1
|
Higashi T, Saito AC, Chiba H. Damage control of epithelial barrier function in dynamic environments. Eur J Cell Biol 2024; 103:151410. [PMID: 38579602 DOI: 10.1016/j.ejcb.2024.151410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
2
|
Huang N, Wang Q, Bernard RB, Chen CY, Hu JM, Wang JK, Chan KS, Johnson MD, Lin CY. SPINT2 mutations in the Kunitz domain 2 found in SCSD patients inactivate HAI-2 as prostasin inhibitor via abnormal protein folding and N-glycosylation. Hum Mol Genet 2024; 33:752-767. [PMID: 38271183 PMCID: PMC11031362 DOI: 10.1093/hmg/ddae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Mutations in the Kunitz-type serine protease inhibitor HAI-2, encoded by SPINT2, are responsible for the pathogenesis of syndromic congenital sodium diarrhea (SCSD), an intractable secretory diarrhea of infancy. Some of the mutations cause defects in the functionally required Kunitz domain 1 and/or subcellular targeting signals. Almost all SCSD patients, however, harbor SPINT2 missense mutations that affect the functionally less important Kunitz domain 2. How theses single amino acid substitutions inactivate HAI-2 was, here, investigated by the doxycycline-inducible expression of three of these mutants in HAI-2-knockout Caco-2 human colorectal adenocarcinoma cells. Examining protein expressed from these HAI-2 mutants reveals that roughly 50% of the protein is synthesized as disulfide-linked oligomers that lose protease inhibitory activity due to the distortion of the Kunitz domains by disarrayed disulfide bonding. Although the remaining protein is synthesized as monomers, its glycosylation status suggests that the HAI-2 monomer remains in the immature, lightly glycosylated form, and is not converted to the heavily glycosylated mature form. Heavily glycosylated HAI-2 possesses full anti-protease activity and appropriate subcellular targeting signals, including the one embedded in the complex-type N-glycan. As predicted, these HAI-2 mutants cannot suppress the excessive prostasin proteolysis caused by HAI-2 deletion. The oligomerization and glycosylation defects have also been observed in a colorectal adenocarcinoma line that harbors one of these SPINT2 missense mutations. Our study reveals that the abnormal protein folding and N-glycosylation can cause widespread HAI-2 inactivation in SCSD patents.
Collapse
Affiliation(s)
- Nanxi Huang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Road NW W422 New Research Building, Washington DC 20057, United States
| | - Qiaochu Wang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Road NW W422 New Research Building, Washington DC 20057, United States
| | - Robert B Bernard
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Road NW W422 New Research Building, Washington DC 20057, United States
| | - Chao-Yang Chen
- School of Medicine, National Defense Medical Center, No. 161, sec. 6, Minquan E. Road, Neihu Dist. Taipei City 11490, Taiwan, ROC
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, No. 325, Sec. 2, Chenggon Road, Neihu Dist. Taipei City 114202, Taiwan, ROC
| | - Je-Ming Hu
- School of Medicine, National Defense Medical Center, No. 161, sec. 6, Minquan E. Road, Neihu Dist. Taipei City 11490, Taiwan, ROC
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, No. 325, Sec. 2, Chenggon Road, Neihu Dist. Taipei City 114202, Taiwan, ROC
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, sec. 6, Minquan E. Neihu Dist. Taipei City 11490, Taiwan, ROC
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, No. 161, sec. 6, Minquan E. Road, Taipei City, 11490, Taiwan, ROC
| | - Khee-Siang Chan
- Department of Intensive Care Medicine, Chi Mei Medical Center, No. 901, Zhonghua Road, Yongkang Dist., Tainan City, 71004, Taiwan, ROC
| | - Michael D Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Road NW W422 New Research Building, Washington DC 20057, United States
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Road NW W422 New Research Building, Washington DC 20057, United States
| |
Collapse
|
3
|
Enns CA, Weiskopf T, Zhang RH, Wu J, Jue S, Kawaguchi M, Kataoka H, Zhang AS. Matriptase-2 regulates iron homeostasis primarily by setting the basal levels of hepatic hepcidin expression through a nonproteolytic mechanism. J Biol Chem 2023; 299:105238. [PMID: 37690687 PMCID: PMC10551898 DOI: 10.1016/j.jbc.2023.105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023] Open
Abstract
Matriptase-2 (MT2), encoded by TMPRSS6, is a membrane-anchored serine protease. It plays a key role in iron homeostasis by suppressing the iron-regulatory hormone, hepcidin. Lack of functional MT2 results in an inappropriately high hepcidin and iron-refractory iron-deficiency anemia. Mt2 cleaves multiple components of the hepcidin-induction pathway in vitro. It is inhibited by the membrane-anchored serine protease inhibitor, Hai-2. Earlier in vivo studies show that Mt2 can suppress hepcidin expression independently of its proteolytic activity. In this study, our data indicate that hepatic Mt2 was a limiting factor in suppressing hepcidin. Studies in Tmprss6-/- mice revealed that increases in dietary iron to ∼0.5% were sufficient to overcome the high hepcidin barrier and to correct iron-deficiency anemia. Interestingly, the increased iron in Tmprss6-/- mice was able to further upregulate hepcidin expression to a similar magnitude as in wild-type mice. These results suggest that a lack of Mt2 does not impact the iron induction of hepcidin. Additional studies of wild-type Mt2 and the proteolytic-dead form, fMt2S762A, indicated that the function of Mt2 is to lower the basal levels of hepcidin expression in a manner that primarily relies on its nonproteolytic role. This idea is supported by the studies in mice with the hepatocyte-specific ablation of Hai-2, which showed a marginal impact on iron homeostasis and no significant effects on iron regulation of hepcidin. Together, these observations suggest that the function of Mt2 is to set the basal levels of hepcidin expression and that this process is primarily accomplished through a nonproteolytic mechanism.
Collapse
Affiliation(s)
- Caroline A Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Tyler Weiskopf
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Richard H Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey Wu
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Shall Jue
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Makiko Kawaguchi
- Faculty of Medicine, Section of Oncopathology and Regenerative Biology, Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Kataoka
- Faculty of Medicine, Section of Oncopathology and Regenerative Biology, Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - An-Sheng Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
4
|
Szabo R, Kawaguchi M, Kataoka H, Bugge TH. Early-onset tufting enteropathy in HAI-2-deficient mice is independent of matriptase-mediated cleavage of EpCAM. Development 2023; 150:dev201801. [PMID: 37539662 PMCID: PMC10482385 DOI: 10.1242/dev.201801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Congenital tufting enteropathy (CTE) is a life-threatening intestinal disorder resulting from loss-of-function mutations in EPCAM and SPINT2. Mice deficient in Spint2, encoding the protease inhibitor HAI-2, develop CTE-like intestinal failure associated with a progressive loss of the EpCAM protein, which is caused by unchecked activity of the serine protease matriptase (ST14). Here, we show that loss of HAI-2 leads to increased proteolytic processing of EpCAM. Elimination of the reported matriptase cleavage site strongly suppressed proteolytic processing of EpCAM in vitro and in vivo. Unexpectedly, expression of cleavage-resistant EpCAM failed to prevent intestinal failure and postnatal lethality in Spint2-deficient mice. In addition, genetic inactivation of intestinal matriptase (St14) counteracted the effect of Spint2 deficiency in mice expressing cleavage-resistant EpCAM, indicating that matriptase does not drive intestinal dysfunction by excessive proteolysis of EpCAM. Interestingly, mice expressing cleavage-resistant EpCAM developed late-onset intestinal defects and exhibited a shortened lifespan even in the presence of HAI-2, suggesting that EpCAM cleavage is indispensable for EpCAM function. Our findings provide new insights into the role of EpCAM and the etiology of the enteropathies driven by Spint2 deficiency.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Huang N, Wang Q, Chen CY, Hu JM, Wang JK, Chang PY, Johnson MD, Lin CY. N-glycosylation on Asn-57 is required for the correct HAI-2 protein folding and protease inhibitory activity. Glycobiology 2023; 33:203-214. [PMID: 36637420 PMCID: PMC10114645 DOI: 10.1093/glycob/cwad002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Hepatocyte growth factor activator inhibitor (HAI)-2 is an integral membrane Kunitz-type serine protease inhibitor that regulates the proteolysis of matriptase and prostasin in a cell-type selective manner. The cell-type selective nature of HAI-2 function depends largely on whether the inhibitor and potential target enzymes are targeted to locations in close proximity. The N-glycan moiety of HAI-2 can function as a subcellular targeting signal. HAI-2 is synthesized with 1 of 2 different N-glycan modifications: one of oligomannose-type, which largely remains in the endoplasmic reticulum/GA, and another of complex-type, which is targeted toward the apical surface in vesicle-like structures, and could function as an inhibitor of matriptase and prostasin. HAI-2 contains 2 putative N-glycosylation sites, Asn-57 and Asn-94, point mutations of which were generated and characterized in this study. The protein expression profile of the HAI-2 mutants indicates that Asn-57, and not Asn-94, is responsible for the N-glycosylation of both HAI-2 species, suggesting that the form with oligomannose-type N-glycan is the precursor of the form with complex-type N-glycan. Unexpectedly, the vast majority of non-glycosylated HAI-2 is synthesized into multiple disulfide-linked oligomers, which lack protease inhibitory function, likely due to distorted conformations caused by the disarrayed disulfide linkages. Although forced expression of HAI-2 in HAI-2 knockout cells artificially enhances HAI-2 oligomerization, disulfide-linked HAI-2 oligomers can also be observed in unmodified cells. These results suggest that N-glycosylation on Asn-57 is required for folding into a functional HAI-2 with full protease suppressive activity and correct subcellular targeting signal.
Collapse
Affiliation(s)
- Nanxi Huang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Qiaochu Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Chao-Yang Chen
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan, ROC
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, Taipei 114, Taiwan, ROC
| | - Je-Ming Hu
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan, ROC
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, Taipei 114, Taiwan, ROC
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, ROC
| | - Ping-Ying Chang
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan, ROC
- Division of Hematology/Oncology, Department of internal medicine, Tri-Service General Hospital, Taipei 114, Taiwan, ROC
| | - Michael D Johnson
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Chen-Yong Lin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
6
|
Barndt RB, Lee MJ, Huang N, Lu DD, Lee SC, Du PW, Chang CC, Tsai PFB, Huang YSK, Chang HM, Wang JK, Lai CH, Johnson MD, Lin CY. Targeted HAI-2 deletion causes excessive proteolysis with prolonged active prostasin and depletion of HAI-1 monomer in intestinal but not epidermal epithelial cells. Hum Mol Genet 2021; 30:1833-1850. [PMID: 34089062 PMCID: PMC8444455 DOI: 10.1093/hmg/ddab150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022] Open
Abstract
Mutations of SPINT2, the gene encoding the integral membrane, Kunitz-type serine inhibitor HAI-2, primarily affect the intestine, while sparing many other HAI-2-expressing tissues, causing sodium loss in patients with syndromic congenital sodium diarrhea. The membrane-bound serine protease prostasin was previously identified as a HAI-2 target protease in intestinal tissues but not in the skin. In both tissues, the highly related inhibitor HAI-1 is, however, the default inhibitor for prostasin and the type 2 transmembrane serine protease matriptase. This cell-type selective functional linkage may contribute to the organ-selective damage associated with SPINT 2 mutations. To this end, the impact of HAI-2 deletion on matriptase and prostasin proteolysis was, here, compared using Caco-2 human colorectal adenocarcinoma cells and HaCaT human keratinocytes. Greatly enhanced prostasin proteolytic activity with a prolonged half-life and significant depletion of HAI-1 monomer were observed with HAI-2 loss in Caco-2 cells but not HaCaT cells. The constitutive, high level prostasin zymogen activation observed in Caco-2 cells, but not in HaCaT cells, also contributes to the excessive prostasin proteolytic activity caused by HAI-2 loss. HAI-2 deletion also caused increased matriptase zymogen activation, likely as an indirect result of increased prostasin proteolysis. This increase in activated matriptase, however, only had a negligible role in depletion of HAI-1 monomer. Our study suggests that the constitutive, high level of prostasin zymogen activation and the cell-type selective functional relationship between HAI-2 and prostasin renders Caco-2 cells more susceptible than HaCaT cells to the loss of HAI-2, causing a severe imbalance favoring prostasin proteolysis.
Collapse
Affiliation(s)
- Robert B Barndt
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
| | - Mon-Juan Lee
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
- Department of Medical Science Industries, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Nanxi Huang
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
| | - Dajun D Lu
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
| | - See-Chi Lee
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
| | - Po-Wen Du
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry National Defense Medical Center, Taipei 114, Taiwan
| | - Chun-Chia Chang
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Ping-Feng B Tsai
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Siou K Huang
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Hao-Ming Chang
- Department of Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Jehng-Kang Wang
- Department of Biochemistry National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Hsin Lai
- Department of Dentistry Renai Branch, Taipei City Hospital, Taipei 106, Taiwan
| | - Michael D Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
7
|
Essigke D, Ilyaskin AV, Wörn M, Bohnert BN, Xiao M, Daniel C, Amann K, Birkenfeld AL, Szabo R, Bugge TH, Korbmacher C, Artunc F. Zymogen-locked mutant prostasin (Prss8) leads to incomplete proteolytic activation of the epithelial sodium channel (ENaC) and severely compromises triamterene tolerance in mice. Acta Physiol (Oxf) 2021; 232:e13640. [PMID: 33650216 DOI: 10.1111/apha.13640] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
AIM The serine protease prostasin (Prss8) is expressed in the distal tubule and stimulates proteolytic activation of the epithelial sodium channel (ENaC) in co-expression experiments in vitro. The aim of this study was to explore the role of prostasin in proteolytic ENaC activation in the kidney in vivo. METHODS We used genetically modified knockin mice carrying a Prss8 mutation abolishing proteolytic activity (Prss8-S238A) or a mutation leading to a zymogen-locked state (Prss8-R44Q). Mice were challenged with low sodium diet and diuretics. Regulation of ENaC activity by Prss8-S238A and Prss8-R44Q was studied in vitro using the Xenopus laevis oocyte expression system. RESULTS Co-expression of murine ENaC with Prss8-wt or Prss8-S238A in oocytes caused maximal proteolytic ENaC activation, whereas ENaC was activated only partially in oocytes co-expressing Prss8-R44Q. This was paralleled by a reduced proteolytic activity at the cell surface of Prss8-R44Q expressing oocytes. Sodium conservation under low sodium diet was preserved in Prss8-S238A and Prss8-R44Q mice but with higher plasma aldosterone concentrations in Prss8-R44Q mice. Treatment with the ENaC inhibitor triamterene over four days was tolerated in Prss8-wt and Prss8-S238A mice, whereas Prss8-R44Q mice developed salt wasting and severe weight loss associated with hyperkalemia and acidosis consistent with impaired ENaC function and renal failure. CONCLUSION Unlike proteolytically inactive Prss8-S238A, zymogen-locked Prss8-R44Q produces incomplete proteolytic ENaC activation in vitro and causes a severe renal phenotype in mice treated with the ENaC inhibitor triamterene. This indicates that Prss8 plays a role in proteolytic ENaC activation and renal function independent of its proteolytic activity.
Collapse
Affiliation(s)
- Daniel Essigke
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
| | - Alexandr V. Ilyaskin
- Institute of Cellular and Molecular Physiology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Matthias Wörn
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
| | - Bernhard N. Bohnert
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tuebingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tuebingen Germany
| | - Mengyun Xiao
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
| | - Christoph Daniel
- Institute of Pathology Department of Nephropathology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Kerstin Amann
- Institute of Pathology Department of Nephropathology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Andreas L. Birkenfeld
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tuebingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tuebingen Germany
| | - Roman Szabo
- Proteases and Tissue Remodeling Section National Institute of Dental and Craniofacial ResearchNational Institutes of Health Bethesda MD USA
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section National Institute of Dental and Craniofacial ResearchNational Institutes of Health Bethesda MD USA
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Ferruh Artunc
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tuebingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tuebingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tuebingen Germany
| |
Collapse
|
8
|
The Kunitz-type serine protease inhibitor Spint2 is required for cellular cohesion, coordinated cell migration and cell survival during zebrafish hatching gland development. Dev Biol 2021; 476:148-170. [PMID: 33826923 DOI: 10.1016/j.ydbio.2021.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022]
Abstract
We have previously shown that the Kunitz-type serine protease inhibitor Spint1a, also named Hai1a, is required in the zebrafish embryonic epidermis to restrict the activity of the type II transmembrane serine protease (TTSP) Matriptase1a/St14a, thereby ensuring epidermal homeostasis. A closely related Kunitz-type inhibitor is Spint2/Hai2, which in mammals plays multiple developmental roles that are either redundant or non-redundant with those of Spint1. However, the molecular bases for these non-redundancies are not fully understood. Here, we study spint2 during zebrafish development. It is co-expressed with spint1a in multiple embryonic epithelia, including the outer/peridermal layer of the epidermis. However, unlike spint1a, spint2 expression is absent from the basal epidermal layer but present in hatching gland cells. Hatching gland cells derive from the mesendodermal prechordal plate, from where they undergo a thus far undescribed transit into, and coordinated sheet migration within, the interspace between the outer and basal layer of the epidermis to reach their final destination on the yolk sac. Hatching gland cells usually survive their degranulation that drives embryo hatching but die several days later. In spint2 mutants, cohesion among hatching gland cells and their collective intra-epidermal migration are disturbed, leading to a discontinuous organization of the gland. In addition, cells undergo precocious cell death before degranulation, so that embryos fail to hatch. Chimera analyses show that Spint2 is required in hatching gland cells, but not in the overlying periderm, their potential migration and adhesion substrate. Spint2 acts independently of all tested Matriptases, Prostasins and other described Spint1 and Spint2 mediators. However, it displays a tight genetic interaction with and acts at least partly via the cell-cell adhesion protein E-cadherin, promoting both hatching gland cell cohesiveness and survival, in line with formerly reported effects of E-cadherin during morphogenesis and cell death suppression. In contrast, no such genetic interaction was observed between Spint2 and the cell-cell adhesion molecule EpCAM, which instead interacts with Spint1a. Our data shed new light onto the mechanisms of hatching gland morphogenesis and hatching gland cell survival. In addition, they reveal developmental roles of Spint2 that are strikingly different from those of Spint1, most likely due to differences in the expression patterns and relevant target proteins.
Collapse
|
9
|
Das B, Sivagnanam M. Congenital Tufting Enteropathy: Biology, Pathogenesis and Mechanisms. J Clin Med 2020; 10:E19. [PMID: 33374714 PMCID: PMC7793535 DOI: 10.3390/jcm10010019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023] Open
Abstract
Congenital tufting enteropathy (CTE) is an autosomal recessive disease of infancy that causes severe intestinal failure with electrolyte imbalances and impaired growth. CTE is typically diagnosed by its characteristic histological features, including villous atrophy, crypt hyperplasia and focal epithelial tufts consisting of densely packed enterocytes. Mutations in the EPCAM and SPINT2 genes have been identified as the etiology for this disease. The significant morbidity and mortality and lack of direct treatments for CTE patients demand a better understanding of disease pathophysiology. Here, the latest knowledge of CTE biology is systematically reviewed, including clinical aspects, disease genetics, and research model systems. Particular focus is paid to the pathogenesis of CTE and predicted mechanisms of the disease as these would provide insight for future therapeutic options. The contribution of intestinal homeostasis, including the role of intestinal cell differentiation, defective enterocytes, disrupted barrier and cell-cell junction, and cell-matrix adhesion, is vividly described here (see Graphical Abstract). Moreover, based on the known dynamics of EpCAM signaling, potential mechanistic pathways are highlighted that may contribute to the pathogenesis of CTE due to either loss of EpCAM function or EpCAM mutation. Although not fully elucidated, these pathways provide an improved understanding of this devastating disease.
Collapse
Affiliation(s)
- Barun Das
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Mamata Sivagnanam
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
10
|
Tufting Enteropathy: A Review of Clinical and Histological Presentation, Etiology, Management, and Outcome. Gastroenterol Res Pract 2020; 2020:5608069. [PMID: 33029133 PMCID: PMC7530495 DOI: 10.1155/2020/5608069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Congenital tufting enteropathy (CTE), also named intestinal epithelial dysplasia, is a rare, autosomal recessive enteropathy with persistent and life-threatening intractable diarrhea early in life. Intractable diarrhea is present independent of breast or formula feeding. Most CTE patients require total parenteral nutrition (TPN), and in severe cases, small bowel transplantation is needed. In the last decade, we have seen remarkable progress in certain aspects, such as the pathogenesis and diagnostic methods of the disease. Rapidly developing molecular analysis techniques have improved the diagnostic methods for CTE and reduced invasive and expensive procedures. Mutations in the gene encoding human epithelial cell adhesion molecule (EpCAM) were identified in the typical form of CTE, which usually exhibits isolated refractory diarrhea. Moreover, the syndromic form of CTE features anal and choanal atresias as well as ophthalmologic signs, which are associated with mutations in the gene encoding Serine Peptidase Inhibitor Kunitz Type 2 (SPINT2). This article reviews CTE disease based on its clinical and histological presentation, etiology and pathogenesis, and management and outcome.
Collapse
|
11
|
Membrane-anchored serine proteases as regulators of epithelial function. Biochem Soc Trans 2020; 48:517-528. [PMID: 32196551 PMCID: PMC9869603 DOI: 10.1042/bst20190675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Cleavage of proteins in the extracellular milieu, including hormones, growth factors and their receptors, ion channels, and various cell adhesion and extracellular matrix molecules, plays a key role in the regulation of cell behavior. Among more than 500 proteolytic enzymes encoded by mammalian genomes, membrane-anchored serine proteases (MASPs), which are expressed on the surface of epithelial cells of all major organs, are excellently suited to mediate signal transduction across the epithelia and are increasingly being recognized as important regulators of epithelial development, function, and disease [ 1-3]. In this minireview, we summarize current knowledge of the in vivo roles of MASPs in acquisition and maintenance of some of the defining functions of epithelial tissues, such as barrier formation, ion transport, and sensory perception.
Collapse
|
12
|
Holt-Danborg L, Vodopiutz J, Nonboe AW, De Laffolie J, Skovbjerg S, Wolters VM, Müller T, Hetzer B, Querfurt A, Zimmer KP, Jensen JK, Entenmann A, Heinz-Erian P, Vogel LK, Janecke AR. SPINT2 (HAI-2) missense variants identified in congenital sodium diarrhea/tufting enteropathy affect the ability of HAI-2 to inhibit prostasin but not matriptase. Hum Mol Genet 2020; 28:828-841. [PMID: 30445423 DOI: 10.1093/hmg/ddy394] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/13/2022] Open
Abstract
The syndromic form of congenital sodium diarrhea (SCSD) is caused by bi-allelic mutations in SPINT2, which encodes a Kunitz-type serine protease inhibitor (HAI-2). We report three novel SCSD patients, two novel SPINT2 mutations and review published cases. The most common findings in SCSD patients were choanal atresia (20/34) and keratitis of infantile onset (26/34). Characteristic epithelial tufts on intestinal histology were reported in 13/34 patients. Of 13 different SPINT2 variants identified in SCSD, 4 are missense variants and localize to the second Kunitz domain (KD2) of HAI-2. HAI-2 has been implicated in the regulation of the activities of several serine proteases including prostasin and matriptase, which are both important for epithelial barrier formation. No patient with bi-allelic stop mutations was identified, suggesting that at least one SPINT2 allele encoding a protein with residual HAI-2 function is necessary for survival. We show that the SCSD-associated HAI-2 variants p.Phe161Val, p.Tyr163Cys and p.Gly168Ser all display decreased ability to inhibit prostasin-catalyzed cleavage. However, the SCSD-associated HAI-2 variants inhibited matriptase as efficiently as the wild-type HAI-2. Homology modeling indicated limited solvent exposure of the mutated amino acids, suggesting that they induce misfolding of KD2. This suggests that prostasin needs to engage with an exosite motif located on KD2 in addition to the binding loop (Cys47/Arg48) located on the first Kunitz domain in order to inhibit prostasin. In conclusion our data suggests that SCSD is caused by lack of inhibition of prostasin or a similar protease in the secretory pathway or on the plasma membrane.
Collapse
Affiliation(s)
- Lasse Holt-Danborg
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna
| | - Annika W Nonboe
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | - Jan De Laffolie
- Abteilung Allgemeine Pädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Justus-Liebig-Universität, Gießen, Germany
| | - Signe Skovbjerg
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | - Victorien M Wolters
- Department of Pediatric Gastroenterology, WKZ/ UMC Utrecht, Utrecht, The Netherlands
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Benjamin Hetzer
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Querfurt
- Gesundheit Nord gGmbH, Klinikverbund Bremen, Klinik für Kinder und Jugendmedizin, Professor-Hess-Kinderklinik, Klinikum Bremen-Mitte, Bremen, Germany
| | - Klaus-Peter Zimmer
- Abteilung Allgemeine Pädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Justus-Liebig-Universität, Gießen, Germany
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andreas Entenmann
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Heinz-Erian
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Lotte K Vogel
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Szabo R, Callies LK, Bugge TH. Matriptase drives early-onset intestinal failure in a mouse model of congenital tufting enteropathy. Development 2019; 146:dev183392. [PMID: 31628112 PMCID: PMC6899019 DOI: 10.1242/dev.183392] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
Syndromic congenital tufting enteropathy (CTE) is a life-threatening recessive human genetic disorder that is caused by mutations in SPINT2, encoding the protease inhibitor HAI-2, and is characterized by severe intestinal dysfunction. We recently reported the generation of a Spint2-deficient mouse model of CTE. Here, we show that the CTE-associated early-onset intestinal failure and lethality of Spint2-deficient mice is caused by unchecked activity of the serine protease matriptase. Macroscopic and histological defects observed in the absence of HAI-2, including villous atrophy, luminal bleeding, loss of mucin-producing goblet cells, loss of defined crypt architecture and the resulting acute inflammatory response in the large intestine, were all prevented by intestinal-specific inactivation of the St14 gene encoding matriptase. The CTE-associated loss of the cell junctional proteins EpCAM and claudin 7 was also prevented. As a result, inactivation of intestinal matriptase allowed Spint2-deficient mice to gain weight after birth and dramatically increased their lifespan. These data implicate matriptase as a causative agent in the development of CTE and may provide a new target for the treatment of CTE in individuals carrying SPINT2 mutations.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - LuLu K Callies
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Kawaguchi M, Yamamoto K, Takeda N, Fukushima T, Yamashita F, Sato K, Kitamura K, Hippo Y, Janetka JW, Kataoka H. Hepatocyte growth factor activator inhibitor-2 stabilizes Epcam and maintains epithelial organization in the mouse intestine. Commun Biol 2019; 2:11. [PMID: 30623107 PMCID: PMC6320337 DOI: 10.1038/s42003-018-0255-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023] Open
Abstract
Mutations in SPINT2 encoding the epithelial serine protease inhibitor hepatocyte growth factor activator inhibitor-2 (HAI-2) are associated with congenital tufting enteropathy. However, the functions of HAI-2 in vivo are poorly understood. Here we used tamoxifen-induced Cre-LoxP recombination in mice to ablate Spint2. Mice lacking Spint2 died within 6 days after initiating tamoxifen treatment and showed severe epithelial damage in the whole intestinal tracts, and, to a lesser extent, the extrahepatic bile duct. The intestinal epithelium showed enhanced exfoliation, villous atrophy, enterocyte tufts and elongated crypts. Organoid crypt culture indicated that Spint2 ablation induced Epcam cleavage with decreased claudin-7 levels and resulted in organoid rupture. These organoid changes could be rescued by addition of serine protease inhibitors aprotinin, camostat mesilate and matriptase-selective α-ketobenzothiazole as well as by co-deletion of Prss8, encoding the serine protease prostasin. These results indicate that HAI-2 is an essential cellular inhibitor for maintaining intestinal epithelium architecture.
Collapse
Affiliation(s)
- Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Koji Yamamoto
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Naoki Takeda
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 8600811, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Fumiki Yamashita
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Kenichiro Kitamura
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898 Japan
| | - Yoshitaka Hippo
- Division of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba 2608717, Japan
| | - James W. Janetka
- Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| |
Collapse
|