1
|
Janda JM, Duman M. Expanding the Spectrum of Diseases and Disease Associations Caused by Edwardsiella tarda and Related Species. Microorganisms 2024; 12:1031. [PMID: 38792860 PMCID: PMC11124366 DOI: 10.3390/microorganisms12051031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The genus Edwardsiella, previously residing in the family Enterobacteriaceae and now a member of the family Hafniaceae, is currently composed of five species, although the taxonomy of this genus is still unsettled. The genus can primarily be divided into two pathogenic groups: E. tarda strains are responsible for almost all human infections, and two other species (E. ictaluri, E. piscicida) cause diseases in fish. Human infections predominate in subtropical habitats of the world and in specific geospatial regions with gastrointestinal disease, bloodborne infections, and wound infections, the most common clinical presentations in decreasing order. Gastroenteritis can present in many different forms and mimic other intestinal disturbances. Chronic gastroenteritis is not uncommon. Septicemia is primarily found in persons with comorbid conditions including malignancies and liver disease. Mortality rates range from 9% to 28%. Most human infections are linked to one of several risk factors associated with freshwater or marine environments such as seafood consumption. In contrast, edwardsiellosis in fish is caused by two other species, in particular E. ictaluri. Both E. ictaluri and E. piscicida can cause massive outbreaks of disease in aquaculture systems worldwide, including enteric septicemia in channel catfish and tilapia. Collectively, these species are increasingly being recognized as important pathogens in clinical and veterinary medicine. This article highlights and provides a current perspective on the taxonomy, microbiology, epidemiology, and pathogenicity of this increasingly important group.
Collapse
Affiliation(s)
- J. Michael Janda
- Kern County Public Health Laboratory, Bakersfield, CA 93306, USA
| | - Muhammed Duman
- Aquatic Animal Disease Department, Faculty of Veterinary Medicine, Bursa Uludag University, 16059 Bursa, Turkey;
| |
Collapse
|
2
|
Tuttle JT, Bruce TJ, Butts IAE, Roy LA, Abdelrahman HA, Beck BH, Kelly AM. Investigating the Ability of Edwardsiella ictaluri and Flavobacterium covae to Persist within Commercial Catfish Pond Sediments under Laboratory Conditions. Pathogens 2023; 12:871. [PMID: 37513718 PMCID: PMC10385248 DOI: 10.3390/pathogens12070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Two prevalent bacterial diseases in catfish aquaculture are enteric septicemia of catfish and columnaris disease caused by Edwardsiella ictaluri and Flavobacterium covae, respectively. Chronic and recurring outbreaks of these bacterial pathogens result in significant economic losses for producers annually. Determining if these pathogens can persist within sediments of commercial ponds is paramount. Experimental persistence trials (PT) were conducted to evaluate the persistence of E. ictaluri and F. covae in pond sediments. Twelve test chambers containing 120 g of sterilized sediment from four commercial catfish ponds were inoculated with either E. ictaluri (S97-773) or F. covae (ALG-00-530) and filled with 8 L of disinfected water. At 1, 2, 4-, 6-, 8-, and 15-days post-inoculation, 1 g of sediment was removed, and colony-forming units (CFU) were enumerated on selective media using 6 × 6 drop plate methods. E. ictaluri population peaked on Day 3 at 6.4 ± 0.5 log10 CFU g-1. Correlation analysis revealed no correlation between the sediment physicochemical parameters and E. ictaluri log10 CFU g-1. However, no viable F. covae colonies were recovered after two PT attempts. Future studies to improve understanding of E. ictaluri pathogenesis and persistence, and potential F. covae persistence in pond bottom sediments are needed.
Collapse
Affiliation(s)
- James T Tuttle
- Alabama Fish Farming Center, Greensboro, AL 36744, USA
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Timothy J Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ian A E Butts
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Luke A Roy
- Alabama Fish Farming Center, Greensboro, AL 36744, USA
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Hisham A Abdelrahman
- Alabama Fish Farming Center, Greensboro, AL 36744, USA
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Benjamin H Beck
- Aquatic Animal Health Research Unit, US Department of Agriculture, Agricultural Research Service, Auburn, AL 36832, USA
| | - Anita M Kelly
- Alabama Fish Farming Center, Greensboro, AL 36744, USA
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Leung KY, Wang Q, Zheng X, Zhuang M, Yang Z, Shao S, Achmon Y, Siame BA. Versatile lifestyles of Edwardsiella: Free-living, pathogen, and core bacterium of the aquatic resistome. Virulence 2022; 13:5-18. [PMID: 34969351 PMCID: PMC9794015 DOI: 10.1080/21505594.2021.2006890] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Edwardsiella species in aquatic environments exist either as individual planktonic cells or in communal biofilms. These organisms encounter multiple stresses, include changes in salinity, pH, temperature, and nutrients. Pathogenic species such as E. piscicida, can multiply within the fish hosts. Additionally, Edwardsiella species (E. tarda), can carry antibiotic resistance genes (ARGs) on chromosomes and/or plasmids, that can be transmitted to the microbiome via horizontal gene transfer. E. tarda serves as a core in the aquatic resistome. Edwardsiela uses molecular switches (RpoS and EsrB) to control gene expression for survival in different environments. We speculate that free-living Edwardsiella can transition to host-living and vice versa, using similar molecular switches. Understanding such transitions can help us understand how other similar aquatic bacteria switch from free-living to become pathogens. This knowledge can be used to devise ways to slow down the spread of ARGs and prevent disease outbreaks in aquaculture and clinical settings.
Collapse
Affiliation(s)
- Ka Yin Leung
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel,CONTACT Ka Yin Leung
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China,Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, China,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Xiaochang Zheng
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China
| | - Mei Zhuang
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Zhiyun Yang
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yigal Achmon
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Bupe A. Siame
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada,Bupe A. Siame
| |
Collapse
|
4
|
Comparative genomics of Edwardsiellaictaluri revealed four distinct host-specific genotypes and thirteen potential vaccine candidates. Genomics 2021; 113:1976-1987. [PMID: 33848586 DOI: 10.1016/j.ygeno.2021.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/31/2020] [Accepted: 04/05/2021] [Indexed: 02/02/2023]
Abstract
Edwardsiella ictaluri has been considered an important threat for catfish aquaculture industry for more than 4 decades and an emerging pathogen of farmed tilapia but only 9 sequenced genomes were publicly available. We hereby report two new complete genomes of E. ictaluri originated from diseased hybrid red tilapia (Oreochromis sp.) and striped catfish (Pangasianodon hypophthalmus) in Southeast Asia. E. ictaluri species has an open pan-genome consisting of 2615 core genes and 5592 pan genes. Phylogenetic analysis using core genome MLST (cgMLST) and ANI values consistently placed E. ictaluri isolates into 4 host-specific genotypes. Presence of unique genes and absence of certain genes from each genotype provided potential biomarkers for further development of genotyping scheme. Vaccine candidates with high antigenic, solubility and secretion probabilities were identified in silico from the core genes. Microevolution within the species is brought about by bacteriophages and insertion elements and possibly drive host adaptation.
Collapse
|
5
|
The Changing Face of the Family Enterobacteriaceae (Order: " Enterobacterales"): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes. Clin Microbiol Rev 2021; 34:34/2/e00174-20. [PMID: 33627443 DOI: 10.1128/cmr.00174-20] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The family Enterobacteriaceae has undergone significant morphogenetic changes in its more than 85-year history, particularly during the past 2 decades (2000 to 2020). The development and introduction of new and novel molecular methods coupled with innovative laboratory techniques have led to many advances. We now know that the global range of enterobacteria is much more expansive than previously recognized, as they play important roles in the environment in vegetative processes and through widespread environmental distribution through insect vectors. In humans, many new species have been described, some associated with specific disease processes. Some established species are now observed in new infectious disease settings and syndromes. The results of molecular taxonomic and phylogenetics studies suggest that the current family Enterobacteriaceae should possibly be divided into seven or more separate families. The logarithmic explosion in the number of enterobacterial species described brings into question the relevancy, need, and mechanisms to potentially identify these taxa. This review covers the progression, transformation, and morphogenesis of the family from the seminal Centers for Disease Control and Prevention publication (J. J. Farmer III, B. R. Davis, F. W. Hickman-Brenner, A. McWhorter, et al., J Clin Microbiol 21:46-76, 1985, https://doi.org/10.1128/JCM.21.1.46-76.1985) to the present.
Collapse
|
6
|
Blackmon LE, Quiniou SMA, Wilson M, Bengtén E. Catfish lymphocytes expressing CC41-reactive leukocyte immune-type receptors (LITRs) proliferate in response to Edwardsiella ictaluri infection in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103610. [PMID: 31926174 DOI: 10.1016/j.dci.2020.103610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/28/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Monoclonal antibodies (mAbs) CC34 and CC41 recognize overlapping subsets of leukocyte immune-type receptors (LITRs). The mAb CC34 was raised against the clonal TS32.15 cytotoxic T cell line and the mAb CC41 was raised against the clonal NK cell line TS10.1. In this study, an in vitro model was developed to monitor CC34- and CC41-reactive cells in response to Edwardsiella ictaluri infection. Briefly, head kidney leukocytes and peripheral blood lymphocytes (PBL) were isolated from individual catfish and labeled with CellTrace Violet and CellTrace FarRed dye, respectively. Head kidney-derived macrophages were infected with E. ictaluri and then cocultured with autologous PBL. The combined cell cultures were then analyzed using flow cytometry. A significant increase in CC41 staining was observed in the PBL population at 2, 5 and 7 days after culture, which suggest that LITRs are involved in cell-mediated immunity to E. ictaluri.
Collapse
Affiliation(s)
- Laura E Blackmon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| | - Sylvie M A Quiniou
- U.S. Department of Agriculture, Agricultural Research Service, Thad Cochran National Warmwater Aquaculture Center, Warmwater Aquaculture Research Unit, 127 Experiment Station Rd, P. O. Box 38, Stoneville, MS, 38776, USA.
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| | - Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| |
Collapse
|
7
|
Chen H, Yuan G, Su J, Liu X. Hematological and immune genes responses in yellow catfish (Pelteobagrus fulvidraco) with septicemia induced by Edwardsiella ictaluri. FISH & SHELLFISH IMMUNOLOGY 2020; 97:531-539. [PMID: 31794844 DOI: 10.1016/j.fsi.2019.11.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/15/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Yellow catfish (Pelteobagrus fulvidraco) has been an economically important freshwater species in China because of its good meat quality. In present, the high-density breeding industry has suffered great damage from bacterial infections, in especial, the rapid illness and death of fish caused by bacterial septicemia leads to huge economic losses. Therefore, it is urgent and important to identify pathogenic bacteria and study its pathogenicity. In this study, we isolated a bacterial strain from the yellow catfish with typical septicemia and named it E. 719, then, by morphological observations, regression infection, biochemical identification, 16S rDNA sequence analysis and triple PCR identification, E. 719 was determined to be Edwardsiella ictaluri. Further, we infected yellow catfish with E. ictaluri to study its effects on mortality rate, hematological, histopathological disturbances and expression of immune genes. The mortality results showed that E. ictaluri was highly pathogenic, all infected fish died after 14 days post injection, and the distribution of bacteria in body kidney, spleen, liver, head kidney and brain of fish was continuously detected by measuring the amount of bacteria in the tissues. In addition, the number of red blood cells decreased significantly with the time of infection, while the number of white blood cells and thrombocytes increased. In particular, the number of monocytes and neutrophils increased significantly in the differential leucocyte count (DLC). Histopathologic changes observed by HE staining showed similar results, gill, intestine, spleen and head kidney showed obvious inflammation, bleeding and necrosis. Besides, checking by real time quantitative RT-PCR assays, in both spleen and head kidney tissues which were the major immune organs, mRNA expressions of immune gene IL-1β, TNF-α, and MR significantly increased in the early and middle stages of infection, which suggested that the infection of E. ictaluri caused a strong immune response in yellow catfish. This study provides a preliminary basis for the diagnosis and treatment of pathophysiology septicemia in yellow catfish induced by E. ictaluri.
Collapse
Affiliation(s)
- Huijie Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
8
|
He YU, Wang S, Yin X, Sun F, He B, Liu X. Comparison of Extracellular Proteins from Virulent and Avirulent Vibrio parahaemolyticus Strains To Identify Potential Virulence Factors. J Food Prot 2020; 83:155-162. [PMID: 31860395 DOI: 10.4315/0362-028x.jfp-19-188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus is a leading seafood-borne pathogen that causes gastroenteritis, septicemia, and serious wound infections due to the actions of virulence-associated proteins. We compared the extracellular proteins of nonvirulent JHY20 and virulent ATCC 33847 V. parahaemolyticus reference strains. Eighteen extracellular proteins were identified from secretory profiles, and 11 (68.75%) of the 16 proteins in ATCC 33847 are associated with virulence and/or protection against adverse conditions: trigger factor, chaperone SurA, aspartate-semialdehyde dehydrogenase, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, glutamate 5-kinase, alanine dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, outer membrane protein OmpV, ribosome-associated inhibitor A, chaperone protein Skp, and universal stress protein. Two nontoxic-related proteins, amino acid ABC transporter substrate-binding protein and an uncharacterized protein, were identified in JHY20. The results provide a theoretical basis for supporting safety risk assessment of aquatic foods, illuminate the pathogenic mechanisms of V. parahaemolyticus, and assist the identification of novel vaccine candidates for foodborne pathogens.
Collapse
Affiliation(s)
- Y U He
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | - Shuai Wang
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | | | - Fengjiao Sun
- Logistics & Security Department, Shanghai Civil Aviation College, Shanghai 201300, People's Republic of China
| | - Bin He
- Environment Monitoring Station, Zaozhuang Municipal Bureau of Ecology and Environment, Shandong 277100, People's Republic of China
| | - Xiao Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
9
|
Akgul A, Nho SW, Kalindamar S, Tekedar HC, Abdalhamed H, Lawrence ML, Karsi A. Universal Stress Proteins Contribute Edwardsiella ictaluri Virulence in Catfish. Front Microbiol 2018; 9:2931. [PMID: 30546354 PMCID: PMC6279896 DOI: 10.3389/fmicb.2018.02931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022] Open
Abstract
Edwardsiella ictaluri is an intracellular Gram-negative facultative pathogen causing enteric septicemia of catfish (ESC), a common disease resulting in substantial economic losses in the U.S. catfish industry. Previously, we demonstrated that several universal stress proteins (USPs) are highly expressed under in vitro and in vivo stress conditions, indicating their importance for E. ictaluri survival. However, the roles of these USPs in E. ictaluri virulence is not known yet. In this work, 10 usp genes of E. ictaluri were in-frame deleted and characterized in vitro and in vivo. Results show that all USP mutants were sensitive to acidic condition (pH 5.5), and EiΔusp05 and EiΔusp08 were very sensitive to oxidative stress (0.1% H2O2). Virulence studies indicated that EiΔusp05, EiΔusp07, EiΔusp08, EiΔusp09, EiΔusp10, and EiΔusp13 were attenuated significantly compared to E. ictaluri wild-type (EiWT; 20, 45, 20, 20, 55, and 10% vs. 74.1% mortality, respectively). Efficacy experiments showed that vaccination of catfish fingerlings with EiΔusp05, EiΔusp07, EiΔusp08, EiΔusp09, EiΔusp10, and EiΔusp13 provided complete protection against EiWT compared to sham-vaccinated fish (0% vs. 58.33% mortality). Our results support that USPs contribute E. ictaluri virulence in catfish.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Seong Won Nho
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Safak Kalindamar
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hasan C Tekedar
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hossam Abdalhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| |
Collapse
|