 10.3389/fimmu.2025.1455867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are muscle disorders characterized by proximal weakness of the skeletal muscles, inflammation in muscle, and autoimmunity. The classic subgroups in IIMs include dermatomyositis, inclusion body myositis, immune-mediated necrotizing myopathy, and polymyositis (PM). PM is increasingly recognized as a rare subtype and often included in overlap myositis, the antisynthetase syndrome when no rash is present, or misdiagnosed inclusion body myositis. Magnetic resonance imaging (MRI) has played an increasingly important role in IIM diagnosis and assessment. Although conventional MRI provides qualitative information that is helpful for diagnosis, its application for the quantitative assessment of disease activity is challenging. Therefore, advanced quantitative MRI techniques have been implemented in the past 10 years to highlight potential new applications of disease monitoring in IIM. The aim of this review is to examine the role of quantitative MRI techniques in evaluating the key imaging features of IIM, mainly muscle edema and muscle damage (fatty replacement and/or muscle atrophy).
Collapse
Affiliation(s)
- Julie J. Paik
- Department of Myositis, Johns Hopkins University, Baltimore, MD, United States
| | | | - Mikael Boesen
- IAG, Image Analysis Group, London, United Kingdom
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - John A. Carrino
- Department of Radiology and Imaging, Weill Cornell Medicine, Hospital for Special Surgery, New York, NY, United States
| | - S. Peter Eggleton
- Global Clinical Development, Merck Serono Ltd.,
Feltham, United Kingdom, an affiliate of the healthcare business of Merck KGaA
| | - Deborah Denis
- Global Clinical Development, EMD Serono Research & Development Institute,
Inc., Billerica, MA, United States, an affiliate of the healthcare business of Merck KGaA
| | | |
Collapse
|
4
|
Yoon DY, Daniels MJ, Willcocks RJ, Triplett WT, Morales JF, Walter GA, Rooney WD, Vandenborne K, Kim S. Five multivariate Duchenne muscular dystrophy progression models bridging six-minute walk distance and MRI relaxometry of leg muscles. J Pharmacokinet Pharmacodyn 2024; 51:671-683. [PMID: 38609673 PMCID: PMC11470134 DOI: 10.1007/s10928-024-09910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
The study aimed to provide quantitative information on the utilization of MRI transverse relaxation time constant (MRI-T2) of leg muscles in DMD clinical trials by developing multivariate disease progression models of Duchenne muscular dystrophy (DMD) using 6-min walk distance (6MWD) and MRI-T2. Clinical data were collected from the prospective and longitudinal ImagingNMD study. Disease progression models were developed by a nonlinear mixed-effect modeling approach. Univariate models of 6MWD and MRI-T2 of five muscles were developed separately. Age at assessment was the time metric. Multivariate models were developed by estimating the correlation of 6MWD and MRI-T2 model variables. Full model estimation approach for covariate analysis and five-fold cross validation were conducted. Simulations were performed to compare the models and predict the covariate effects on the trajectories of 6MWD and MRI-T2. Sigmoid Imax and Emax models best captured the profiles of 6MWD and MRI-T2 over age. Steroid use, baseline 6MWD, and baseline MRI-T2 were significant covariates. The median age at which 6MWD is half of its maximum decrease in the five models was similar, while the median age at which MRI-T2 is half of its maximum increase varied depending on the type of muscle. The models connecting 6MWD and MRI-T2 successfully quantified how individual characteristics alter disease trajectories. The models demonstrate a plausible correlation between 6MWD and MRI-T2, supporting the use of MRI-T2. The developed models will guide drug developers in using the MRI-T2 to most efficient use in DMD clinical trials.
Collapse
Affiliation(s)
- Deok Yong Yoon
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Michael J Daniels
- Department of Statistics, University of Florida, Gainesville, FL, USA
| | | | - William T Triplett
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Juan Francisco Morales
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Glenn A Walter
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Sarah Kim
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA.
| |
Collapse
|
5
|
Lavalle S, Scapaticci R, Masiello E, Messina C, Aliprandi A, Mario Salerno V, Russo A, Pegreffi F. Advancements in sarcopenia diagnosis: from imaging techniques to non-radiation assessments. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1467155. [PMID: 39445171 PMCID: PMC11496100 DOI: 10.3389/fmedt.2024.1467155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Sarcopenia is a prevalent condition with significant clinical implications, and it is expected to escalate globally, demanding for effective diagnostic strategies, possibly at an early stage of the disease. Imaging techniques play a pivotal role in comprehensively evaluating sarcopenia, offering insights into both muscle quantity and quality. Among all the imaging techniques currently used for the diagnosis and follow up of sarcopenia, it is possible to distinguish two classes: Rx based techniques, using ionizing radiations, and non-invasive techniques, which are based on the use of safe and low risk diagnostic procedures. Dual-energy x-ray Absorptiometry and Computed Tomography, while widely utilized, entail radiation exposure concerns. Ultrasound imaging offers portability, real-time imaging, and absence of ionizing radiation, making it a promising tool Magnetic Resonance Imaging, particularly T1-weighted and Dixon sequences, provides cross- sectional and high-resolution images and fat-water separation capabilities, facilitating precise sarcopenia quantification. Bioelectrical Impedance Analysis (BIA), a non-invasive technique, estimates body composition, including muscle mass, albeit influenced by hydration status. Standardized protocols, such as those proposed by the Sarcopenia through Ultrasound (SARCUS) Working Group, are imperative for ensuring consistency across assessments. Future research should focus on refining these techniques and harnessing the potential of radiomics and artificial intelligence to enhance diagnostic accuracy and prognostic capabilities in sarcopenia.
Collapse
Affiliation(s)
- Salvatore Lavalle
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Rosa Scapaticci
- Institute for the Electromagnetic Sensing of the Environment, National Research Council of Italy, Naples, Italy
| | - Edoardo Masiello
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmelo Messina
- Department of Radiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | - Arcangelo Russo
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Francesco Pegreffi
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| |
Collapse
|
6
|
Peng F, Tang D, Qing W, Chen W, Li S, Guo Y, Luo G, Zhao H. Utilization of Multi-Parametric Quantitative Magnetic Resonance Imaging in the Early Diagnosis of Duchenne Muscular Dystrophy. J Magn Reson Imaging 2024; 60:1402-1413. [PMID: 38095338 DOI: 10.1002/jmri.29182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND It is challenging to diagnose suspected Duchenne muscular dystrophy (DMD) patients in the very early stage of the disease. More evidence is needed to demonstrate the potential of quantitative MRI (qMRI) in precisely identifying patients before substantial physical decline occurs. PURPOSE To assess the early diagnostic performance of multi-parametric qMRI for DMD patients, and the ability to identify DMD patients with mild functional decline. STUDY TYPE Prospective. SUBJECTS One hundred and forty DMD subjects (9.0 ± 2.2 years old), 24 male healthy controls (HCs) (9.2 ± 2.5 years old). FIELD STRENGTH/SEQUENCE 3.0 T/3-point Dixon, T1-mapping, and T2-mapping. ASSESSMENT qMRI measurements (fat fraction [FF], T1, and T2) of 11 thigh muscles (rectus femoris [RF], vastus lateralis [VL], vastus intermedius, vastus medialis, gracilis, sartorius, adductor longus, adductor magnus [AM], semitendinosus, semimembranosus, biceps femoris long head [BFLH]) on the right side were conducted. NorthStar ambulatory assessment (NSAA) score used to evaluate the function of DMD patients and divided them into three subgroups: mild (76-100 score), moderate (51-75 score), and severe (0-50 score) functional decline. STATISTICAL TESTS Independent t-test, ANOVA analysis, and receiver operating characteristic (ROC) curves. A P-value <0.05 was considered statistically significant. RESULTS Compared with HCs, FF and T2 were significantly higher in the group of all DMD patients, while T1 was significantly lower. The combination of T1 and T2 in RF, VL, AM, and BFLH achieved excellent area under curve (AUCs) (0.967-0.992) in differentiating five DMD patients without abnormal fat infiltration from HCs. Overall, T2 reached higher AUCs than FF and T1 in distinguishing DMD with mild functional decline from HCs, whereas FF achieved higher AUCs than T1 and T2 in distinguishing three DMD subgroups with functional decline. DATA CONCLUSION Multi-parametric qMRI demonstrate effective diagnostic capabilities for DMD patients in the early stage of the disease, and can identify patients with mild physical decline. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Fei Peng
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deqiu Tang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Weipeng Qing
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Chen
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuhao Li
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guanghua Luo
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
7
|
Riem L, DuCharme O, Cousins M, Feng X, Kenney A, Morris J, Tapscott SJ, Tawil R, Statland J, Shaw D, Wang L, Walker M, Lewis L, Jacobs MA, Leung DG, Friedman SD, Blemker SS. AI driven analysis of MRI to measure health and disease progression in FSHD. Sci Rep 2024; 14:15462. [PMID: 38965267 PMCID: PMC11224366 DOI: 10.1038/s41598-024-65802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) affects roughly 1 in 7500 individuals. While at the population level there is a general pattern of affected muscles, there is substantial heterogeneity in muscle expression across- and within-patients. There can also be substantial variation in the pattern of fat and water signal intensity within a single muscle. While quantifying individual muscles across their full length using magnetic resonance imaging (MRI) represents the optimal approach to follow disease progression and evaluate therapeutic response, the ability to automate this process has been limited. The goal of this work was to develop and optimize an artificial intelligence-based image segmentation approach to comprehensively measure muscle volume, fat fraction, fat fraction distribution, and elevated short-tau inversion recovery signal in the musculature of patients with FSHD. Intra-rater, inter-rater, and scan-rescan analyses demonstrated that the developed methods are robust and precise. Representative cases and derived metrics of volume, cross-sectional area, and 3D pixel-maps demonstrate unique intramuscular patterns of disease. Future work focuses on leveraging these AI methods to include upper body output and aggregating individual muscle data across studies to determine best-fit models for characterizing progression and monitoring therapeutic modulation of MRI biomarkers.
Collapse
Affiliation(s)
- Lara Riem
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Olivia DuCharme
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Matthew Cousins
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Xue Feng
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Allison Kenney
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Jacob Morris
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | | | - Rabi Tawil
- University of Rochester Medical Center, Rochester, NY, USA
| | - Jeff Statland
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Dennis Shaw
- Seattle Children's Hospital, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Leo Wang
- University of Washington, Seattle, WA, USA
| | | | - Leann Lewis
- University of Rochester Medical Center, Rochester, NY, USA
| | - Michael A Jacobs
- University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Rice University, Houston, TX, USA
| | - Doris G Leung
- Kennedy Krieger Institute, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Silvia S Blemker
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA.
- University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Mercuri E, Vilchez JJ, Boespflug-Tanguy O, Zaidman CM, Mah JK, Goemans N, Müller-Felber W, Niks EH, Schara-Schmidt U, Bertini E, Comi GP, Mathews KD, Servais L, Vandenborne K, Johannsen J, Messina S, Spinty S, McAdam L, Selby K, Byrne B, Laverty CG, Carroll K, Zardi G, Cazzaniga S, Coceani N, Bettica P, McDonald CM. Safety and efficacy of givinostat in boys with Duchenne muscular dystrophy (EPIDYS): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 2024; 23:393-403. [PMID: 38508835 DOI: 10.1016/s1474-4422(24)00036-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Duchenne muscular dystrophy, the most common childhood muscular dystrophy, is caused by dystrophin deficiency. Preclinical and phase 2 study data have suggested that givinostat, a histone deacetylase inhibitor, might help to counteract the effects of this deficiency. We aimed to evaluate the safety and efficacy of givinostat in the treatment of Duchenne muscular dystrophy. METHODS This multicentre, randomised, double-blind, placebo-controlled, phase 3 trial was done at 41 tertiary care sites in 11 countries. Eligible participants were ambulant, male, and aged at least 6 years, had a genetically confirmed diagnosis of Duchenne muscular dystrophy, completed two four-stair climb assessments with a mean of 8 s or less (≤1 s variance), had a time-to-rise of at least 3 s but less than 10 s, and had received systemic corticosteroids for at least 6 months. Participating boys were randomly assigned (2:1, allocated according to a list generated by the interactive response technology provider) to receive either oral givinostat or matching placebo twice a day for 72 weeks, stratified by concomitant steroid use. Boys, investigators, and site and sponsor staff were masked to treatment assignment. The dose was flexible, based on weight, and was reduced if not tolerated. Boys were divided into two groups on the basis of their baseline vastus lateralis fat fraction (VLFF; measured by magnetic resonance spectroscopy): group A comprised boys with a VLFF of more than 5% but no more than 30%, whereas group B comprised boys with a VLFF of 5% or less, or more than 30%. The primary endpoint compared the effects of givinostat and placebo on the change in results of the four-stair climb assessment between baseline and 72 weeks, in the intention-to-treat, group A population. Safety was assessed in all randomly assigned boys who received at least one dose of study drug. When the first 50 boys in group A completed 12 months of treatment, an interim futility assessment was conducted, after which the sample size was adapted using masked data from the four-stair climb assessments. Furthermore, the starting dose of givinostat was reduced following a protocol amendment. This trial is registered with ClinicalTrials.gov, NCT02851797, and is complete. FINDINGS Between June 6, 2017, and Feb 22, 2022, 359 boys were assessed for eligibility. Of these, 179 were enrolled into the study (median age 9·8 years [IQR 8·1-11·0]), all of whom were randomly assigned (118 to receive givinostat and 61 to receive placebo); 170 (95%) boys completed the study. Of the 179 boys enrolled, 120 (67%) were in group A (81 givinostat and 39 placebo); of these, 114 (95%) completed the study. For participants in group A, comparing the results of the four-stair climb assessment at 72 weeks and baseline, the geometric least squares mean ratio was 1·27 (95% CI 1·17-1·37) for boys receiving givinostat and 1·48 (1·32-1·66) for those receiving placebo (ratio 0·86, 95% CI 0·745-0·989; p=0·035). The most common adverse events in the givinostat group were diarrhoea (43 [36%] of 118 boys vs 11 [18%] of 61 receiving placebo) and vomiting (34 [29%] vs 8 [13%]); no treatment-related deaths occurred. INTERPRETATION Among ambulant boys with Duchenne muscular dystrophy, results of the four-stair climb assessment worsened in both groups over the study period; however, the decline was significantly smaller with givinostat than with placebo. The dose of givinostat was reduced after an interim safety analysis, but no new safety signals were reported. An ongoing extension study is evaluating the long-term safety and efficacy of givinostat in patients with Duchenne muscular dystrophy. FUNDING Italfarmaco.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Universita Cattolica del Sacro Cuore, Rome, Italy; Centro Clinico Nemo Fondazione Policlinico Gemelli IRCCS, Rome, Italy.
| | - Juan J Vilchez
- Servicio de Neurología, Neuromuscular Unit, CIBERER, EURO-RN-NMD, Hospital Universitario y Politécnico La Fe Valencia, Valencia, Spain
| | - Odile Boespflug-Tanguy
- I-Motion, Institut de Myologie, Hôpital Armand-Trousseau, APHP, Sorbonne Université, Paris, France; Université Paris Cité UMR INSERM 1141, Hôpital Robert Debré, Paris, France
| | | | - Jean K Mah
- Division of Pediatric Neurology, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathalie Goemans
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Wolfgang Müller-Felber
- LMU Munich, University Hospital, Hauner Children's Hospital, Pediatric Neurology and Developmental Medicine, Munich, Germany
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands; Duchenne Center Netherlands, Netherlands
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Children's University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giacomo P Comi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Milan, Italy; Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Katherine D Mathews
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Laurent Servais
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Neuromuscular Reference Center, Department of Paediatrics, University and University Hospital of Liege, Belgium
| | - Krista Vandenborne
- ImagingDMD, University of Florida, Gainesville, FL, USA; Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Jessika Johannsen
- University Medical Center Hamburg-Eppendorf, Department of Pediatrics, Hamburg, Germany
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, Unit of Neurodegenerative Diseases, AOU Policlinico G Martino, University of Mesina, Messina, Italy
| | - Stefan Spinty
- Department of Paediatric Neurology, Alder Hey Children's Hospital NHS Trust, Liverpool, UK
| | - Laura McAdam
- Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Kathryn Selby
- The University of British Columbia, Children's and Women's Health Centre, Vancouver, BC, Canada
| | - Barry Byrne
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Chamindra G Laverty
- Department of Neuroscience, University of California, San Diego, San Diego, CA, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Willcocks RJ, Barnard AM, Daniels MJ, Forbes SC, Triplett WT, Brandsema JF, Finanger EL, Rooney WD, Kim S, Wang D, Lott DJ, Senesac CR, Walter GA, Sweeney HL, Vandenborne K. Clinical importance of changes in magnetic resonance biomarkers for Duchenne muscular dystrophy. Ann Clin Transl Neurol 2024; 11:67-78. [PMID: 37932907 PMCID: PMC10791017 DOI: 10.1002/acn3.51933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE Magnetic resonance (MR) measures of muscle quality are highly sensitive to disease progression and predictive of meaningful functional milestones in Duchenne muscular dystrophy (DMD). This investigation aimed to establish the reproducibility, responsiveness to disease progression, and minimum clinically important difference (MCID) for multiple MR biomarkers at different disease stages in DMD using a large natural history dataset. METHODS Longitudinal MR imaging and spectroscopy outcomes and ambulatory function were measured in 180 individuals with DMD at three sites, including repeated measurements on two separate days (within 1 week) in 111 participants. These data were used to calculate day-to-day reproducibility, responsiveness (standardized response mean, SRM), minimum detectable change, and MCID. A survey of experts was also performed. RESULTS MR spectroscopy fat fraction (FF), as well as MR imaging transverse relaxation time (MRI-T2 ), measures performed in multiple leg muscles, and had high reproducibility (Pearson's R > 0.95). Responsiveness to disease progression varied by disease stage across muscles. The average FF from upper and lower leg muscles was highly responsive (SRM > 0.9) in both ambulatory and nonambulatory individuals. MCID estimated from the distribution of scores, by anchoring to function, and via expert opinion was between 0.01 and 0.05 for FF and between 0.8 and 3.7 ms for MRI-T2 . INTERPRETATION MR measures of FF and MRI T2 are reliable and highly responsive to disease progression. The MCID for MR measures is less than or equal to the typical annualized change. These results confirm the suitability of these measures for use in DMD and potentially other muscular dystrophies.
Collapse
Affiliation(s)
- Rebecca J. Willcocks
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - Alison M. Barnard
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | | | - Sean C. Forbes
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - William T. Triplett
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - John F. Brandsema
- Division of NeurologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Erika L. Finanger
- Department of Pediatrics and NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - William D. Rooney
- Advanced Imaging Research CenterOregon Health & Science UniversityPortlandOregonUSA
| | - Sarah Kim
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Dah‐Jyuu Wang
- Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Donovan J. Lott
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - Claudia R. Senesac
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Krista Vandenborne
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
10
|
Song Y, Xu K, Xu HY, Guo YK, Xu R, Fu H, Yuan WF, Zhou ZQ, Xu T, Chen XJ, Wang YL, Fu C, Zhou H, Cai XT, Li XS. Longitudinal changes in magnetic resonance imaging biomarkers of the gluteal muscle groups and functional ability in Duchenne muscular dystrophy: a 12-month cohort study. Pediatr Radiol 2023; 53:2672-2682. [PMID: 37889296 PMCID: PMC10697878 DOI: 10.1007/s00247-023-05791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Quantitative magnetic resonance imaging (MRI) is considered an objective biomarker of Duchenne muscular dystrophy (DMD), but the longitudinal progression of MRI biomarkers in gluteal muscle groups and their predictive value for future motor function have not been described. OBJECTIVE To explore MRI biomarkers of the gluteal muscle groups as predictors of motor function decline in DMD by characterizing the progression over 12 months. MATERIALS AND METHODS A total of 112 participants with DMD were enrolled and underwent MRI examination of the gluteal muscles to determine fat fraction and longitudinal relaxation time (T1). Investigations were based on gluteal muscle groups including flexors, extensors, adductors, and abductors. The North Star Ambulatory Assessment and timed functional tests were performed. All participants returned for follow-up at an average of 12 months and were divided into two subgroups (functional stability/decline groups) based on changes in timed functional tests. Univariable and multivariable logistic regression methods were used to explore the risk factors associated with future motor function decline. RESULTS For the functional decline group, all T1 values decreased, while fat fraction values increased significantly over 12 months (P<0.05). For the functional stability group, only the fat fraction of the flexors and abductors increased significantly over 12 months (P<0.05). The baseline T1 value was positively correlated with North Star Ambulatory Assessment and negatively correlated with timed functional tests at the 12-month follow-up (P<0.001), while the baseline fat fraction value was negatively correlated with North Star Ambulatory Assessment and positively correlated with timed functional tests at the 12-month follow-up (P<0.001). Multivariate regression showed that increased fat fraction of the abductors was associated with future motor function decline (model 1: odds ratio [OR]=1.104, 95% confidence interval [CI]: 1.026~1.187, P=0.008; model 2: OR=1.085, 95% CI: 1.013~1.161, P=0.019), with an area under the curve of 0.874. CONCLUSION Fat fraction of the abductors is a powerful predictor of future motor functional decline in DMD patients at 12 months, underscoring the importance of focusing early on this parameter in patients with DMD.
Collapse
Affiliation(s)
- Yu Song
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei-Feng Yuan
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zi-Qi Zhou
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi-Jian Chen
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi-Lei Wang
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Fu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Zhou
- Department of Rehabilitation Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Tang Cai
- Department of Rehabilitation Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xue-Sheng Li
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Kim S, Willcocks RJ, Daniels MJ, Morales JF, Yoon DY, Triplett WT, Barnard AM, Conrado DJ, Aggarwal V, Belfiore‐Oshan R, Martinez TN, Walter GA, Rooney WD, Vandenborne K. Multivariate modeling of magnetic resonance biomarkers and clinical outcome measures for Duchenne muscular dystrophy clinical trials. CPT Pharmacometrics Syst Pharmacol 2023; 12:1437-1449. [PMID: 37534782 PMCID: PMC10583249 DOI: 10.1002/psp4.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Although regulatory agencies encourage inclusion of imaging biomarkers in clinical trials for Duchenne muscular dystrophy (DMD), industry receives minimal guidance on how to use these biomarkers most beneficially in trials. This study aims to identify the optimal use of muscle fat fraction biomarkers in DMD clinical trials through a quantitative disease-drug-trial modeling and simulation approach. We simultaneously developed two multivariate models quantifying the longitudinal associations between 6-minute walk distance (6MWD) and fat fraction measures from vastus lateralis and soleus muscles. We leveraged the longitudinal individual-level data collected for 10 years through the ImagingDMD study. Age of the individuals at assessment was chosen as the time metric. After the longitudinal dynamic of each measure was modeled separately, the selected univariate models were combined using correlation parameters. Covariates, including baseline scores of the measures and steroid use, were assessed using the full model approach. The nonlinear mixed-effects modeling was performed in Monolix. The final models showed reasonable precision of the parameter estimates. Simulation-based diagnostics and fivefold cross-validation further showed the model's adequacy. The multivariate models will guide drug developers on using fat fraction assessment most efficiently using available data, including the widely used 6MWD. The models will provide valuable information about how individual characteristics alter disease trajectories. We will extend the multivariate models to incorporate trial design parameters and hypothetical drug effects to inform better clinical trial designs through simulation, which will facilitate the design of clinical trials that are both more inclusive and more conclusive using fat fraction biomarkers.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| | | | | | - Juan Francisco Morales
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| | - Deok Yong Yoon
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| | | | - Alison M. Barnard
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
| | | | | | | | | | - Glenn A. Walter
- Department of Physiology and AgingUniversity of FloridaGainesvilleFloridaUSA
| | - William D. Rooney
- Advanced Imaging Research CenterOregon Health & Science UniversityPortlandOregonUSA
| | - Krista Vandenborne
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
12
|
Xu T, Xu K, Song Y, Zhou Z, Fu H, Xu R, Cai X, Guo Y, Ye P, Xu H. High-Speed T 2 -Corrected Multiecho Magnetic Resonance Spectroscopy for Quantitatively Detecting Skeletal Muscle Fatty Infiltration and Predicting the Loss of Ambulation in Patients With Duchenne Muscular Dystrophy. J Magn Reson Imaging 2023; 58:1270-1278. [PMID: 36773028 DOI: 10.1002/jmri.28641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND High-speed T2 -corrected multiecho MRS (HISTO-MRS) is emerging as a quantitative modality for detecting muscle fat infiltration (MFF). However, the predictive value of HISTO-MRS for the loss of ambulation (LoA) in Duchenne muscular dystrophy (DMD) is unknown. PURPOSE To determine the feasibility of HISTO-MRS for assessing MFF in DMD and further identify the predictive value of HISTO-MRS for the LoA. STUDY TYPE Prospective. SUBJECTS A total of 134 DMD boys (9.20 ± 2.43 years old) and 21 healthy boys (9.25 ± 2.10 years old). FIELD STRENGTH/SEQUENCE A 3 T, fast spin echo T1 -weighted imaging (T1 WI), two-point-Dixon gradient echo sequence (2-pt-Dixon) and HISTO-MRS. ASSESSMENT Subjective T1 WI fat grades by three radiologists, ROI analysis for MFF on 2 pt-Dixon (Dixon MFF) and MFF on HISTO-MRS (HISTO MFF) by two radiologists. Clinical motor function: North Star Ambulatory Assessment, 10-m run/walk time, Gowers maneuver, and time to four-stairs climb and descend. STATISTICAL TESTS Spearman rank correlation was used to assess the relation of fat filtration assessments and motor ability. Bland-Altman plots was performed to determine the agreement of HISTO MFF and Dixon MFF. Receiver operating characteristic (ROC) curves were analyzed to determine the discriminating ability of above MRI modalities for ambulatory and nonambulatory DMD. Logistic regression was used to identify the predictor of LoA. Variables with P < 0.05 in univariate logistic regression analysis were entered into the multivariate logistic regression model. RESULTS HISTO MFF was significantly correlated with Dixon MFF. Bland-Altman plots show good agreement of HISTO MFF and Dixon MFF. ROC curves indicated that HISTO MFF show similar discrimination of LoA for DMD with Dixon MFF but better value than T1WI fat grades. Logistic regression showed that HISTO MFF was an independent predictor for LoA. DATA CONCLUSION HISTO-MRS is a potential quantitative method for assessing fat infiltration and shows predictive value for LoA in DMD patients. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY Stage 5.
Collapse
Affiliation(s)
- Ting Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Yu Song
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Ziqi Zhou
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Xiaotang Cai
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Pengfei Ye
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| |
Collapse
|
13
|
Engelke K, Chaudry O, Gast L, Eldib MAB, Wang L, Laredo JD, Schett G, Nagel AM. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art. J Orthop Translat 2023; 42:57-72. [PMID: 37654433 PMCID: PMC10465967 DOI: 10.1016/j.jot.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) is the dominant 3D imaging modality to quantify muscle properties in skeletal muscle disorders, in inherited and acquired muscle diseases, and in sarcopenia, in cachexia and frailty. Methods This review covers T1 weighted and Dixon sequences, introduces T2 mapping, diffusion tensor imaging (DTI) and non-proton MRI. Technical concepts, strengths, limitations and translational aspects of these techniques are discussed in detail. Examples of clinical applications are outlined. For comparison 31P-and 13C-MR Spectroscopy are also addressed. Results MRI technology provides a rich toolset to assess muscle deterioration. In addition to classical measures such as muscle atrophy using T1 weighted imaging and fat infiltration using Dixon sequences, parameters characterizing inflammation from T2 maps, tissue sodium using non-proton MRI techniques or concentration or fiber architecture using diffusion tensor imaging may be useful for an even earlier diagnosis of the impairment of muscle quality. Conclusion Quantitative MRI provides new options for muscle research and clinical applications. Current limitations that also impair its more widespread use in clinical trials are lack of standardization, ambiguity of image segmentation and analysis approaches, a multitude of outcome parameters without a clear strategy which ones to use and the lack of normal data.
Collapse
Affiliation(s)
- Klaus Engelke
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
- Clario Inc, Germany
| | - Oliver Chaudry
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Lena Gast
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | | | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Jean-Denis Laredo
- Service d’Imagerie Médicale, Institut Mutualiste Montsouris & B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris-Cité, Paris, France
| | - Georg Schett
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Birch SM, Lawlor MW, Conlon TJ, Guo LJ, Crudele JM, Hawkins EC, Nghiem PP, Ahn M, Meng H, Beatka MJ, Fickau BA, Prieto JC, Styner MA, Struharik MJ, Shanks C, Brown KJ, Golebiowski D, Bettis AK, Balog-Alvarez CJ, Clement N, Coleman KE, Corti M, Pan X, Hauschka SD, Gonzalez JP, Morris CA, Schneider JS, Duan D, Chamberlain JS, Byrne BJ, Kornegay JN. Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy. Sci Transl Med 2023; 15:eabo1815. [PMID: 36599002 PMCID: PMC11107748 DOI: 10.1126/scitranslmed.abo1815] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by the absence of dystrophin, a membrane-stabilizing protein encoded by the DMD gene. Although mouse models of DMD provide insight into the potential of a corrective therapy, data from genetically homologous large animals, such as the dystrophin-deficient golden retriever muscular dystrophy (GRMD) model, may more readily translate to humans. To evaluate the clinical translatability of an adeno-associated virus serotype 9 vector (AAV9)-microdystrophin (μDys5) construct, we performed a blinded, placebo-controlled study in which 12 GRMD dogs were divided among four dose groups [control, 1 × 1013 vector genomes per kilogram (vg/kg), 1 × 1014 vg/kg, and 2 × 1014 vg/kg; n = 3 each], treated intravenously at 3 months of age with a canine codon-optimized microdystrophin construct, rAAV9-CK8e-c-μDys5, and followed for 90 days after dosing. All dogs received prednisone (1 milligram/kilogram) for a total of 5 weeks from day -7 through day 28. We observed dose-dependent increases in tissue vector genome copy numbers; μDys5 protein in multiple appendicular muscles, the diaphragm, and heart; limb and respiratory muscle functional improvement; and reduction of histopathologic lesions. As expected, given that a truncated dystrophin protein was generated, phenotypic test results and histopathologic lesions did not fully normalize. All administrations were well tolerated, and adverse events were not seen. These data suggest that systemically administered AAV-microdystrophin may be dosed safely and could provide therapeutic benefit for patients with DMD.
Collapse
Affiliation(s)
- Sharla M. Birch
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | | | - Thomas J. Conlon
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Lee-Jae Guo
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | | | - Eleanor C. Hawkins
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC; 27606
| | - Peter P. Nghiem
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | - Mihye Ahn
- University of Nevada-Reno, Reno, NV; 89557
| | - Hui Meng
- Medical College of Wisconsin, Milwaukee, WI; 53226
| | | | | | | | | | | | | | | | | | - Amanda K. Bettis
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | - Cynthia J. Balog-Alvarez
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| | - Nathalie Clement
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Kirsten E. Coleman
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Manuela Corti
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Xiufang Pan
- University of Missouri, School of Medicine, Columbia, MO 65212
| | | | | | | | | | - Dongsheng Duan
- University of Missouri, School of Medicine, Columbia, MO 65212
| | | | - Barry J. Byrne
- University of Florida, Powell Gene Therapy Center, Gainesville, FL; 32610
| | - Joe. N. Kornegay
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX; 77843
| |
Collapse
|
15
|
Barnard AM, Hammers DW, Triplett WT, Kim S, Forbes SC, Willcocks RJ, Daniels MJ, Senesac CR, Lott DJ, Arpan I, Rooney WD, Wang RT, Nelson SF, Sweeney HL, Vandenborne K, Walter GA. Evaluating Genetic Modifiers of Duchenne Muscular Dystrophy Disease Progression Using Modeling and MRI. Neurology 2022; 99:e2406-e2416. [PMID: 36240102 PMCID: PMC9687406 DOI: 10.1212/wnl.0000000000201163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Duchenne muscular dystrophy (DMD) is a progressive muscle degenerative disorder with a well-characterized disease phenotype but considerable interindividual heterogeneity that is not well understood. The aim of this study was to evaluate the effects of dystrophin variations and genetic modifiers of DMD on rate and age of muscle replacement by fat. METHODS One hundred seventy-five corticosteroid treated participants from the ImagingDMD natural history study underwent repeated magnetic resonance spectroscopy (MRS) of the vastus lateralis (VL) and soleus (SOL) to determine muscle fat fraction (FF). MRS was performed annually in most instances; however, some individuals had additional visits at 3 or 6 monthss intervals. FF changes over time were modeled using nonlinear mixed effects to estimate disease trajectories based on the age that the VL or SOL reached half-maximum change in FF (mu) and the time required for FF change (sigma). Computed mu and sigma values were evaluated for dystrophin variations that have demonstrated the ability to lead to a mild phenotype as well as compared between different genetic polymorphism groups. RESULTS Participants with dystrophin gene deletions amenable to exon 8 skipping (n = 4) had minimal increases in SOL FF and had an increase in VL mu value by 4.4 years compared with a reference cohort (p = 0.039). Participants with nonsense variations within exons that may produce milder phenotypes (n = 11) also had minimal increases in SOL and VL FFs. No differences in estimated FF trajectories were seen for individuals amenable to exon 44 skipping (n = 10). Modeling of the SPP1, LTBP4, and thrombospondin-1 (THBS1) genetic modifiers did not result in significant differences in muscle FF trajectories between genotype groups (p > 0.05); however, trends were noted for the polymorphisms associated with long-range regulation of LTBP4 and THBS1 that deserve further follow-up. DISCUSSION The results of this study link the historically mild phenotypes seen in individuals amenable to exon 8 skipping and with certain nonsense variations with alterations in trajectories of lower extremity muscle replacement by fat.
Collapse
Affiliation(s)
- Alison M Barnard
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - David W Hammers
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - William T Triplett
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Sarah Kim
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Sean C Forbes
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Rebecca J Willcocks
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Michael J Daniels
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Claudia R Senesac
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Donovan J Lott
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Ishu Arpan
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - William D Rooney
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Richard T Wang
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Stanley F Nelson
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - H Lee Sweeney
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Krista Vandenborne
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Glenn A Walter
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville.
| |
Collapse
|
16
|
唐 静, 张 家, 杨 学, 钟 京, 谢 彦, 孟 琦, 蓝 丹. [Magnetic resonance imaging for the diagnosis of muscular dystrophy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1231-1237. [PMID: 36398549 PMCID: PMC9678059 DOI: 10.7499/j.issn.1008-8830.2206052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/15/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To summarize the skeletal muscle magnetic resonance imaging (MRI) features of the lower limbs in common subtypes of muscular dystrophy (MD) and the experience in the application of MRI in the diagnosis of MD. METHODS A total of 48 children with MD who were diagnosed by genetic testing were enrolled as subjects. The muscle MRI features of the lower limbs were analyzed. Cumulative fatty infiltration score was calculated for each subtype, and the correlation of cumulative fatty infiltration score with clinical indices was analyzed for Duchenne muscular dystrophy (DMD). RESULTS DMD was characterized by the involvement of the gluteus maximus and the adductor magnus. Becker muscular dystrophy was characterized by the involvement of the vastus lateralis muscle. Limb-girdle muscular dystrophy was characterized by the involvement of the adductor magnus, the vastus intermedius, the vastus medialis, and the vastus lateralis muscle. For DMD, the cumulative fatty infiltration score of the lower limb muscles was significantly correlated with age, course of the disease, muscle strength, and motor function (P<0.05), while it was not significantly correlated with the serum creatine kinase level (P>0.05). CONCLUSIONS Different subtypes of MD have different MRI manifestations, and MRI may help with the diagnosis and assessment of MD.
Collapse
Affiliation(s)
| | | | - 学军 杨
- 广西医科大学第一附属医院,放射科,广西南宁530021
| | | | | | | | | |
Collapse
|
17
|
Peng F, Xu H, Song Y, Xu K, Li S, Cai X, Guo Y, Gong L. Utilization of T1-Mapping for the pelvic and thigh muscles in Duchenne Muscular Dystrophy: a quantitative biomarker for disease involvement and correlation with clinical assessments. BMC Musculoskelet Disord 2022; 23:681. [PMID: 35842609 PMCID: PMC9288085 DOI: 10.1186/s12891-022-05640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the disease distribution and severity detected by T1-mapping in Duchenne muscular dystrophy (DMD). Furthermore, the correlation between skeletal muscle T1-values and clinical assessments is less studied. Hence, the purposes of our study are to investigate quantitative T1-mapping in detecting the degree of disease involvement by detailed analyzing the hip and thigh muscle, future exploring the predicting value of T1-mapping for the clinical status of DMD. METHODS Ninety-two DMD patients were included. Grading fat infiltration and measuring the T1-values of 19 pelvic and thigh muscles (right side) in axial T1-weighted images (T1WI) and T1-maps, respectively, the disease distribution and severity were evaluated and compared. Clinical assessments included age, height, weight, BMI, wheelchair use, timed functional tests, NorthStar ambulatory assessment (NSAA) score, serum creatine kinase (CK) level. Correlation analysis were performed between the muscle T1-value and clinical assessments. Multiple linear regression analysis was conducted for the independent association of T1-value and motor function. RESULTS The gluteus maximus had the lowest T1-value, and the gracilis had the highest T1-value. T1-value decreased as the grade of fat infiltration increased scored by T1WI (P < 0.001). The decreasing of T1-values was correlated with the increase of age, height, weight, wheelchair use, and timed functional tests (P < 0.05). T1-value correlated with NSAA (r = 0.232-0.721, P < 0.05) and CK (r = 0.208-0.491, P < 0.05) positively. T1-value of gluteus maximus, tensor fascia, vastus lateralis, vastus intermedius, vastus medialis, and adductor magnus was independently associated with the clinical motor function tests (P < 0.05). Interclass correlation coefficient (ICC) analysis and Bland-Altman plots showed excellent inter-rater reliability of T1-value region of interest (ROI) measurements. CONCLUSION T1-mapping can be used as a quantitative biomarker for disease involvement, further assessing the disease severity and predicting motor function in DMD.
Collapse
Affiliation(s)
- Fei Peng
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China.,Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Yu Song
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Shuhao Li
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China
| | - Xiaotang Cai
- Department of Pediatrics Neurology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Lianggeng Gong
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
18
|
Veeger TTJ, van de Velde NM, Keene KR, Niks EH, Hooijmans MT, Webb AG, de Groot JH, Kan HE. Baseline fat fraction is a strong predictor of disease progression in Becker muscular dystrophy. NMR IN BIOMEDICINE 2022; 35:e4691. [PMID: 35032073 PMCID: PMC9286612 DOI: 10.1002/nbm.4691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In Becker muscular dystrophy (BMD), muscle weakness progresses relatively slowly, with a highly variable rate among patients. This complicates clinical trials, as clinically relevant changes are difficult to capture within the typical duration of a trial. Therefore, predictors for disease progression are needed. We assessed if temporal increase of fat fraction (FF) in BMD follows a sigmoidal trajectory and whether fat fraction at baseline (FFbase) could therefore predict FF increase after 2 years (ΔFF). Thereafter, for two different MR-based parameters, we tested the additional predictive value to FFbase. We used 3-T Dixon data from the upper and lower leg, and multiecho spin-echo MRI and 7-T 31 P MRS datasets from the lower leg, acquired in 24 BMD patients (age: 41.4 [SD 12.8] years). We assessed the pattern of increase in FF using mixed-effects modelling. Subsequently, we tested if indicators of muscle damage like standard deviation in water T2 (stdT2 ) and the phosphodiester (PDE) over ATP ratio at baseline had additional value to FFbase for predicting ∆FF. The association between FFbase and ΔFF was described by the derivative of a sigmoid function and resulted in a peak ΔFF around 0.45 FFbase (fourth-order polynomial term: t = 3.7, p < .001). StdT2 and PDE/ATP were not significantly associated with ∆FF if FFbase was included in the model. The relationship between FFbase and ∆FF suggests a sigmoidal trajectory of the increase in FF over time in BMD, similar to that described for Duchenne muscular dystrophy. Our results can be used to identify muscles (or patients) that are in the fast progressing stage of the disease, thereby facilitating the conduct of clinical trials.
Collapse
Affiliation(s)
- Thom T. J. Veeger
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Nienke M. van de Velde
- Department of Neurology, Leiden University Medical Center (LUMC)LeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| | - Kevin R. Keene
- Department of Neurology, Leiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Erik H. Niks
- Department of Neurology, Leiden University Medical Center (LUMC)LeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| | - Melissa T. Hooijmans
- Department of Radiology & Nuclear MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Andrew G. Webb
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Jurriaan H. de Groot
- Department of Rehabilitation Medicine, Leiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Hermien E. Kan
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| |
Collapse
|
19
|
Mensch A, Nägel S, Zierz S, Kraya T, Stoevesandt D. Bildgebung der Muskulatur bei Neuromuskulären Erkrankungen
– von der Initialdiagnostik bis zur Verlaufsbeurteilung. KLIN NEUROPHYSIOL 2022. [DOI: 10.1055/a-1738-5356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZusammenfassungDie bildgebende Diagnostik hat sich zu einem integralen Element der Betreuung von
PatientInnen mit neuromuskulären Erkrankungen entwickelt. Als
wesentliches Diagnostikum ist hierbei die Magnetresonanztomografie als breit
verfügbares und vergleichsweise standardisiertes Untersuchungsverfahren
etabliert, wobei die Sonografie der Muskulatur bei hinreichend erfahrenem
Untersucher ebenfalls geeignet ist, wertvolle diagnostische Informationen zu
liefern. Das CT hingegen spielt eine untergeordnete Rolle und sollte nur bei
Kontraindikationen für eine MRT in Erwägung gezogen werden.
Zunächst wurde die Bildgebung bei Muskelerkrankungen primär in
der Initialdiagnostik unter vielfältigen Fragestellungen eingesetzt. Das
Aufkommen innovativer Therapiekonzepte bei verschiedenen neuromuskulären
Erkrankungen machen neben einer möglichst frühzeitigen
Diagnosestellung insbesondere auch eine multimodale Verlaufsbeurteilung zur
Evaluation des Therapieansprechens notwendig. Auch hier wird die Bildgebung der
Muskulatur als objektiver Parameter des Therapieerfolges intensiv diskutiert und
in Forschung wie Praxis zunehmend verwendet.
Collapse
Affiliation(s)
- Alexander Mensch
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Steffen Nägel
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Stephan Zierz
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Torsten Kraya
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
- Klinik für Neurologie, Klinikum St. Georg,
Leipzig
| | - Dietrich Stoevesandt
- Universitätsklinik und Poliklinik für Radiologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| |
Collapse
|
20
|
Cisterna B, Bontempi P, Sobolev AP, Costanzo M, Malatesta M, Zancanaro C. Quantitative magnetic resonance characterization of the effect of physical training on skeletal muscle of the Ts65Dn mice, a model of Down syndrome. Quant Imaging Med Surg 2022; 12:2066-2074. [PMID: 35284271 PMCID: PMC8899935 DOI: 10.21037/qims-21-729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/12/2021] [Indexed: 11/11/2024]
Abstract
Down syndrome (DS) is characterized by muscle hypotonia and low muscle strength associated with motor dysfunction. Elucidation of the determinants of muscle weakness in DS would be relevant for therapeutic approaches aimed at treating/mitigating a physical disability with a strong impact on the quality of life in persons with DS. The Ts65Dn mice is a recognized mouse model of DS, with trisomic mice presenting gross motor and muscle phenotypes. The aim of this work was to assess the effect of physical exercise, a well-known tool to improve skeletal muscle condition, in the hindlimbs of trisomic and euploid male mice using quantitative magnetic resonance imaging (MRI). Magnetic resonance spectroscopy (MRS) metabolomics and histological fiber typing were used to further characterize the post-exercise muscle. Quantitative MRI showed not significantly different amounts of skeletal muscle in proximal hindlimbs in trisomic and euploid mice both at baseline and after physical exercise (P>0.05). Similar results were obtained for hindlimbs subfascia adipose tissue, and subcutaneous adipose tissue (P>0.05). MRS showed lower amounts of exercise-related metabolites (valine, isoleucine, leucine) in euploid vs. trisomic mice after exercise (P≤0.05). The percentage of slow-twitch fibers was similar in the two genotypes (P>0.05). We conclude that in DS adapted physical exercise (one month of training) does not induce quantitative changes in skeletal muscle or fiber type composition therein; however, the metabolic response of skeletal muscle to exercise may be affected by trisomy. These findings prompt further research investigating the role of physical exercise as a cue to clarify the mechanisms of the muscular deficit found in DS.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Pietro Bontempi
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Nair KS, Lott DJ, Forbes SC, Barnard AM, Willcocks RJ, Senesac CR, Daniels MJ, Harrington AT, Tennekoon GI, Zilke K, Finanger EL, Finkel RS, Rooney WD, Walter GA, Vandenborne K. Step Activity Monitoring in Boys with Duchenne Muscular Dystrophy and its Correlation with Magnetic Resonance Measures and Functional Performance. J Neuromuscul Dis 2022; 9:423-436. [PMID: 35466946 PMCID: PMC9257666 DOI: 10.3233/jnd-210746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Muscles of boys with Duchenne muscular dystrophy (DMD) are progressively replaced by fatty fibrous tissues, and weakness leads to loss of ambulation (LoA). Step activity (SA) monitoring is a quantitative measure of real-world ambulatory function. The relationship between quality of muscle health and SA is unknown in DMD. OBJECTIVE To determine SA in steroid treated boys with DMD across various age groups, and to evaluate the association of SA with quality of muscle health and ambulatory function. METHODS Quality of muscle health was measured by magnetic resonance (MR) imaging transverse magnetization relaxation time constant (MRI-T2) and MR spectroscopy fat fraction (MRS-FF). SA was assessed via accelerometry, and functional abilities were assessed through clinical walking tests. Correlations between SA, MR, and functional measures were determined. A threshold value of SA was determined to predict the future LoA. RESULTS The greatest reduction in SA was observed in the 9- < 11years age group. SA correlated with all functional and MR measures.10m walk/run test had the highest correlation with SA. An increase in muscle MRI-T2 and MRS-FF was associated with a decline in SA. Two years prior to LoA, SA in boys with DMD was 32% lower than age matched boys with DMD who maintained ambulation for more than two-year period. SA monitoring can predict subsequent LoA in Duchenne, as a daily step count of 3200 at baseline was associated with LoA over the next two-years. CONCLUSION SA monitoring is a feasible and accessible tool to measure functional capacity in the real-world environment.
Collapse
Affiliation(s)
- Kavya S. Nair
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Donovan J. Lott
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Sean C. Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Alison M. Barnard
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Rebecca J. Willcocks
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Claudia R. Senesac
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Michael J. Daniels
- Department of Statistics, University of Florida, Gainesville, Florida, USA
| | - Ann T. Harrington
- Center for Rehabilitation, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gihan I. Tennekoon
- Department of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kirsten Zilke
- Department of Pediatrics and Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Erika L. Finanger
- Department of Pediatrics and Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Richard S. Finkel
- Center for Experimental Neurotherapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - William D. Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Buckon CE, Sienko SE, Fowler EG, Bagley AM, Staudt LA, Sison-Williamson M, Heberer KR, McDonald CM, Sussman MD. A Longitudinal Study of Quantitative Muscle Strength and Functional Motor Ability in Ambulatory Boys with Duchenne Muscular Dystrophy. J Neuromuscul Dis 2021; 9:321-334. [PMID: 34924398 DOI: 10.3233/jnd-210704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder, that is characterized by progressive muscle degeneration and loss of ambulation between 7-13 years of age. Novel pharmacological agents targeting the genetic defects and disease mechanisms are becoming available; however, corticosteroid (CS) therapy remains the standard of care. OBJECTIVE The purpose of this longitudinal study was to elucidate the effect of CS therapy on the rate of muscle strength and gross motor skill decline in boys with DMD and assess the sensitivity of selected outcome measures. METHODS Eighty-four ambulatory boys with DMD (49-180 months), 70 on CS, 14 corticosteroid naïve (NCS), participated in this 8-year multi-site study. Outcomes included; isokinetic dynamometry, the Standing (STD) and Walking/Running/jumping (WRJ) dimensions of the Gross Motor Function Measure (GMFM), and Timed Function Tests (TFTs). Nonlinear mixed modeling procedures determined the rate of change with age and the influence of steroids. RESULTS Despite CS therapy the rate of decline in strength with age was significant in all muscle groups assessed. CS therapy significantly slowed decline in knee extensor strength, as the NCS group declined at 3x the rate of the CS group. Concurrently, WRJ skills declined in the NCS group at twice the rate of the CS group. 4-stair climb and 10 meter walk/run performance was superior in the boys on CS therapy. CONCLUSION CS therapy slowed the rate of muscle strength decline and afforded longer retention of select gross motor skills in boys on CS compared to boys who were NCS. Isokinetic dynamometry, Walk/Run/Jump skills, and select TFTs may prove informative in assessing the efficacy of new therapeutics in ambulatory boys with DMD.
Collapse
Affiliation(s)
| | | | - Eileen G Fowler
- Department of Orthopaedics, University of California, Los Angeles, CA, California
| | - Anita M Bagley
- Shriners Hospitals for Children, Northern California, CA, California
| | - Loretta A Staudt
- Department of Orthopaedics, University of California, Los Angeles, CA, California
| | | | - Kent R Heberer
- Department of Orthopaedics, University of California, Los Angeles, CA, California
| | - Craig M McDonald
- Department of Physical Medicine, University of California Davis Medical Center, Sacramento, CA, California
| | | |
Collapse
|
23
|
Naarding KJ, van der Holst M, van Zwet EW, van de Velde NM, de Groot IJM, Verschuuren JJGM, Kan HE, Niks EH. Association of Elbow Flexor MRI Fat Fraction With Loss of Hand-to-Mouth Movement in Patients With Duchenne Muscular Dystrophy. Neurology 2021; 97:e1737-e1742. [PMID: 34493619 PMCID: PMC8605612 DOI: 10.1212/wnl.0000000000012724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To study the potential of quantitative MRI (qMRI) fat fraction (FF) as a biomarker in nonambulant patients with Duchenne muscular dystrophy (DMD), we assessed the additive predictive value of elbow flexor FF to age at loss of hand-to-mouth movement. METHODS Nonambulant patients with DMD (age ≥8 years) were included. Four-point Dixon MRI scans of the right upper arm were performed at baseline and at the 12-, 18-, or 24-month follow-up. Elbow flexor FFs were determined from 5 central slices. Loss of hand-to-mouth movement was determined at study visits and by phone calls every 4 months. FFs were fitted to a sigmoidal curve by use of a mixed model with random slope to predict individual trajectories. The added predictive value of elbow flexor FF to age at loss of hand-to-mouth movement was calculated from a Cox model with the predicted FF as a time-varying covariate, yielding a hazard ratio. RESULTS Forty-eight MRIs of 20 patients with DMD were included. The hazard ratio of a percent-point increase in elbow flexor FF for the time to loss of hand-to-mouth movement was 1.12 (95% confidence interval 1.04-1.21; p = 0.002). This corresponded to a 3.13-fold increase in the instantaneous risk of loss of hand-to-mouth movement in patients with a 10-percent points higher elbow flexor FF at any age. DISCUSSION In this prospective study, elbow flexor FF predicted loss of hand-to-mouth movement independently of age. qMRI-measured elbow flexor FF can be used as a surrogate endpoint or stratification tool for clinical trials in nonambulant patients with DMD. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that qMRI FF of elbow flexor muscles in patients with DMD predicts loss of hand-to-mouth movement independently of age.
Collapse
Affiliation(s)
- Karin J Naarding
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Menno van der Holst
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erik W van Zwet
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nienke M van de Velde
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Imelda J M de Groot
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan J G M Verschuuren
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hermien E Kan
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erik H Niks
- From the Department of Neurology (K.J.N., N.M.v.d.V., J.J.G.M.V., E.H.N.), Duchenne Center Netherlands (K.J.N., M.v.d.H., N.M.v.d.V., I.J.M.d.G., J.J.G.M.V., H.E.K., E.H.N.)Department of Orthopedics, Rehabilitation and Physiotherapy (M.v.d.H.), and Department of Biomedical Data Sciences (E.W.v.Z.), Leiden University Medical Center; and Department of Rehabilitation (I.J.M.d.G.), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
24
|
Lassche S, Küsters B, Heerschap A, Schyns MVP, Ottenheijm CAC, Voermans NC, van Engelen BGM. Correlation Between Quantitative MRI and Muscle Histopathology in Muscle Biopsies from Healthy Controls and Patients with IBM, FSHD and OPMD. J Neuromuscul Dis 2021; 7:495-504. [PMID: 32925090 PMCID: PMC7739972 DOI: 10.3233/jnd-200543] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Muscle MRI is increasingly used as a diagnostic and research tool in muscle disorders. However, the correlation between MRI abnormalities and histopathological severity is largely unknown. Objective: To investigate correlations between muscle MRI abnormalities and histopathological severity in healthy controls and patients with muscle disease. Methods: We performed quantitative MRI and histopathological analysis in 35 patients with inclusion body myositis, facioscapulohumeral muscular dystrophy or oculopharyngeal muscular dystrophy and 12 healthy controls. Participants contributed needle biopsies of the vastus lateralis and/or tibialis anterior, yielding 77 muscle biopsies with matched T1, T2 and TIRM MRI imaging. Muscle biopsies were evaluated with a semi-quantitative histopathology severity grading scale (range 0–12) and an inflammation severity grading scale (range 0–3). Results: In muscle disease, histopathology sum scores ranged from 0 to 11 and correlated significantly with fat percentage as measured on MRI (Spearman’s rho = 0.594, p < 0.001). Muscle edema on muscle MRI was associated with increased amounts of inflammation (p < 0.001). Mild abnormalities occured in 95% of control biopsies and were more pronounced in tibialis anterior (median sum score of 1±1 in vastus lateralis and 2±1 in tibialis anterior (p = 0.048)). Conclusion: In muscle disease, fatty infiltration on MRI correlates moderately with muscle histopathology. Histopathological abnormalities can occur prior to the onset of fatty infiltration. In middle-aged controls, almost all biopsies showed some histopathological abnormalities. The findings from this study may facilitate the choice for appropriate imaging sequences as outcome measures in therapeutic trials.
Collapse
Affiliation(s)
- Saskia Lassche
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Radiology, Radboud university medical center, Nijmegen, the Netherlands
| | - Maxime V P Schyns
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands.,Department of Radiology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Lopez C, Taivassalo T, Berru MG, Saavedra A, Rasmussen HC, Batra A, Arora H, Roetzheim AM, Walter GA, Vandenborne K, Forbes SC. Postcontractile blood oxygenation level-dependent (BOLD) response in Duchenne muscular dystrophy. J Appl Physiol (1985) 2021; 131:83-94. [PMID: 34013753 PMCID: PMC8325615 DOI: 10.1152/japplphysiol.00634.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by a progressive replacement of muscle by fat and fibrous tissue, muscle weakness, and loss of functional abilities. Impaired vasodilatory and blood flow responses to muscle activation have also been observed in DMD and associated with mislocalization of neuronal nitric oxide synthase mu (nNOSμ) from the sarcolemma. The objective of this study was to determine whether the postcontractile blood oxygen level-dependent (BOLD) MRI response is impaired in DMD and correlated with established markers of disease severity in DMD, including MRI muscle fat fraction (FF) and clinical functional measures. Young boys with DMD (n = 16, 5-14 yr) and unaffected controls (n = 16, 5-14 yr) were evaluated using postcontractile BOLD, FF, and functional assessments. The BOLD response was measured following five brief (2 s) maximal voluntary dorsiflexion contractions, each separated by 1 min of rest. FFs from the anterior compartment lower leg muscles were quantified via chemical shift-encoded imaging. Functional abilities were assessed using the 10 m walk/run and the 6-min walk distance (6MWD). The peak BOLD responses in the tibialis anterior and extensor digitorum longus were reduced (P < 0.001) in DMD compared with controls. Furthermore, the anterior compartment peak BOLD response correlated with function (6MWD ρ = 0.87, P < 0.0001; 10 m walk/run time ρ = -0.78, P < 0.001) and FF (ρ = -0.52, P = 0.05). The reduced postcontractile BOLD response in DMD may reflect impaired microvascular function. The relationship observed between the postcontractile peak BOLD response and functional measures and FF suggests that the BOLD response is altered with disease severity in DMD.NEW & NOTEWORTHY This study examined the postcontractile blood oxygen level-dependent (BOLD) response in boys with Duchenne muscular dystrophy (DMD) and unaffected controls, and correlated this measure to markers of disease severity. Our findings indicate that the postcontractile BOLD response is impaired in DMD after brief muscle contractions, is correlated to disease severity, and may be valuable to implement in future studies to evaluate treatments targeting microvascular function in DMD.
Collapse
Affiliation(s)
- Christopher Lopez
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Maria G Berru
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Andres Saavedra
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Hannah C Rasmussen
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Harneet Arora
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Alex M Roetzheim
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
26
|
Murphy AP, Greally E, O'Hogain D, Blamire A, Caravan P, Straub V. Use of EP3533-Enhanced Magnetic Resonance Imaging as a Measure of Disease Progression in Skeletal Muscle of mdx Mice. Front Neurol 2021; 12:636719. [PMID: 34220666 PMCID: PMC8248789 DOI: 10.3389/fneur.2021.636719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
As putative treatments are developed for Duchenne muscular dystrophy (DMD), sensitive, non-invasive measures are increasingly important to quantify disease progression. Fibrosis is one of the histological hallmarks of muscular dystrophy and has been directly linked to prognosis. EP3533 is a novel contrast agent with an affinity to collagen 1 that has demonstrated a significant and high correlation to ex vivo fibrosis quantification. Halofuginone is an established anti-fibrotic compound shown to reduce collagen skeletal muscle fibrosis in murine models of DMD. This experiment explored whether EP3533 could be used to detect signal change in skeletal muscle of mdx mice before and after a 12 week course of halofuginone compared to controls. Four age-matched groups of treated and untreated mice were evaluated: 2 groups of mdx (n = 8 and n = 13, respectively), and 2 groups of BL10 mice (n = 5 and n = 3, respectively). Treated mice received an intraperitoneal injection with halofuginone three times per week for 12 weeks, with the remaining mice being given vehicle. Both mdx groups and the untreated BL10 were scanned at baseline, then all groups were scanned on week 13. All subjects were scanned using a 7T Varian scanner before and after administration of EP3533 using a T1 mapping technique. Mice underwent grip testing in week 13 prior to dissection. Skeletal muscle was used for Masson's trichrome quantification, hydroxyproline assay, and immunofluorescent antibody staining. Untreated mdx mice demonstrated a significant increase in R1 signal from pre- to post-treatment scan in three out of four muscles (gastrocnemius p = 0.04, hamstrings p = 0.009, and tibialis anterior p = 0.01), which was not seen in either the treated mdx or the BL10 groups. Histological quantification of fibrosis also demonstrated significantly higher levels in the untreated mdx mice with significant correlation seen between histology and EP3533 signal change. Forelimb weight adjusted-grip strength was significantly lower in the untreated mdx group, compared to the treated group. EP3533 can be used over time as an outcome measure to quantify treatment effect of an established anti-fibrotic drug. Further studies are needed to evaluate the use of this contrast agent in humans.
Collapse
Affiliation(s)
- Alexander Peter Murphy
- The Institute of Cancer and Genomics, Birmingham University, Birmingham, United Kingdom.,The John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elizabeth Greally
- The John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dara O'Hogain
- Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew Blamire
- Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter Caravan
- Department of Radiology, Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - Volker Straub
- The Institute of Cancer and Genomics, Birmingham University, Birmingham, United Kingdom.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
27
|
Sherlock SP, Zhang Y, Binks M, Marraffino S. Quantitative muscle MRI biomarkers in Duchenne muscular dystrophy: cross-sectional correlations with age and functional tests. Biomark Med 2021; 15:761-773. [PMID: 34155911 PMCID: PMC8253163 DOI: 10.2217/bmm-2020-0801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/23/2021] [Indexed: 01/07/2023] Open
Abstract
Aim: Using baseline data from a clinical trial of domagrozumab in Duchenne muscular dystrophy, we evaluated the correlation between functional measures and quantitative MRI assessments of thigh muscle. Patients & methods: Analysis included timed functional tests, knee extension/strength and North Star Ambulatory Assessment. Patients (n = 120) underwent examinations of one thigh, with MRI sequences to enable measurements of muscle volume (MV), MV index, mean T2 relaxation time via T2-mapping and fat fraction. Results: MV was moderately correlated with strength assessments. MV index, fat fraction and T2-mapping measures had moderate correlations (r ∼ 0.5) to all functional tests, North Star Ambulatory Assessment and age. Conclusion: The moderate correlation between functional tests, age and baseline MRI measures supports MRI as a biomarker in Duchenne muscular dystrophy clinical trials. Trial registration: ClinicalTrials.gov, NCT02310763; registered 4 November 2014.
Collapse
Affiliation(s)
| | - Yao Zhang
- Pfizer Inc, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
28
|
Szabo SM, Salhany RM, Deighton A, Harwood M, Mah J, Gooch KL. The clinical course of Duchenne muscular dystrophy in the corticosteroid treatment era: a systematic literature review. Orphanet J Rare Dis 2021; 16:237. [PMID: 34022943 PMCID: PMC8141220 DOI: 10.1186/s13023-021-01862-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a severe rare progressive inherited neuromuscular disorder, leading to loss of ambulation (LOA) and premature mortality. The standard of care for patients with DMD has been treatment with corticosteroids for the past decade; however a synthesis of contemporary data describing the clinical course of DMD is lacking. The objective was to summarize age at key clinical milestones (loss of ambulation, scoliosis, ventilation, cardiomyopathy, and mortality) in the corticosteroid-treatment-era. Methods A systematic review was conducted using MEDLINE and EMBASE. The percentage experiencing key clinical milestones, and the mean or median age at those milestones, was synthesized from studies from North American populations, published between 2007 and 2018. Results From 5637 abstracts, 29 studies were included. Estimates of the percentage experiencing key clinical milestones, and age at those milestones, showed heterogeneity. Up to 30% of patients lost ambulation by age 10 years, and up to 90% by 15 years of age. The mean age at scoliosis onset was approximately 14 years. Ventilatory support began from 15 to 18 years, and up to half of patients required ventilation by 20 years of age. Registry-based estimates suggest that 70% had evidence of cardiomyopathy by 15 years and almost all by 20 years of age. Finally, mortality rates up to 16% by age 20 years were reported; among those surviving to adulthood mortality was up to 60% by age 30 years. Conclusions Contemporary natural history studies from North America report that LOA on average occurs in the early teens, need for ventilation and cardiomyopathy in the late teens, and death in the third or fourth decade of life. Variability in rates may be due to differences in study design, treatment with corticosteroids or other disease-modifying agents, variations in clinical practices, and dystrophin mutations. Despite challenges in synthesizing estimates, these findings help characterize disease progression among contemporary North American DMD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01862-w.
Collapse
Affiliation(s)
- Shelagh M Szabo
- Broadstreet HEOR, 201 - 343 Railway St, Vancouver, BC, V6A 1A4, Canada.
| | - Renna M Salhany
- Sarepta Therapeutics, 215 First St, Cambridge, MA, 02142, USA
| | - Alison Deighton
- Broadstreet HEOR, 201 - 343 Railway St, Vancouver, BC, V6A 1A4, Canada
| | - Meagan Harwood
- Broadstreet HEOR, 201 - 343 Railway St, Vancouver, BC, V6A 1A4, Canada
| | - Jean Mah
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
29
|
The increasing role of muscle MRI to monitor changes over time in untreated and treated muscle diseases. Curr Opin Neurol 2021; 33:611-620. [PMID: 32796278 DOI: 10.1097/wco.0000000000000851] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review aims to discuss the recent results of studies published applying quantitative MRI sequences to large cohorts of patients with neuromuscular diseases. RECENT FINDINGS Quantitative MRI sequences are now available to identify and quantify changes in muscle water and fat content. These two components have been associated with acute and chronic injuries, respectively. Studies show that the increase in muscle water is not only reversible if therapies are applied successfully but can also predict fat replacement in neurodegenerative diseases. Muscle fat fraction correlates with muscle function tests and increases gradually over time in parallel with the functional decline of patients with neuromuscular diseases. There are new spectrometry-based sequences to quantify other components, such as glycogen, electrolytes or the pH of the muscle fibre, extending the applicability of MRI to the study of several processes in neuromuscular diseases. SUMMARY The latest results obtained from the study of long cohorts of patients with various neuromuscular diseases open the door to the use of this technology in clinical trials, which would make it possible to obtain a new measure for assessing the effectiveness of new treatments. The challenge is currently the popularization of these studies and their application to the monitoring of patients in the daily clinic.
Collapse
|
30
|
Finkel RS, Finanger E, Vandenborne K, Sweeney HL, Tennekoon G, Shieh PB, Willcocks R, Walter G, Rooney WD, Forbes SC, Triplett WT, Yum SW, Mancini M, MacDougall J, Fretzen A, Bista P, Nichols A, Donovan JM. Disease-modifying effects of edasalonexent, an NF-κB inhibitor, in young boys with Duchenne muscular dystrophy: Results of the MoveDMD phase 2 and open label extension trial. Neuromuscul Disord 2021; 31:385-396. [PMID: 33678513 DOI: 10.1016/j.nmd.2021.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy. Edasalonexent (CAT-1004) is an orally-administered novel small molecule that covalently links two bioactive compounds (salicylic acid and docosahexaenoic acid) that inhibit NF-κB. This placebo-controlled, proof-of-concept phase 2 study with open-label extension in boys ≥4-<8 years old with any dystrophin mutation examined the effect of edasalonexent (67 or 100 mg/kg/day) compared to placebo or off-treatment control. Endpoints were safety/tolerability, change from baseline in MRI T2 relaxation time of lower leg muscles and functional assessment, as well as pharmacodynamics and biomarkers. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly of the gastrointestinal system (primarily diarrhea). There were no serious adverse events in the edasalonexent groups. Edasalonexent 100 mg/kg was associated with slowing of disease progression and preservation of muscle function compared to an off-treatment control period, with decrease in levels of NF-κB-regulated genes and improvements in biomarkers of muscle health and inflammation. These results support investigating edasalonexent in future trials and have informed the design of the edasalonexent phase 3 clinical trial in boys with Duchenne.
Collapse
Affiliation(s)
- Richard S Finkel
- St. Jude Children's Research Hospital, Memphis, TN and Nemours Children's Hospital, Orlando, FL, United States.
| | - Erika Finanger
- Oregon Health & Science University, Portland, OR, United States
| | | | - H Lee Sweeney
- University of Florida Health, Gainesville, FL, United States
| | - Gihan Tennekoon
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Perry B Shieh
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Glenn Walter
- University of Florida Health, Gainesville, FL, United States
| | | | - Sean C Forbes
- University of Florida Health, Gainesville, FL, United States
| | | | - Sabrina W Yum
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Mancini
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | | | | - Pradeep Bista
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | - Andrew Nichols
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | |
Collapse
|
31
|
Wang LH, Shaw DWW, Faino A, Budech CB, Lewis LM, Statland J, Eichinger K, Tapscott SJ, Tawil RN, Friedman SD. Longitudinal study of MRI and functional outcome measures in facioscapulohumeral muscular dystrophy. BMC Musculoskelet Disord 2021; 22:262. [PMID: 33691664 PMCID: PMC7948347 DOI: 10.1186/s12891-021-04134-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) is a patchy and slowly progressive disease of skeletal muscle. For MRI to be a useful biomarker in an FSHD clinical trial, it should reliably detect changes over relatively short time-intervals (~ 1 year). We hypothesized that fatty change over the study course would be most likely in muscles already demonstrating disease progression, and that the degree of MRI burden would be correlated with function. Methods We studied 36 patients with FSHD and lower-extremity weakness at baseline. Thirty-two patients returned in our 12-month longitudinal observational study. We analyzed DIXON MRI images of 16 lower-extremity muscles in each patient and compared them to quantitative strength measurement and ambulatory functional outcome measures. Results There was a small shift to higher fat fractions in the summed muscle data for each patient, however individual muscles demonstrated much larger magnitudes of change. The greatest increase in fat fraction was observed in muscles having an intermediate fat replacement at baseline, with minimally (baseline fat fraction < 0.10) or severely (> 0.70) affected muscles less likely to progress. Functional outcome measures did not demonstrate marked change over the interval; however, overall MRI disease burden was correlated with functional outcome measures. Direct comparison of the tibialis anterior (TA) fat fraction and quantitative strength measurement showed a sigmoidal relationship, with steepest drop being when the muscle gets more than ~ 20% fatty replaced. Conclusions Assessing MRI changes in 16 lower-extremity muscles across 1 year demonstrated that those muscles having an intermediate baseline fat fraction were more likely to progress. Ambulatory functional outcome measures are generally related to overall muscle MRI burden but remain unchanged in the short term. Quantitative strength measurement of the TA showed a steep loss of strength when more fatty infiltration is present suggesting that MRI may be preferable for following incremental change or modulation with drug therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04134-7.
Collapse
Affiliation(s)
- Leo H Wang
- Department of Neurology, University of Washington, Seattle, Washington, USA.
| | - Dennis W W Shaw
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Anna Faino
- Children's Core for Biomedical Statistics, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Leann M Lewis
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Jeffrey Statland
- Department of Neurology, Kansas University Medical Center, Fairway, KS, USA
| | - Katy Eichinger
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Research Center, Seattle, Washington, USA
| | - Rabi N Tawil
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Seth D Friedman
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Linge J, Heymsfield SB, Dahlqvist Leinhard O. On the Definition of Sarcopenia in the Presence of Aging and Obesity-Initial Results from UK Biobank. J Gerontol A Biol Sci Med Sci 2021; 75:1309-1316. [PMID: 31642894 PMCID: PMC7302181 DOI: 10.1093/gerona/glz229] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Current consensus is to combine a functional measure with muscle quantity to assess/confirm sarcopenia. However, the proper body size adjustment for muscle quantity is debated and sarcopenia in obesity is not well described. Further, functional measures are not muscle-specific or sensitive to etiology, and can be confounded by, for example, fitness/pain. For effective detection/treatment/follow-up, muscle-specific biomarkers linked to function are needed. METHODS Nine thousand six hundred and fifteen participants were included and current sarcopenia thresholds (EWGSOP2: DXA, hand grip strength) applied to investigate prevalence. Fat-tissue free muscle volume (FFMV) and muscle fat infiltration (MFI) were quantified through magnetic resonance imaging (MRI) and sex-and-body mass index (BMI)-matched virtual control groups (VCGs) were used to extract each participant's FFMV/height2 z-score (FFMVVCG). The value of combining FFMVVCG and MFI was investigated through hospital nights, hand grip strength, stair climbing, walking pace, and falls. RESULTS Current thresholds showed decreased sarcopenia prevalence with increased BMI (underweight 8.5%/normal weight 4.3%/overweight 1.1%/obesity 0.1%). Contrary, the prevalence of low function increased with increasing BMI. Previously proposed body size adjustments (division by height2/weight/BMI) introduced body size correlations of larger/similar magnitude than before. VCG adjustment achieved normalization and strengthened associations with hospitalization/function. Hospital nights, low hand grip strength, slow walking pace, and no stair climbing were positively associated with MFI (p < .05) and negatively associated with FFMVVCG (p < .01). Only MFI was associated with falls (p < .01). FFMVVCG and MFI combined resulted in highest diagnostic performance detecting low function. CONCLUSIONS VCG-adjusted FFMV enables proper sarcopenia assessment across BMI classes and strengthened the link to function. MFI and FFMV combined provides a more complete, muscle-specific description linked to function enabling objective sarcopenia detection.
Collapse
Affiliation(s)
- Jennifer Linge
- AMRA Medical AB, Linköping, Sweden.,Department of Medical and Health Sciences, Linköping University, Sweden
| | | | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden.,Pennington Biomedical Research Center, Baton Rouge, Louisiana, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Sweden
| |
Collapse
|
33
|
Alic L, Griffin JF, Eresen A, Kornegay JN, Ji JX. Using MRI to quantify skeletal muscle pathology in Duchenne muscular dystrophy: A systematic mapping review. Muscle Nerve 2021; 64:8-22. [PMID: 33269474 PMCID: PMC8247996 DOI: 10.1002/mus.27133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
There is a great demand for accurate non‐invasive measures to better define the natural history of disease progression or treatment outcome in Duchenne muscular dystrophy (DMD) and to facilitate the inclusion of a large range of participants in DMD clinical trials. This review aims to investigate which MRI sequences and analysis methods have been used and to identify future needs. Medline, Embase, Scopus, Web of Science, Inspec, and Compendex databases were searched up to 2 November 2019, using keywords “magnetic resonance imaging” and “Duchenne muscular dystrophy.” The review showed the trend of using T1w and T2w MRI images for semi‐qualitative inspection of structural alterations of DMD muscle using a diversity of grading scales, with increasing use of T2map, Dixon, and MR spectroscopy (MRS). High‐field (>3T) MRI dominated the studies with animal models. The quantitative MRI techniques have allowed a more precise estimation of local or generalized disease severity. Longitudinal studies assessing the effect of an intervention have also become more prominent, in both clinical and animal model subjects. Quality assessment of the included longitudinal studies was performed using the Newcastle‐Ottawa Quality Assessment Scale adapted to comprise bias in selection, comparability, exposure, and outcome. Additional large clinical trials are needed to consolidate research using MRI as a biomarker in DMD and to validate findings against established gold standards. This future work should use a multiparametric and quantitative MRI acquisition protocol, assess the repeatability of measurements, and correlate findings to histologic parameters.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Electrical & Computer Engineering, Texas A&M University, Doha, Qatar.,Magnetic Detection and Imaging group, Technical Medical Centre, University of Twente, The Netherlands
| | - John F Griffin
- College of Vet. Med. & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Joe N Kornegay
- College of Vet. Med. & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jim X Ji
- Department of Electrical & Computer Engineering, Texas A&M University, Doha, Qatar.,Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
34
|
Willcocks RJ, Forbes SC, Walter GA, Sweeney L, Rodino-Klapac LR, Mendell JR, Vandenborne K. Assessment of rAAVrh.74.MHCK7.micro-dystrophin Gene Therapy Using Magnetic Resonance Imaging in Children With Duchenne Muscular Dystrophy. JAMA Netw Open 2021; 4:e2031851. [PMID: 33394000 PMCID: PMC7783546 DOI: 10.1001/jamanetworkopen.2020.31851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This case-control study uses magnetic resonance imaging and spectroscopy to evaluate the association between treatment with recombinant adeno-associated virus serotype rh74 (rAAVrh74) and muscle quality in children with Duchenne muscular dystrophy.
Collapse
Affiliation(s)
| | - Sean C. Forbes
- Department of Physical Therapy, University of Florida, Gainesville
| | - Glenn A. Walter
- Department of Physical Therapy, University of Florida, Gainesville
| | - Lee Sweeney
- Department of Physical Therapy, University of Florida, Gainesville
| | | | - Jerry R. Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | | |
Collapse
|
35
|
Lott DJ, Taivassalo T, Cooke KD, Park H, Moslemi Z, Batra A, Forbes SC, Byrne BJ, Walter GA, Vandenborne K. Safety, feasibility, and efficacy of strengthening exercise in Duchenne muscular dystrophy. Muscle Nerve 2020; 63:320-326. [PMID: 33295018 DOI: 10.1002/mus.27137] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND This two-part study explored the safety, feasibility, and efficacy of a mild-moderate resistance isometric leg exercise program in ambulatory boys with Duchenne muscular dystrophy (DMD). METHODS First, we used a dose escalation paradigm with varying intensity and frequency of leg isometric exercise to determine the dose response and safety in 10 boys. Second, we examined safety and feasibility of a 12-wk in-home, remotely supervised, mild-moderate intensity strengthening program in eight boys. Safety measures included T2 MRI, creatine kinase levels, and pain. Peak strength and function (time to ascend/descend four stairs) were also measured. RESULTS Dose-escalation revealed no signs of muscle damage. Seven of the eight boys completed the 12-wk in-home program with a compliance of 84.9%, no signs of muscle damage, and improvements in strength (knee extensors P < .01; knee flexors P < .05) and function (descending steps P < .05). CONCLUSIONS An in-home, mild-moderate intensity leg exercise program is safe with potential to positively impact both strength and function in ambulatory boys with DMD.
Collapse
Affiliation(s)
- Donovan J Lott
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Korey D Cooke
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Hyunjun Park
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Zahra Moslemi
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
36
|
Zhu Y, Zhang Y, Shi G, Xue Q, Han X, Ai S, Shi J, Xie C, He X. Quantification of iris elasticity using acoustic radiation force optical coherence elastography. APPLIED OPTICS 2020; 59:10739-10745. [PMID: 33361893 DOI: 10.1364/ao.406190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Careful quantification of the changes in biomechanical properties of the iris can offer insight into the pathophysiology of some ocular diseases. However, to date there has not been much information available regarding this subject because clinical detection for iris elasticity remains challenging. To overcome this limitation, we explore, for the first time to our knowledge, the potential of measuring iris elasticity using acoustic radiation force optical coherence elastography (ARF-OCE). The resulting images and shear wave propagation, as well as the corresponding shear modulus and Young's modulus from ex vivo and in vivo rabbit models confirmed the feasibility of this method. With features of noninvasive imaging, micrometer-scale resolution, high acquisition speed and real-time processing, ARF-OCE is a promising method for reconstruction of iris elasticity and may have great potential to be applied in clinical ophthalmology with further refinement.
Collapse
|
37
|
Dahlqvist JR, Widholm P, Leinhard OD, Vissing J. MRI in Neuromuscular Diseases: An Emerging Diagnostic Tool and Biomarker for Prognosis and Efficacy. Ann Neurol 2020; 88:669-681. [PMID: 32495452 DOI: 10.1002/ana.25804] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
There is an unmet need to identify biomarkers sensitive to change in rare, slowly progressive neuromuscular diseases. Quantitative magnetic resonance imaging (MRI) of muscle may offer this opportunity, as it is noninvasive and can be carried out almost independent of patient cooperation and disease severity. Muscle fat content correlates with muscle function in neuromuscular diseases, and changes in fat content precede changes in function, which suggests that muscle MRI is a strong biomarker candidate to predict prognosis and treatment efficacy. In this paper, we review the evidence suggesting that muscle MRI may be an important biomarker for diagnosis and to monitor change in disease severity. ANN NEUROL 2020;88:669-681.
Collapse
Affiliation(s)
- Julia R Dahlqvist
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Per Widholm
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
38
|
Farrow M, Biglands J, Alfuraih AM, Wakefield RJ, Tan AL. Novel Muscle Imaging in Inflammatory Rheumatic Diseases-A Focus on Ultrasound Shear Wave Elastography and Quantitative MRI. Front Med (Lausanne) 2020; 7:434. [PMID: 32903395 PMCID: PMC7434835 DOI: 10.3389/fmed.2020.00434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years, imaging has played an increasing role in the clinical management of patients with rheumatic diseases with respect to aiding diagnosis, guiding therapy and monitoring disease progression. These roles have been underpinned by research which has enhanced our understanding of disease pathogenesis and pathophysiology of rheumatology conditions, in addition to their key role in outcome measurement in clinical trials. However, compared to joints, imaging research of muscles is less established, despite the fact that muscle symptoms are very common and debilitating in many rheumatic diseases. Recently, it has been shown that even though patients with rheumatoid arthritis may achieve clinical remission, defined by asymptomatic joints, many remain affected by lingering constitutional systemic symptoms like fatigue, tiredness, weakness and myalgia, which may be attributed to changes in the muscles. Recent improvements in imaging technology, coupled with an increasing clinical interest, has started to ignite new interest in the area. This perspective discusses the rationale for using imaging, particularly ultrasound and MRI, for investigating muscle pathology involved in common inflammatory rheumatic diseases. The muscles associated with rheumatic diseases can be affected in many ways, including myositis-an inflammatory muscle condition, and myopathy secondary to medications, such as glucocorticoids. In addition to non-invasive visual assessment of muscles in these conditions, novel imaging techniques like shear wave elastography and quantitative MRI can provide further useful information regarding the physiological and biomechanical status of the muscle.
Collapse
Affiliation(s)
- Matthew Farrow
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom
| | - John Biglands
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Abdulrahman M Alfuraih
- Radiology and Medical Imaging Department, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Richard J Wakefield
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Ai Lyn Tan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
39
|
Senesac CR, Barnard AM, Lott DJ, Nair KS, Harrington AT, Willcocks RJ, Zilke KL, Rooney WD, Walter GA, Vandenborne K. Magnetic Resonance Imaging Studies in Duchenne Muscular Dystrophy: Linking Findings to the Physical Therapy Clinic. Phys Ther 2020; 100:2035-2048. [PMID: 32737968 PMCID: PMC7596892 DOI: 10.1093/ptj/pzaa140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle degenerative disorder that manifests in early childhood and results in progressive muscle weakness. Physical therapists have long been an important component of the multidisciplinary team caring for people with DMD, providing expertise in areas of disease assessment, contracture management, assistive device prescription, and exercise prescription. Over the last decade, magnetic resonance imaging of muscles in people with DMD has led to an improved understanding of the muscle pathology underlying the clinical manifestations of DMD. Findings from magnetic resonance imaging (MRI) studies in DMD, paired with the clinical expertise of physical therapists, can help guide research that leads to improved physical therapist care for this unique patient population. The 2 main goals of this perspective article are to (1) summarize muscle pathology and disease progression findings from qualitative and quantitative muscle MRI studies in DMD and (2) link MRI findings of muscle pathology to the clinical manifestations observed by physical therapists with discussion of any potential implications of MRI findings on physical therapy management.
Collapse
Affiliation(s)
| | | | | | - Kavya S Nair
- Department of Physical Therapy, University of Florida
| | - Ann T Harrington
- Center for Rehabilitation, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania
| | | | - Kirsten L Zilke
- Oregon Health & Science University, Shriners Hospitals for Children, Portland, Oregon
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida
| | | |
Collapse
|
40
|
Al-Khalili Szigyarto C. Duchenne Muscular Dystrophy: recent advances in protein biomarkers and the clinical application. Expert Rev Proteomics 2020; 17:365-375. [PMID: 32713262 DOI: 10.1080/14789450.2020.1773806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Early biomarker discovery studies have praised the value of their emerging results, predicting an unprecedented impact on health care. Biomarkers are expected to provide tests with increased specificity and sensitivity compared to existing measures, improve the decision-making process, and accelerate the development of therapies. For rare disorders, like Duchenne Muscular Dystrophy (DMD) such biomarkers can assist the development of therapies, therefore also helping to find a cure for the disease. AREA COVERED State-of-the-art technologies have been used to identify blood biomarkers for DMD and efforts have been coordinated to develop and promote translation of biomarkers for clinical practice. Biomarker translation to clinical practice is however, adjoined by challenges related to the complexity of the disease, involving numerous biological processes, and the limited sample resources. This review highlights the current progress on the development of biomarkers, describing the proteomics technologies used, the most promising findings and the challenges encountered. EXPERT OPINION Strategies for effective use of samples combined with orthogonal proteomics methods for protein quantification are essential for translating biomarkers to the patient's bed side. Progress is achieved only if strong evidence is provided that the biomarker constitutes a reliable indicator of the patient's health status for a specific context of use.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Science for Life Laboratory, KTH - Royal Institute of Technology , Solna, Sweden.,School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology , Stockholm, Sweden
| |
Collapse
|
41
|
Forbes SC, Arora H, Willcocks RJ, Triplett WT, Rooney WD, Barnard AM, Alabasi U, Wang DJ, Lott DJ, Senesac CR, Harrington AT, Finanger EL, Tennekoon GI, Brandsema J, Daniels MJ, Sweeney HL, Walter GA, Vandenborne K. Upper and Lower Extremities in Duchenne Muscular Dystrophy Evaluated with Quantitative MRI and Proton MR Spectroscopy in a Multicenter Cohort. Radiology 2020; 295:616-625. [PMID: 32286193 PMCID: PMC7263287 DOI: 10.1148/radiol.2020192210] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Background Upper extremity MRI and proton MR spectroscopy are increasingly considered to be outcome measures in Duchenne muscular dystrophy (DMD) clinical trials. Purpose To demonstrate the feasibility of acquiring upper extremity MRI and proton (1H) MR spectroscopy measures of T2 and fat fraction in a large, multicenter cohort (ImagingDMD) of ambulatory and nonambulatory individuals with DMD; compare upper and lower extremity muscles by using MRI and 1H MR spectroscopy; and correlate upper extremity MRI and 1H MR spectroscopy measures to function. Materials and Methods In this prospective cross-sectional study, MRI and 1H MR spectroscopy and functional assessment data were acquired from participants with DMD and unaffected control participants at three centers (from January 28, 2016, to April 24, 2018). T2 maps of the shoulder, upper arm, forearm, thigh, and calf were generated from a spin-echo sequence (repetition time msec/echo time msec, 3000/20-320). Fat fraction maps were generated from chemical shift-encoded imaging (eight echo times). Fat fraction and 1H2O T2 in the deltoid and biceps brachii were measured from single-voxel 1H MR spectroscopy (9000/11-243). Groups were compared by using Mann-Whitney test, and relationships between MRI and 1H MR spectroscopy and arm function were assessed by using Spearman correlation. Results This study evaluated 119 male participants with DMD (mean age, 12 years ± 3 [standard deviation]) and 38 unaffected male control participants (mean age, 12 years ± 3). Deltoid and biceps brachii muscles were different in participants with DMD versus control participants in all age groups by using quantitative T2 MRI (P < .001) and 1H MR spectroscopy fat fraction (P < .05). The deltoid, biceps brachii, and triceps brachii were affected to the same extent (P > .05) as the soleus and medial gastrocnemius. Negative correlations were observed between arm function and MRI (T2: range among muscles, ρ = -0.53 to -0.73 [P < .01]; fat fraction, ρ = -0.49 to -0.70 [P < .01]) and 1H MR spectroscopy fat fraction (ρ = -0.64 to -0.71; P < .01). Conclusion This multicenter study demonstrated early and progressive involvement of upper extremity muscles in Duchenne muscular dystrophy (DMD) and showed the feasibility of MRI and 1H MR spectroscopy to track disease progression over a wide range of ages in participants with DMD. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Sean C. Forbes
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Harneet Arora
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Rebecca J. Willcocks
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - William T. Triplett
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - William D. Rooney
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Alison M. Barnard
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Umar Alabasi
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Dah-Jyuu Wang
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Donovan J. Lott
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Claudia R. Senesac
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Ann T. Harrington
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Erika L. Finanger
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Gihan I. Tennekoon
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - John Brandsema
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Michael J. Daniels
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - H. Lee Sweeney
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Glenn A. Walter
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Krista Vandenborne
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| |
Collapse
|
42
|
Killian M, Buchowski MS, Donnelly T, Burnette WB, Markham LW, Slaughter JC, Xu M, Crum K, Damon BM, Soslow JH. Beyond ambulation: Measuring physical activity in youth with Duchenne muscular dystrophy. Neuromuscul Disord 2020; 30:277-282. [PMID: 32291149 PMCID: PMC7234926 DOI: 10.1016/j.nmd.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 01/04/2023]
Abstract
Patients with Duchenne muscular dystrophy (DMD) develop skeletal muscle weakness and cardiomyopathy. Validated skeletal muscle outcome measures are limited to ambulatory patients, but most DMD patients in cardiac trials are non-ambulatory. New objective functional assessments are needed. This study's objective was to assess the correlation and longitudinal change of two measures: quantitative muscle testing (QMT) and accelerometry. Patients with DMD were prospectively enrolled and underwent QMT and wore wrist and ankle accelerometers for seven days at baseline, 1-, and 2-years. QMT measures were indexed to age. Accelerometer recordings were total vector magnitudes and awake vector magnitude. Correlations were assessed using a Spearman correlation, and longitudinal change was evaluated using a paired t-test or a Wilcoxon signed rank test. Forty-eight participants were included. QMT and accelerometry measures had a moderate or strong correlation, particularly indexed arm QMT with total wrist vector magnitude (rho=0.85, p<0.001), total indexed QMT with total wrist vector magnitude (rho=0.8, p<0.001) and indexed leg QMT with total ankle vector magnitude (rho=0.69, p<0.001). QMT and accelerometry measures declined significantly over time. Accelerometry correlates with QMT and indexed QMT in boys with DMD. A combination of QMT and accelerometry may provide a complementary assessment of skeletal muscle function in non-ambulatory boys with DMD.
Collapse
Affiliation(s)
- Mary Killian
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Maciej S. Buchowski
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Thomas Donnelly
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - W. Bryan Burnette
- Division of Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Larry W. Markham
- Division of Cardiology, Department of Pediatrics, Riley Hospital for Children at Indiana Health, Indianapolis, IN
| | - James C. Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Meng Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Kimberly Crum
- Thomas P Graham Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Bruce M. Damon
- Departments of Radiology and Radiological Sciences, Molecular Physiology and Biophysics, and Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan H. Soslow
- Thomas P Graham Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
43
|
Rooney WD, Berlow YA, Triplett WT, Forbes SC, Willcocks RJ, Wang DJ, Arpan I, Arora H, Senesac C, Lott DJ, Tennekoon G, Finkel R, Russman BS, Finanger EL, Chakraborty S, O'Brien E, Moloney B, Barnard A, Sweeney HL, Daniels MJ, Walter GA, Vandenborne K. Modeling disease trajectory in Duchenne muscular dystrophy. Neurology 2020; 94:e1622-e1633. [PMID: 32184340 DOI: 10.1212/wnl.0000000000009244] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/17/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To quantify disease progression in individuals with Duchenne muscular dystrophy (DMD) using magnetic resonance biomarkers of leg muscles. METHODS MRI and magnetic resonance spectroscopy (MRS) biomarkers were acquired from 104 participants with DMD and 51 healthy controls using a prospective observational study design with patients with DMD followed up yearly for up to 6 years. Fat fractions (FFs) in vastus lateralis and soleus muscles were determined with 1H MRS. MRI quantitative T2 (qT2) values were measured for 3 muscles of the upper leg and 5 muscles of the lower leg. Longitudinal changes in biomarkers were modeled with a cumulative distribution function using a nonlinear mixed-effects approach. RESULTS MRS FF and MRI qT2 increased with DMD disease duration, with the progression time constants differing markedly between individuals and across muscles. The average age at half-maximal muscle involvement (μ) occurred 4.8 years earlier in vastus lateralis than soleus, and these measures were strongly associated with loss-of-ambulation age. Corticosteroid treatment was found to delay μ by 2.5 years on average across muscles, although there were marked differences between muscles with more slowly progressing muscles showing larger delay. CONCLUSIONS MRS FF and MRI qT2 provide sensitive noninvasive measures of DMD progression. Modeling changes in these biomarkers across multiple muscles can be used to detect and monitor the therapeutic effects of corticosteroids on disease progression and to provide prognostic information on functional outcomes. This modeling approach provides a method to transform these MRI biomarkers into well-understood metrics, allowing concise summaries of DMD disease progression at individual and population levels. CLINICALTRIALSGOV IDENTIFIER NCT01484678.
Collapse
Affiliation(s)
- William D Rooney
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR.
| | - Yosef A Berlow
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - William T Triplett
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Sean C Forbes
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Rebecca J Willcocks
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Dah-Jyuu Wang
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Ishu Arpan
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Harneet Arora
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Claudia Senesac
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Donovan J Lott
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Gihan Tennekoon
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Richard Finkel
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Barry S Russman
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Erika L Finanger
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Saptarshi Chakraborty
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Elliott O'Brien
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Brendan Moloney
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Alison Barnard
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - H Lee Sweeney
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Michael J Daniels
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Glenn A Walter
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Krista Vandenborne
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| |
Collapse
|
44
|
Barnard AM, Willcocks RJ, Triplett WT, Forbes SC, Daniels MJ, Chakraborty S, Lott DJ, Senesac CR, Finanger EL, Harrington AT, Tennekoon G, Arora H, Wang DJ, Sweeney HL, Rooney WD, Walter GA, Vandenborne K. MR biomarkers predict clinical function in Duchenne muscular dystrophy. Neurology 2020; 94:e897-e909. [PMID: 32024675 PMCID: PMC7238941 DOI: 10.1212/wnl.0000000000009012] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the potential of lower extremity magnetic resonance (MR) biomarkers to serve as endpoints in clinical trials of therapeutics for Duchenne muscular dystrophy (DMD) by characterizing the longitudinal progression of MR biomarkers over 48 months and assessing their relationship to changes in ambulatory clinical function. METHODS One hundred sixty participants with DMD were enrolled in this longitudinal, natural history study and underwent MR data acquisition of the lower extremity muscles to determine muscle fat fraction (FF) and MRI T2 biomarkers of disease progression. In addition, 4 tests of ambulatory function were performed. Participants returned for follow-up data collection at 12, 24, 36, and 48 months. RESULTS Longitudinal analysis of the MR biomarkers revealed that vastus lateralis FF, vastus lateralis MRI T2, and biceps femoris long head MRI T2 biomarkers were the fastest progressing biomarkers over time in this primarily ambulatory cohort. Biomarker values tended to demonstrate a nonlinear, sigmoidal trajectory over time. The lower extremity biomarkers predicted functional performance 12 and 24 months later, and the magnitude of change in an MR biomarker over time was related to the magnitude of change in function. Vastus lateralis FF, soleus FF, vastus lateralis MRI T2, and biceps femoris long head MRI T2 were the strongest predictors of future loss of function, including loss of ambulation. CONCLUSIONS This study supports the strong relationship between lower extremity MR biomarkers and measures of clinical function, as well as the ability of MR biomarkers, particularly those from proximal muscles, to predict future ambulatory function and important clinical milestones. CLINICALTRIALSGOV IDENTIFIER NCT01484678.
Collapse
Affiliation(s)
- Alison M Barnard
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Rebecca J Willcocks
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - William T Triplett
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Sean C Forbes
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Michael J Daniels
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Saptarshi Chakraborty
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Donovan J Lott
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Claudia R Senesac
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Erika L Finanger
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Ann T Harrington
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Gihan Tennekoon
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Harneet Arora
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Dah-Jyuu Wang
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - H Lee Sweeney
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - William D Rooney
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Glenn A Walter
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Krista Vandenborne
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA.
| |
Collapse
|
45
|
Mandić M, Rullman E, Widholm P, Lilja M, Dahlqvist Leinhard O, Gustafsson T, Lundberg TR. Automated assessment of regional muscle volume and hypertrophy using MRI. Sci Rep 2020; 10:2239. [PMID: 32042024 PMCID: PMC7010694 DOI: 10.1038/s41598-020-59267-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/23/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to validate a fully automatic method to quantify knee-extensor muscle volume and exercise-induced hypertrophy. By using a magnetic resonance imaging-based fat-water separated two-point Dixon sequence, the agreement between automated and manual segmentation of a specific ~15-cm region (partial volume) of the quadriceps muscle was assessed. We then explored the sensitivity of the automated technique to detect changes in both complete and partial quadriceps volume in response to 8 weeks of resistance training in 26 healthy men and women. There was a very strong correlation (r = 0.98, P < 0.0001) between the manual and automated method for assessing partial quadriceps volume, yet the volume was 9.6% greater with automated compared with manual analysis (P < 0.0001, 95% limits of agreement −93.3 ± 137.8 cm3). Partial muscle volume showed a 6.0 ± 5.0% (manual) and 4.8 ± 8.3% (automated) increase with training (P < 0.0001). Similarly, the complete quadriceps increased 5.1 ± 5.5% with training (P < 0.0001). The intramuscular fat proportion decreased (P < 0.001) from 4.1% to 3.9% after training. In conclusion, the automated method showed excellent correlation with manual segmentation and could detect clinically relevant magnitudes of exercise-induced muscle hypertrophy. This method could have broad application to accurately measure muscle mass in sports or to monitor clinical conditions associated with muscle wasting and fat infiltration.
Collapse
Affiliation(s)
- Mirko Mandić
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden.,Cardiovascular Theme, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Per Widholm
- AMRA Medical AB, Linköping, Sweden.,Department of Radiology, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Mats Lilja
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden.,Department of Radiology, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy R Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
46
|
Naarding KJ, Reyngoudt H, van Zwet EW, Hooijmans MT, Tian C, Rybalsky I, Shellenbarger KC, Le Louër J, Wong BL, Carlier PG, Kan HE, Niks EH. MRI vastus lateralis fat fraction predicts loss of ambulation in Duchenne muscular dystrophy. Neurology 2020; 94:e1386-e1394. [PMID: 31937624 PMCID: PMC7274919 DOI: 10.1212/wnl.0000000000008939] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/08/2019] [Indexed: 02/04/2023] Open
Abstract
Objective We studied the potential of quantitative MRI (qMRI) as a surrogate endpoint in Duchenne muscular dystrophy by assessing the additive predictive value of vastus lateralis (VL) fat fraction (FF) to age on loss of ambulation (LoA). Methods VL FFs were determined on longitudinal Dixon MRI scans from 2 natural history studies in Leiden University Medical Center (LUMC) and Cincinnati Children's Hospital Medical Center (CCHMC). CCHMC included ambulant patients, while LUMC included a mixed ambulant and nonambulant population. We fitted longitudinal VL FF values to a sigmoidal curve using a mixed model with random slope to predict individual trajectories. The additive value of VL FF over age to predict LoA was calculated from a Cox model, yielding a hazard ratio. Results Eighty-nine MRIs of 19 LUMC and 15 CCHMC patients were included. At similar age, 6-minute walking test distances were smaller and VL FFs were correspondingly higher in LUMC compared to CCHMC patients. Hazard ratio of a percent-point increase in VL FF for the time to LoA was 1.15 for LUMC (95% confidence interval [CI] 1.05–1.26; p = 0.003) and 0.96 for CCHMC (95% CI 0.84–1.10; p = 0.569). Conclusions The hazard ratio of 1.15 corresponds to a 4.11-fold increase of the instantaneous risk of LoA in patients with a 10% higher VL FF at any age. Although results should be confirmed in a larger cohort with prospective determination of the clinical endpoint, this added predictive value of VL FF to age on LoA supports the use of qMRI FF as an endpoint or stratification tool in clinical trials.
Collapse
Affiliation(s)
- Karin J Naarding
- From the Department of Neurology (K.J.N., E.H.N.), Department of Biostatistics (E.W.v.Z), and C.J. Gorter Center for High Field MRI (M.T.H., H.E.K.), Department of Radiology, Leiden University Medical Center, Zuid-Holland; Duchenne Center Netherlands (K.J.N., H.E.K., E.H.N.); AIM and CEA NMR Laboratory (H.R., J.L.L., P.G.C.), Neuromuscular Investigation Center, Institute of Myology, Paris, France; and Department of Neurology (C.T., I.R., K.C.S., B.L.W.), Cincinnati Children's Hospital Medical Center, OH.
| | - Harmen Reyngoudt
- From the Department of Neurology (K.J.N., E.H.N.), Department of Biostatistics (E.W.v.Z), and C.J. Gorter Center for High Field MRI (M.T.H., H.E.K.), Department of Radiology, Leiden University Medical Center, Zuid-Holland; Duchenne Center Netherlands (K.J.N., H.E.K., E.H.N.); AIM and CEA NMR Laboratory (H.R., J.L.L., P.G.C.), Neuromuscular Investigation Center, Institute of Myology, Paris, France; and Department of Neurology (C.T., I.R., K.C.S., B.L.W.), Cincinnati Children's Hospital Medical Center, OH
| | - Erik W van Zwet
- From the Department of Neurology (K.J.N., E.H.N.), Department of Biostatistics (E.W.v.Z), and C.J. Gorter Center for High Field MRI (M.T.H., H.E.K.), Department of Radiology, Leiden University Medical Center, Zuid-Holland; Duchenne Center Netherlands (K.J.N., H.E.K., E.H.N.); AIM and CEA NMR Laboratory (H.R., J.L.L., P.G.C.), Neuromuscular Investigation Center, Institute of Myology, Paris, France; and Department of Neurology (C.T., I.R., K.C.S., B.L.W.), Cincinnati Children's Hospital Medical Center, OH
| | - Melissa T Hooijmans
- From the Department of Neurology (K.J.N., E.H.N.), Department of Biostatistics (E.W.v.Z), and C.J. Gorter Center for High Field MRI (M.T.H., H.E.K.), Department of Radiology, Leiden University Medical Center, Zuid-Holland; Duchenne Center Netherlands (K.J.N., H.E.K., E.H.N.); AIM and CEA NMR Laboratory (H.R., J.L.L., P.G.C.), Neuromuscular Investigation Center, Institute of Myology, Paris, France; and Department of Neurology (C.T., I.R., K.C.S., B.L.W.), Cincinnati Children's Hospital Medical Center, OH
| | - Cuixia Tian
- From the Department of Neurology (K.J.N., E.H.N.), Department of Biostatistics (E.W.v.Z), and C.J. Gorter Center for High Field MRI (M.T.H., H.E.K.), Department of Radiology, Leiden University Medical Center, Zuid-Holland; Duchenne Center Netherlands (K.J.N., H.E.K., E.H.N.); AIM and CEA NMR Laboratory (H.R., J.L.L., P.G.C.), Neuromuscular Investigation Center, Institute of Myology, Paris, France; and Department of Neurology (C.T., I.R., K.C.S., B.L.W.), Cincinnati Children's Hospital Medical Center, OH
| | - Irina Rybalsky
- From the Department of Neurology (K.J.N., E.H.N.), Department of Biostatistics (E.W.v.Z), and C.J. Gorter Center for High Field MRI (M.T.H., H.E.K.), Department of Radiology, Leiden University Medical Center, Zuid-Holland; Duchenne Center Netherlands (K.J.N., H.E.K., E.H.N.); AIM and CEA NMR Laboratory (H.R., J.L.L., P.G.C.), Neuromuscular Investigation Center, Institute of Myology, Paris, France; and Department of Neurology (C.T., I.R., K.C.S., B.L.W.), Cincinnati Children's Hospital Medical Center, OH
| | - Karen C Shellenbarger
- From the Department of Neurology (K.J.N., E.H.N.), Department of Biostatistics (E.W.v.Z), and C.J. Gorter Center for High Field MRI (M.T.H., H.E.K.), Department of Radiology, Leiden University Medical Center, Zuid-Holland; Duchenne Center Netherlands (K.J.N., H.E.K., E.H.N.); AIM and CEA NMR Laboratory (H.R., J.L.L., P.G.C.), Neuromuscular Investigation Center, Institute of Myology, Paris, France; and Department of Neurology (C.T., I.R., K.C.S., B.L.W.), Cincinnati Children's Hospital Medical Center, OH
| | - Julien Le Louër
- From the Department of Neurology (K.J.N., E.H.N.), Department of Biostatistics (E.W.v.Z), and C.J. Gorter Center for High Field MRI (M.T.H., H.E.K.), Department of Radiology, Leiden University Medical Center, Zuid-Holland; Duchenne Center Netherlands (K.J.N., H.E.K., E.H.N.); AIM and CEA NMR Laboratory (H.R., J.L.L., P.G.C.), Neuromuscular Investigation Center, Institute of Myology, Paris, France; and Department of Neurology (C.T., I.R., K.C.S., B.L.W.), Cincinnati Children's Hospital Medical Center, OH
| | - Brenda L Wong
- From the Department of Neurology (K.J.N., E.H.N.), Department of Biostatistics (E.W.v.Z), and C.J. Gorter Center for High Field MRI (M.T.H., H.E.K.), Department of Radiology, Leiden University Medical Center, Zuid-Holland; Duchenne Center Netherlands (K.J.N., H.E.K., E.H.N.); AIM and CEA NMR Laboratory (H.R., J.L.L., P.G.C.), Neuromuscular Investigation Center, Institute of Myology, Paris, France; and Department of Neurology (C.T., I.R., K.C.S., B.L.W.), Cincinnati Children's Hospital Medical Center, OH
| | - Pierre G Carlier
- From the Department of Neurology (K.J.N., E.H.N.), Department of Biostatistics (E.W.v.Z), and C.J. Gorter Center for High Field MRI (M.T.H., H.E.K.), Department of Radiology, Leiden University Medical Center, Zuid-Holland; Duchenne Center Netherlands (K.J.N., H.E.K., E.H.N.); AIM and CEA NMR Laboratory (H.R., J.L.L., P.G.C.), Neuromuscular Investigation Center, Institute of Myology, Paris, France; and Department of Neurology (C.T., I.R., K.C.S., B.L.W.), Cincinnati Children's Hospital Medical Center, OH
| | - Hermien E Kan
- From the Department of Neurology (K.J.N., E.H.N.), Department of Biostatistics (E.W.v.Z), and C.J. Gorter Center for High Field MRI (M.T.H., H.E.K.), Department of Radiology, Leiden University Medical Center, Zuid-Holland; Duchenne Center Netherlands (K.J.N., H.E.K., E.H.N.); AIM and CEA NMR Laboratory (H.R., J.L.L., P.G.C.), Neuromuscular Investigation Center, Institute of Myology, Paris, France; and Department of Neurology (C.T., I.R., K.C.S., B.L.W.), Cincinnati Children's Hospital Medical Center, OH
| | - Erik H Niks
- From the Department of Neurology (K.J.N., E.H.N.), Department of Biostatistics (E.W.v.Z), and C.J. Gorter Center for High Field MRI (M.T.H., H.E.K.), Department of Radiology, Leiden University Medical Center, Zuid-Holland; Duchenne Center Netherlands (K.J.N., H.E.K., E.H.N.); AIM and CEA NMR Laboratory (H.R., J.L.L., P.G.C.), Neuromuscular Investigation Center, Institute of Myology, Paris, France; and Department of Neurology (C.T., I.R., K.C.S., B.L.W.), Cincinnati Children's Hospital Medical Center, OH
| |
Collapse
|
47
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
48
|
Chrzanowski SM, Darras BT, Rutkove SB. The Value of Imaging and Composition-Based Biomarkers in Duchenne Muscular Dystrophy Clinical Trials. Neurotherapeutics 2020; 17:142-152. [PMID: 31879850 PMCID: PMC7007477 DOI: 10.1007/s13311-019-00825-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As the drug development pipeline for Duchenne muscular dystrophy (DMD) rapidly advances, clinical trial outcomes need to be optimized. Effective assessment of disease burden, natural history progression, and response to therapy in clinical trials for Duchenne muscular dystrophy are critical factors for clinical trial success. By choosing optimal biomarkers to better assess therapeutic efficacy, study costs and sample size requirements can be reduced. Currently, functional measures continue to serve as the primary outcome for the majority of DMD clinical trials. Quantitative measures of muscle health, including magnetic resonance imaging and spectroscopy, electrical impedance myography, and ultrasound, sensitively identify diseased muscle, disease progression, and response to a therapeutic intervention. Furthermore, such non-invasive techniques have the potential to identify disease pathology prior to onset of clinical symptoms. Despite robust supportive evidence, non-invasive quantitative techniques are still not frequently utilized in clinical trials for Duchenne muscular dystrophy. Non-invasive quantitative techniques have demonstrated the ability to quantify disease progression and potential response to therapeutic intervention, and should be used as a supplement to current standard functional measures. Such methods have the potential to significantly accelerate the development and approval of therapies for DMD.
Collapse
Affiliation(s)
- Stephen M Chrzanowski
- Department of Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
49
|
Ropars J, Gravot F, Ben Salem D, Rousseau F, Brochard S, Pons C. Muscle MRI: A biomarker of disease severity in Duchenne muscular dystrophy? A systematic review. Neurology 2019; 94:117-133. [PMID: 31892637 DOI: 10.1212/wnl.0000000000008811] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To assess the evidence of a relationship between muscle MRI and disease severity in Duchenne muscular dystrophy (DMD). METHODS We conducted a systematic review of studies that analyzed correlations between MRI measurements and motor function in patients with DMD. PubMed, Cochrane, Scopus, and Web of Science were searched using relevant keywords and inclusion/exclusion criteria (January 1, 1990-January 31, 2019). We evaluated article quality using the Joanna Briggs Institute scale. Information regarding the samples included, muscles evaluated, MRI protocols and motor function tests used was collected from each article. Correlations between MRI measurements and motor function were reported exhaustively. RESULTS Seventeen of 1,629 studies identified were included. Most patients included were ambulant with a mean age of 8.9 years. Most studies evaluated lower limb muscles. Moderate to excellent correlations were found between MRI measurements and motor function. The strongest correlations were found for quantitative MRI measurements such as fat fraction or mean T2. Correlations were stronger for lower leg muscles such as soleus. One longitudinal study reported that changes in soleus mean T2 were highly correlated with changes in motor function. CONCLUSION The findings of this systematic review showed that MRI measurements can be used as biomarkers of disease severity in ambulant patients with DMD. Guidelines are proposed to help clinicians choose the most appropriate MRI measurements and muscles to evaluate. Studies exploring upper limb muscles, other stages of the disease, and sensitivity of measurements to change are needed.
Collapse
Affiliation(s)
- Juliette Ropars
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France.
| | - France Gravot
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - Douraied Ben Salem
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - François Rousseau
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - Sylvain Brochard
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - Christelle Pons
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| |
Collapse
|
50
|
Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nat Med 2019; 25:1905-1915. [PMID: 31792454 DOI: 10.1038/s41591-019-0669-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Biomarkers for monitoring of disease progression and response to therapy are lacking for muscle diseases such as Duchenne muscular dystrophy. Noninvasive in vivo molecular imaging with multispectral optoacoustic tomography (MSOT) uses pulsed laser light to induce acoustic pressure waves, enabling the visualization of endogenous chromophores. Here we describe an application of MSOT, in which illumination in the near- and extended near-infrared ranges from 680-1,100 nm enables the visualization and quantification of collagen content. We first demonstrated the feasibility of this approach to noninvasive quantification of tissue fibrosis in longitudinal studies in a large-animal Duchenne muscular dystrophy model in pigs, and then applied this approach to pediatric patients. MSOT-derived collagen content measurements in skeletal muscle were highly correlated to the functional status of the patients and provided additional information on molecular features as compared to magnetic resonance imaging. This study highlights the potential of MSOT imaging as a noninvasive, age-independent biomarker for the implementation and monitoring of newly developed therapies in muscular diseases.
Collapse
|