1
|
Tariq M, Saeed S, Victor KKAS, Fatima A, Mao D. Heat Stress and Its Impact on Corpus Luteum (CL) Function and Reproductive Efficiency in Mammals: A Critical Review. Reprod Sci 2025:10.1007/s43032-025-01787-w. [PMID: 39900848 DOI: 10.1007/s43032-025-01787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025]
Abstract
Heat stress is considered as one of the most crucial environmental stressors affecting reproductive efficiency in mammals through modulation of the function of Corpus Luteum (CL) that plays a vital role in progesterone production and pregnancy maintenance. Therefore, this detailed systematic review seeks to bring forward the interdisciplinary perspectives on the impact of heat stress exposure on CL function regarding hormonal shift, luteal phase distortion and fertility receptivity. High temperatures are shown to impose oxidative stress, change blood perfusion within the CL, signal transduction which converts the signal from the signaling molecule into an intracellular reaction and impaired luteal activity. This review incorporates various scientific studies on these effects to different mammalian species concerning the associated physiological mechanisms. Besides this, it also considers the overall impact in warm stressed population in livestock breeding in the agricultural system as well as their conservation from a general perspective. Some of the prevention and control measures for heat related reproductive problems are also covered here, addressing the importance of finding the impact on the CL in order to put in place these interventions. This review may be used to inform future developments that may improve the CL function with regards to heat stress and possible solutions to help mammals reproduced under climate change tender environment and even rising temperatures globally.
Collapse
Affiliation(s)
- Muhammad Tariq
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Saba Saeed
- Department of Zoology, The Government Sadiq College Women University, 63100, Bahawalpur, Punjab, Pakistan
| | | | - Arooj Fatima
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, 63100, Bahawalpur, Punjab, Pakistan
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
2
|
Weng L, Hong H, Zhang Q, Xiao C, Zhang Q, Wang Q, Huang J, Lai D. Sleep Deprivation Triggers the Excessive Activation of Ovarian Primordial Follicles via β2 Adrenergic Receptor Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402393. [PMID: 39229959 PMCID: PMC11538700 DOI: 10.1002/advs.202402393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/23/2024] [Indexed: 09/05/2024]
Abstract
Sleep deprivation (SD) is observed to adversely affect the reproductive health of women. However, its precise physiological mechanisms remain largely elusive. In this study, using a mouse model of SD, it is demonstrated that SD induces the depletion of ovarian primordial follicles, a phenomenon not attributed to immune-mediated attacks or sympathetic nervous system activation. Rather, the excessive secretion of stress hormones, namely norepinephrine (NE) and epinephrine (E), by overactive adrenal glands, has emerged as a key mediator. The communication pathway mediated by the KIT ligand (KITL)-KIT between granulosa cells and oocytes plays a pivotal role in primordial follicle activation. SD heightened the levels of NE/E that stimulates the activation of the KITL-KIT/PI3K and mTOR signaling cascade in an β2 adrenergic receptor (ADRB2)-dependent manner, thereby promoting primordial follicle activation and consequent primordial follicle loss in vivo. In vitro experiments further corroborate these observations, revealing that ADRB2 upregulates KITL expression in granulosa cells via the activation of the downstream cAMP/PKA pathway. Together, these results reveal the significant involvement of ADRB2 signaling in the depletion of ovarian primordial follicles under sleep-deprived conditions. Additionally, ADRB2 antagonists are proposed for the treatment or prevention of excessive activation of primordial follicles induced by SD.
Collapse
Affiliation(s)
- Lichun Weng
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Hanqing Hong
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qinyu Zhang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Chengqi Xiao
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qian Wang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Ju Huang
- Songjiang Hospital and Songjiang Research InstituteShanghai Key Laboratory of Emotions and Affective DisordersShanghai Jiao Tong University School of MedicineShanghai201600China
| | - Dongmei Lai
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| |
Collapse
|
3
|
Zhao X, Rong B, Dou Z, Dong R, Jiang N, Chen M, Feng W, Li H, Xia T. Kai Yu Zhong Yu recipe mitigates stress-induced accelerated follicle loss in mice by regulating the interplay between apoptosis and autophagy via the SIRT1/FOXO1/3 pathway. PHYTOMEDICINE PLUS 2024; 4:100623. [DOI: 10.1016/j.phyplu.2024.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
4
|
Ma J, Wang L, Yang D, Luo J, Gao J, Wang J, Guo H, Li J, Wang F, Wu J, Hu R. Chronic stress causes ovarian fibrosis to impair female fertility in mice. Cell Signal 2024; 122:111334. [PMID: 39102927 DOI: 10.1016/j.cellsig.2024.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE Chronic psychological stress is associated with impaired follicular development and ovarian dysfunction. Many aspects of this dysfunction and the underlying mechanisms remain unclear. Using a chronic unpredictable mild stress (CUMS) mouse model, we investigate the influence of chronic stress on ovarian function and explore potential mechanisms. METHODS A CUMS mouse model was constructed over eight months, covering the period from sexual maturity to the onset of declining fertility in mice. At the end of the 2nd, 4th, 6th, and 8th months of exposure to CUMS, behavioral and physiological assays, including the sucrose preference test, tail suspension test, and serum corticosterone levels, were conducted to validate the effectiveness of the stress model. Fertility and ovarian function were assessed by analyzing the estrous cycle, number of offspring, sex hormone levels, follicle counts, granulosa cell proliferation and apoptosis, and the expression levels of fibrosis markers. Furthermore, proteomic analyses were performed on the ovaries to investigate the molecular mechanisms of ovarian fibrosis induced by CUMS. RESULTS With continued CUMS exposure, there was a gradual decline in both the ovary-to-body weight ratio and the number of offspring. Moreover, the percentage of atretic follicles was notably higher in the CUMS-exposed groups compared to the control groups. It is noticeable that CUMS triggered granulosa cell apoptosis and halted proliferation. Additionally, increased expression of α-SMA and Collagen I in the ovaries of CUMS-exposed mice indicated that CUMS could induce ovarian fibrosis. Proteomic analysis provided insights into the activation of specific biological processes and molecules associated with fibrosis induced by chronic stress. CONCLUSIONS Our results strongly suggest that exposure to CUMS induces ovarian fibrosis, which influences follicular development and ultimately contributes to fertility decline. These findings offer novel perspectives on the impact of chronic stress on ovarian dysfunction.
Collapse
Affiliation(s)
- Jie Ma
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lu Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Danyu Yang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jia Luo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jinmei Gao
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jinfang Wang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hua Guo
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jialing Li
- Reproductive Medicine Center, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Feimiao Wang
- Reproductive Medicine Center, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Hu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Reproductive Medicine Center, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
5
|
Fan X, Wang J, Ma Y, Chai D, Han S, Xiao C, Huang Y, Wang X, Wang J, Wang S, Xiao L, Zhang C. Activation of P2X7 Receptor Mediates the Abnormal Ovulation Induced by Chronic Restraint Stress and Chronic Cold Stress. BIOLOGY 2024; 13:620. [PMID: 39194558 DOI: 10.3390/biology13080620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Chronic stress has become a major problem that endangers people's physical and mental health. Studies have shown that chronic stress impairs female reproduction. However, the related mechanism is not fully understood. P2X7 receptor (P2X7R) is involved in a variety of pathological changes induced by chronic stress. Whether P2X7R is involved in the effect of chronic stress on female reproduction has not been studied. In this study, we established a chronic restraint stress mouse model and chronic cold stress mouse model. We found that the number of corpora lutea was significantly reduced in the two chronic stress models. The number of corpora lutea indirectly reflects the ovulation, suggesting that chronic stress influences ovulation. P2X7R expression was significantly increased in ovaries of the two chronic stress models. A superovulation experiment showed that P2X7R inhibitor A-438079 HCL partially rescued the ovulation rate of the two chronic stress models. Further studies showed that activation of P2X7R signaling inhibited the cumulus expansion and promoted the expression of NPPC in granulosa cells, one key negative factor of cumulus expansion. Moreover, sirius red staining showed that the ovarian fibrosis was increased in the two chronic stress models. For the fibrosis-related factors, TGF-β1 was increased and MMP2 was decreased. In vitro studies also showed that activation of P2X7R signaling upregulated the expression of TGF-β1 and downregulated the expression of MMP2 in granulosa cells. In conclusion, P2X7R expression was increased in the ovaries of the chronic restraint-stress and chronic cold-stress mouse models. Activation of P2X7R signaling promoted NPPC expression and cumulus expansion disorder, which contributed to the abnormal ovulation of the chronic stress model. Activation of P2X7R signaling is also associated with the ovarian fibrosis changes in the chronic stress model.
Collapse
Affiliation(s)
- Xiang Fan
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- Institute of Rehabilitation Science, Shaanxi Provincial Rehabilitation Hospital, Xi'an 710065, China
| | - Jing Wang
- Department of Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yinyin Ma
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Dandan Chai
- Shangrao People's Hospital, Shangrao 334000, China
| | - Suo Han
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chuyu Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yingtong Huang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiaojie Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianming Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Shimeng Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Li Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chunping Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
6
|
Onalan E, Erbay B, Buran İK, Erol D, Tektemur A, Kuloglu T, Ozercan IH. Effects and Mechanism of AP39 on Ovarian Functions in Rats Exposed to Cisplatin and Chronic Immobilization Stress. J Menopausal Med 2024; 30:104-119. [PMID: 39315502 PMCID: PMC11439572 DOI: 10.6118/jmm.23015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVES Premature ovarian failure (POF) rat models are essential for elucidating the hormonal and ovarian molecular mechanisms of human POF diseases and developing new therapeutic agents. This study aimed to compare the applicability of chronic immobilization stress (CIS) as a POF model with that of cisplatin and to examine the impact of AP39, a mitochondrial protective agent, on ovarian function in rats treated with cisplatin and CIS. METHODS Sixty Sprague-Dawley female rats were divided equally into six groups (10 per group): Control, Cisplatin, AP39, Cisplatin + AP39, CIS, and CIS + AP39. Ovarian dysfunction was induced with cisplatin (3 mg/kg) or CIS. Forced swim test, hormone concentrations, estrous cyclicity, histopathology, follicle counts, and molecular alterations in the ovary and mitochondria were analyzed. RESULTS In the CIS and cisplatin groups, mitochondrial biogenesis, egg quality, hormonal profile, estrous cycle, and folliculogenesis significantly declined. Nonetheless, most of the parameters with undesirable results did not normalize after AP39 administration. CONCLUSIONS The cisplatin- and CIS-treated rats exhibited unshared deteriorated hormonal pathways and similarly disrupted gene expression patterns. Our current CIS model did not meet the human POF criteria, which include decreased estradiol levels, despite having advantages in terms of ease of modeling and reproducibility and demonstrating pathological changes similar to those observed in human POF. Therefore, rather than using this model as an POF model, using it as a representation of stress-induced ovarian dysfunction would be more appropriate.
Collapse
Affiliation(s)
- Ebru Onalan
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazığ, Türkiye
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - İlay Kavuran Buran
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazığ, Türkiye.
| | - Deniz Erol
- Department of Medical Genetics, Faculty of Medicine, Firat University, Elazığ, Türkiye
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazığ, Türkiye
| | - Tuncay Kuloglu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazığ, Türkiye
| | | |
Collapse
|
7
|
Harada M. Cellular senescence in the pathogenesis of ovarian dysfunction. J Obstet Gynaecol Res 2024; 50:800-808. [PMID: 38412992 DOI: 10.1111/jog.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The follicular microenvironment is crucial for normal ovarian function, and intra-ovarian factors, in coordination with gonadotropins, contribute to its regulation. Recent research has revealed that the accumulation of senescent cells worsens the adverse environment of various tissues and plays critical roles in chronological aging and various pathological conditions. Cellular senescence involves cell-cycle arrest, a senescence-associated secretory phenotype (SASP), macromolecular damage, and dysmetabolism. In this review, I summarize the latest knowledge regarding the role of cellular senescence in pathological conditions in the ovary, in the context of reproduction. Specifically, cellular senescence is known to impair follicular and oocyte health in cisplatin- and cyclophosphamide-induced primary ovarian insufficiency and to contribute to the pathogenesis of polycystic ovary syndrome (PCOS). In addition, cellular senescence is induced during the decline in ovarian reserve that is associated with chronological aging, endometriosis, psychological stress, and obesity, but it remains unclear whether it plays a causative role in these conditions. Finally, I discuss the potential for use of cellular senescence as a novel therapeutic target. The modification of SASP using a senomorphic and/or the elimination of senescent cells using a senolytic represent promising therapeutic strategies. Further elucidation of the role of cellular senescence in the effects of various insults on ovarian reserve, including chronological aging, as well as in pathogenesis of ovarian pathologies, including PCOS, may facilitate a new era of reproductive medicine.
Collapse
Affiliation(s)
- Miyuki Harada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Biazus Soares G, Mahmoud O, Yosipovitch G, Mochizuki H. The mind-skin connection: A narrative review exploring the link between inflammatory skin diseases and psychological stress. J Eur Acad Dermatol Venereol 2024; 38:821-834. [PMID: 38311707 DOI: 10.1111/jdv.19813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/16/2023] [Indexed: 02/06/2024]
Abstract
Inflammatory skin diseases are known to negatively impact patient psychology, with individuals experiencing higher rates of stress and subsequent diminished quality of life, as well as mental health issues including anxiety and depression. Moreover, increased psychological stress has been found to exacerbate existing inflammatory skin diseases. The association between inflammatory skin diseases and psychological stress is a timely topic, and a framework to better understand the relationship between the two that integrates available literature is needed. In this narrative review article, we discuss potential neurobiological mechanisms behind psychological stress due to inflammatory skin diseases, focusing mainly on proinflammatory cytokines in the circulating system (the brain-gut-skin communications) and the default mode network in the brain. We also discuss potential descending pathways from the brain that lead to aggravation of inflammatory skin diseases due to psychological stress, including the central and peripheral hypothalamic-pituitary-adrenal axes, peripheral nerves and the skin barrier function.
Collapse
Affiliation(s)
- G Biazus Soares
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - O Mahmoud
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - G Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - H Mochizuki
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
9
|
Jiang Y, Xu J, Tao C, Lin Y, Lin X, Li K, Liu Q, Saiyin H, Hu S, Yao G, Sun Y, Zhang F, Kang Y, Xu C, Zhang L. Chronic stress induces meiotic arrest failure and ovarian reserve decline via the cAMP signaling pathway. Front Endocrinol (Lausanne) 2023; 14:1177061. [PMID: 37720535 PMCID: PMC10499613 DOI: 10.3389/fendo.2023.1177061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Chronic stress is suspected to be a causal factor of female subfertility; however, the underlying mechanisms remain unclear. Here, we found that chronic stress inhibited the cyclic adenosine 3',5'-monophosphate (cAMP) signaling pathway, leading to ovarian reserve decline in mice. A chronic stress model was constructed using restraint stress for 8 weeks. An elongated estrous cycle and a significant increase in the number of atretic follicles were observed in the stress group. We identified a significant increase in meiotic arrest failure (MAF) in oocytes in the stress group, characterized by condensed metaphase chromosomes, assembled spindles, or polar bodies in the oocytes. Whole-mount ovarian reserve estimation at the single-oocyte level using the CUBIC method (clear, unobstructed brain/body imaging cocktails and computational analysis) revealed a significant decrease in quiescent oocytes from 2,261/ovary in the control group to 1,373/ovary in the stress group. The number of growing oocytes also significantly decreased from 220/ovary in the control group to 150/ovary in the stress group. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis of the meiotic arrest maintenance pathways revealed significant downregulation of Gpr3, Nppc, and Npr2 in the stress group. These results indicate that blocking cAMP production contributes to MAF and a decline in ovarian reserve. Overall, we present new insights into the mechanisms underlying chronic-stress-induced oocyte loss and potential targets for ovarian reserve preservation.
Collapse
Affiliation(s)
- Yiwen Jiang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jing Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Chengqiu Tao
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yunying Lin
- Center for Reproductive Medical, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiaoqi Lin
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ke Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qiyu Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hexige Saiyin
- School of Life Sciences, Fudan University, Shanghai, China
| | - Shuanggang Hu
- Center for Reproductive Medical, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Guangxin Yao
- Center for Reproductive Medical, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medical, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Kang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Center for Reproductive Medical, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
10
|
Syafruddin S, Siregar TN, Wahyuni S, Gholib G, Pulungan ILC, Muchsalmina M. Transplantation of Aceh cattle ovary into the uterus of pseudopregnant local rabbits: Effect of post-transplant stress on uterine histopathology and ovarian follicle dynamics. Vet World 2023; 16:500-508. [PMID: 37041839 PMCID: PMC10082730 DOI: 10.14202/vetworld.2023.500-508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/30/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim The increase in the levels of the cortisol hormone caused by the stress conditions generated by an ovary transplantation procedure can damage the uterus of the transplant recipient as well as the transplanted ovaries. This study aimed to analyze the histopathological changes that occur in the uterine horn of pseudopregnant local rabbits (recipients), as well as the ovarian follicular integrity of the donor Aceh cattle after transplantation. Materials and Methods After 30 days of adaptation, all rabbits were divided into three treatment groups: R1 (the group of rabbits that underwent ovarian transplantation for 3 days, n = 5), R2 (the group of rabbits that underwent ovarian transplantation for 5 days, n = 5), and R3 (the group of rabbits that underwent ovarian transplantation for 7 days, n = 5). Pseudopregnancy induction was performed using the pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) methods. The rabbits were injected with 100 IU of PMSG intramuscularly, followed by an injection of 75 IU of hCG intravenously 3 days later. Ovarian transplantation was performed on day 8 (day 0 was the day of hCG injection). The concentration of cortisol hormone metabolites was measured from fecal samples using an enzyme-linked immunosorbent assay technique. The uterus and ovaries were collected for histopathological and follicular dynamics examination after the transplantation process was completed. Results The mean cortisol levels (ng/g) recorded before versus after the transplant in the R1, R2, and R3 groups were 146.23 ± 17.60 versus 338.84 ± 302.79, 128.97 ± 81.56 versus 174.79 ± 101.70, and 124.88 ± 43.61 versus 321.91 ± 221.63 (p < 0.05), respectively. The examination of the histopathological appearance of the uterus revealed edema in the uterine lumen, hyperemia and hemorrhage in the endometrium, necrosis of the epithelium, and infiltration of inflammatory cells. Hemorrhage and hyperemia were severe and filled the endometrium in the R1 compared with the R2 and R3 animals. Ovarian follicle development occurred in all treatment groups, although some histopathological features were observed. The number of tertiary follicles in R1, R2, and R3 animals was 24.67 ± 7.37, 20.67 ± 7.57, and 9.67 ± 3.79 (p < 0.05), respectively. Conclusion Based on the results of this study, it can be concluded that the transplantation of ovaries from Aceh cattle into pseudopregnant local rabbits triggered an increase in the levels of the cortisol hormone and uterine histological changes; however, follicles were still detected at various stages of development in the transplanted Aceh cattle ovaries. The results of this study are valuable for clinicians and researchers because they provide information regarding an alternative in vivo ovarian preservation technique using pseudopregnant rabbits.
Collapse
Affiliation(s)
- Syafruddin Syafruddin
- Study Program of Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Aceh, Indonesia
- Laboratory of Clinic, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Aceh, Indonesia
| | - Tongku Nizwan Siregar
- Laboratory of Reproduction, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Aceh, Indonesia
| | - Sri Wahyuni
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Aceh, Indonesia
| | - Gholib Gholib
- Laboratory of Physiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Aceh, Indonesia
| | | | - Muchsalmina Muchsalmina
- Study Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Aceh, Indonesia
| |
Collapse
|
11
|
Helmy H, Hamid Sadik NA, Badawy L, Sayed NH. Mechanistic insights into the protective role of eugenol against stress-induced reproductive dysfunction in female rat model. Chem Biol Interact 2022; 367:110181. [PMID: 36108715 DOI: 10.1016/j.cbi.2022.110181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
The challenging and highly demanding life rhythm nowadays subjects people to unavoidable chronic stress. Chronic stress is associated with a wide array of serious health complications including neuroendocrine dysregulations. Women are more prone to chronic stress-related hormonal disturbances and their physical and psychological consequences, especially reproductive impairment. Eugenol is a natural phenolic anti-oxidant that has several beneficial biological activities. The current study intended to scrutinize the potential protective effect of eugenol in female Wistar rats exposed to chronic unpredictable mild stress (CUMS). Rats were randomly allocated into 4 groups; group 1 received olive oil, group 2 received eugenol in olive oil, groups 3 and 4 were subjected to CUMS protocol for 8 weeks, with pre- and concomitant treatment with eugenol (50 mg/kg/day; p.o.) in group 4. The results showed that CUMS exposure led to weight loss and depressive-like behaviours. CUMS induced hypothalamic-pituitary-adrenal axis activation with subsequent elevation of serum corticosterone level which, in turn, caused decline in ovarian release of estradiol and antimullerian hormones together with an increased production of follicle-stimulating and luteinizing hormones by the anterior pituitary, leading to reproductive disturbances. In ovaries, CUMS imposed oxidative stress, insulin resistance and molecular damage. Intriguingly, all these adverse effects were significantly mitigated by the administration of eugenol that improved animals' behaviours, corrected corticosterone upsurge, tempered hormonal disturbances, and amended ovarian damage. All biochemical results were further confirmed by hippocampal and ovarian histopathological examinations. In conclusion, the current study highlights the prophylactic role of eugenol against reproductive disturbances induced by chronic stress in female rats.
Collapse
Affiliation(s)
- Hebatullah Helmy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | | | - Noha H Sayed
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
12
|
Kim J, You S. High Housing Density-Induced Chronic Stress Diminishes Ovarian Reserve via Granulosa Cell Apoptosis by Angiotensin II Overexpression in Mice. Int J Mol Sci 2022; 23:ijms23158614. [PMID: 35955748 PMCID: PMC9369192 DOI: 10.3390/ijms23158614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Repeated and prolonged stress causes hypothalamic-pituitary-adrenal (HPA) dysregulation. Excessive hypothalamic-pituitary-adrenal axis activity has been linked to inadequate activation of the hypothalamus-pituitary-ovarian axis, which controls the growth and development of ovarian follicles and oocytes. Therefore, we assessed the ovarian reserve under high-housing-density-induced prolonged stress, and investigated the mechanisms underlying diminished ovarian reserve in this study. Eight-week-old female C57BL/6 mice were housed for 10 weeks under different housing densities. We then assessed hormone levels, performed histology and immunohistochemistry analyses of ovarian follicles, evaluated ovarian mRNA expression, and measured angiotensin II-mediated apoptosis in vitro. More densely housed mice presented increased corticosterone levels and decreased follicle-stimulating and luteinizing hormone levels. Moreover, mice exposed to prolonged ordinary stress showed a reduced level of serum anti-Müllerian hormone and an increased number of atretic ovarian follicles. Stressed mice showed increased levels of angiotensinogen and angiotensin II in the ovaries and serum. Furthermore, our in vitro study confirmed that high-housing-density-related stress induced granulosa cell apoptosis, resulting in diminished ovarian reserves. Collectively, our findings highlight the importance of women managing everyday stress to maintain their reproductive health.
Collapse
|
13
|
Xi W, Mao H, Cui Z, Yao H, Shi R, Gao Y. Scream Sound-induced Chronic Psychological Stress Results in Diminished Ovarian Reserve in Adult Female Rat. Endocrinology 2022; 163:6580263. [PMID: 35536288 DOI: 10.1210/endocr/bqac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 01/09/2023]
Abstract
It is well established that chronic psychological stress (PS) induces female reproductive dysfunction. However, the studies on the consequences of chronic PS exposure precisely targeting ovarian reserve are lacking. In the present study, we employed a chronic scream sound-induced PS model to investigate the potential effect of pure psychosocial stressors on ovary reserve. Female rats were subjected to scream sound stress, white noise, or background for 3 weeks. Animals were euthanized by cervical dislocation after stress for collection of blood or ovaries. Sex hormones were analyzed by enzyme-linked immunosorbent assay. The follicle number was examined by histopathology. Granulosa cell apoptosis of the ovaries was examined by in situ cell death detection kit. Finally, rats were mated with proven fertile male rats to study fertility parameters. Female rats exposed to scream sound were presented with reduced weight gain and sucrose preference, while immobility time in forced swim test and serum corticosterone concentration were significantly increased. Scream sound stress sequentially decreased plasma anti-Müllerian hormone and estradiol concentration, induced primordial and preantral follicles loss, augmented granulosa cell apoptosis in ovarian growing follicles, and eventually decreased litter sizes. Based on these results, we suggest that chronic PS induced loss of ovarian reserve by accelerated primordial follicle activation and destruction of growing follicles, which results in follicle depletion and decreased fertility.
Collapse
Affiliation(s)
- Wenyan Xi
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Hui Mao
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Zhiwei Cui
- The First Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Haoyan Yao
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Ruiting Shi
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Yane Gao
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| |
Collapse
|
14
|
Yang M, Tian F, Tao S, Xia M, Wang Y, Hu J, Pan B, Li Z, Peng R, Kan H, Xu Y, Li W. Concentrated ambient fine particles exposure affects ovarian follicle development in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113178. [PMID: 35026587 DOI: 10.1016/j.ecoenv.2022.113178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ambient fine particles (PM2.5) are known to cause various reproductive and developmental diseases. However, the potential mechanisms of PM2.5 exposure induced female reproductive damage remain unclear. METHODS Four weeks old female C57BL/6 J mice were exposed to filtered air (FA, n = 10) or concentrated ambient PM2.5 (CAP, n = 10) using a versatile aerosol concentration enrichment system. After 9 weeks of the exposure, mice were sacrificed under sevoflurane anesthesia and tissue samples were collected. Immunohistochemical analysis, enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and RNA-sequencing were performed to analyze the effects of PM2.5 exposure on follicle development and elucidate its potential mechanisms. RESULTS Chronic PM2.5 exposure resulted in follicular dysplasia. Compared to the FA-exposed group, follicular atresia in the CAP-exposed mice were significantly increased. Further studies confirmed that CAP induced apoptosis in granulosa cells, accompanied by a distortion of hormone homeostasis. In addition, RNA-sequencing data demonstrated that CAP exposure induced the alteration of ovarian gene expressions and was associated with inflammatory response. CONCLUSIONS Chronic exposure to CAP can induce follicular atresia, which was associated with hormone modulation and inflammation.
Collapse
Affiliation(s)
- Mingjun Yang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Fang Tian
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Shimin Tao
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Minjie Xia
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Yuzhu Wang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Jingying Hu
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Sun J, Guo Y, Fan Y, Wang Q, Zhang Q, Lai D. Decreased expression of IDH1 by chronic unpredictable stress suppresses proliferation and accelerates senescence of granulosa cells through ROS activated MAPK signaling pathways. Free Radic Biol Med 2021; 169:122-136. [PMID: 33865962 DOI: 10.1016/j.freeradbiomed.2021.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/20/2022]
Abstract
Studies suggested that psychosocial stress was associated with female fertility decline, but the underlying mechanisms remained unclear. Granulosa cells (GCs) are important somatic cells to support follicular development and oocyte maturation. Herein, by using a mouse model of chronic unpredictable stress (CUS), we found that CUS induced oxidative stress damage in mouse ovaries, also inhibited GCs proliferation and accelerated GCs senescence. Isocitrate dehydrogenase-1 (IDH1), an antioxidant related gene by generating NADPH, was shown to be downregulated in GCs of CUS mice. Consistently, IDH1 knockdown inhibited cell proliferation and accelerated cellular senescence in KGN cells in vitro. In addition, IDH1 knockdown increased ROS content, induced autophagy activation and triggered cell cycle arrest in S and G2/M phases in KGN cells, which could be rescued by N-acetyl-l-cysteine (NAC), a ROS scavenger in these cells. Besides, IDH1 knockdown activated MAPK signaling pathways, including ERK, JNK and p38 signaling pathways in KGN cells, while NAC could suppress the activation. Through using inhibitors of MAPK signaling pathways, we showed that the activation of ERK pathway participated in autophagy related cell proliferation inhibition and cellular senescence, whereas JNK and p38 MAPK signaling pathways took part in regulation cell cycle arrest associated cell proliferation inhibitory and senescence in IDH1 knockdown KGN cells. Our findings suggested that downregulated expression of IDH1 induced by CUS has a physiological function in GCs proliferation and senescence through ROS activated MAPK signaling pathways, and improvement of IDH1 activity might be a beneficial therapeutic strategy for ovarian dysfunction.
Collapse
Affiliation(s)
- Junyan Sun
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Shanghai Municipal Key Clinical Speciality, Shanghai, 200030, China
| | - Ying Guo
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Shanghai Municipal Key Clinical Speciality, Shanghai, 200030, China
| | - Yihui Fan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Shanghai Municipal Key Clinical Speciality, Shanghai, 200030, China
| | - Qian Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Shanghai Municipal Key Clinical Speciality, Shanghai, 200030, China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Shanghai Municipal Key Clinical Speciality, Shanghai, 200030, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Shanghai Municipal Key Clinical Speciality, Shanghai, 200030, China.
| |
Collapse
|
16
|
Wu J, Liu C, Zhang L, He B, Shi WP, Shi HL, Qin C. Chronic restraint stress impairs cognition via modulating HDAC2 expression. Transl Neurosci 2021; 12:154-163. [PMID: 33986954 PMCID: PMC8090798 DOI: 10.1515/tnsci-2020-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Background To investigate the effects of chronic restraint stress on cognition and the probable molecular mechanism in mice. Methods In the current work, a restraining tube was used as a way to induce chronic stress in mice. The protein levels were determined with ELISA and western blot. A series of behavior tests, including the Morris water maze, elevated plus maze, open field test, and novel object recognition test, were also performed to examine the anxiety and the ability of learning and memory. Moreover, murine neuroblastoma N2a cells were used to confirm the findings from mice under chronic stress. Results Decreased synaptic functions were impaired in chronic stress with the downregulation of PSD95, GluR-1, the neurotrophic factor BDNF, and immediate-onset genes Arc and Egr. Chronic restraint decreased the histone acetylation level in hippocampal neurons while HDAC2 was increased and was co-localized with glucocorticoid receptors. Moreover, chronic stress inhibited the PI3K/AKT signaling pathway and induced energy metabolism dysfunctions. Conclusion This work examining the elevated levels of HDAC2 in the hippocampus may provide new insights and targets for drug development for treating many neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Wu
- Pathology Department, Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Panjiayuan Nanli No. 5, Beijing, 100021, People's Republic of China.,Department of Pathology, Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong province, 266003, People's Republic of China
| | - Cui Liu
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Panjiayuan Nanli No. 5, Beijing, 100021, People's Republic of China
| | - Ling Zhang
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Panjiayuan Nanli No. 5, Beijing, 100021, People's Republic of China
| | - Bing He
- Department of Pathology, Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong province, 266003, People's Republic of China
| | - Wei-Ping Shi
- Department of Pathology, Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong province, 266003, People's Republic of China
| | - Hai-Lei Shi
- Department of Pathology, Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong province, 266003, People's Republic of China
| | - Chuan Qin
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Panjiayuan Nanli No. 5, Beijing, 100021, People's Republic of China
| |
Collapse
|
17
|
Zhang Y, Zhou X, Zhu Y, Wang H, Xu J, Su Y. Current mechanisms of primordial follicle activation and new strategies for fertility preservation. Mol Hum Reprod 2021; 27:6128515. [PMID: 33538812 DOI: 10.1093/molehr/gaab005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Premature ovarian insufficiency (POI) is characterized by symptoms caused by ovarian dysfunction in patients aged <40 years. It is associated with a shortened reproductive lifespan. The only effective treatment for patients who are eager to become pregnant is IVF/Embryo Transfer (ET) using oocytes donated by young women. However, the use of the technique is constrained by the limited supply of oocytes and ethical issues. Some patients with POI still have some residual follicles in the ovarian cortex, which are not regulated by gonadotropin. These follicles are dormant. Therefore, activating dormant primordial follicles (PFs) to obtain high-quality oocytes for assisted reproductive technology may bring new hope for patients with POI. Therefore, this study aimed to explore the factors related to PF activation, such as the intercellular signaling network, the internal microenvironment of the ovary and the environment of the organism. In addition, we discussed new strategies for fertility preservation, such as in vitro activation and stem cell transplantation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Xiaomei Zhou
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Ye Zhu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Hanbin Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Yiping Su
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| |
Collapse
|
18
|
Ristić J, Bogdan D, Banović P. The impact of chronic restraint stress on the estrous cycle in NMRI female mice. MEDICINSKI PODMLADAK 2021. [DOI: 10.5937/mp72-28778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction: Stress represents a set of reactions in the organism activated by external factors. In order to maintain homeostasis and protect the organism, numerous mechanisms for adaptation to stress evolved. Stressors that act in short-term period cause acute stress reaction with generally positive effect on organism. When the stressor persists, and the organism fails to respond to the challenge, chronic stress develops, leading to pathological conditions, such as women's menstrual cycle disorders. Aim: To examine the impact of chronic restraint stress on the estrous cycle in NMRI female mice. Material and methods: A number of 12 mature female NMRI mice were randomly divided into control (n = 6) and experimental (n = 6) group. The induction of stress was performed for the experimental group by using restrain chambers 2 hours daily in 14 days. From the beginning of the experiment, vaginal lavages were taken from all mice for making smears that were analyzed to determine estrous cycle stages. For analysis of chronic stress effect, the frequency of estrus stages alternation observed in experimental group compared to control was examined. Results: The estrous cycle was observed and divided into proestrus, estrus, metestrus and diestrus. During the adaptation period, prolonged diestrus was dominantly present in both groups. When stress was induced, in the experimental group animals the absence of diestrus stage and oscillation to other stages was obseved, in contrast to the control group, where the diestus stage was frequently observed. Frequency of diestrus stage deviation in stressed animals was shown to be statistically significant (p < 0.01) when compared to control. Conclusion: The induction of chronic restraint stress in female NMRI mice leads to the alternation of the estrous cycle. Considering the fact that NMRI female mice share the similar hormonal regulation of the estrous cycle with women's menstrual cycle, they could present a solid model for studying women's reproductive disorders.
Collapse
|
19
|
Grosbois J, Devos M, Demeestere I. Implications of Nonphysiological Ovarian Primordial Follicle Activation for Fertility Preservation. Endocr Rev 2020; 41:5882019. [PMID: 32761180 DOI: 10.1210/endrev/bnaa020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
In recent years, ovarian tissue cryopreservation has rapidly developed as a successful method for preserving the fertility of girls and young women with cancer or benign conditions requiring gonadotoxic therapy, and is now becoming widely recognized as an effective alternative to oocyte and embryo freezing when not feasible. Primordial follicles are the most abundant population of follicles in the ovary, and their relatively quiescent metabolism makes them more resistant to cryoinjury. This dormant pool represents a key target for fertility preservation strategies as a resource for generating high-quality oocytes. However, development of mature, competent oocytes derived from primordial follicles is challenging, particularly in larger mammals. One of the main barriers is the substantial knowledge gap regarding the regulation of the balance between dormancy and activation of primordial follicles to initiate their growing phase. In addition, experimental and clinical factors also affect dormant follicle demise, while the mechanisms involved remain largely to be elucidated. Moreover, most of our basic knowledge of these processes comes from rodent studies and should be extrapolated to humans with caution, considering the differences between species in the reproductive field. Overcoming these obstacles is essential to improving both the quantity and the quality of mature oocytes available for further fertilization, and may have valuable biological and clinical applications, especially in fertility preservation procedures. This review provides an update on current knowledge of mammalian primordial follicle activation under both physiological and nonphysiological conditions, and discusses implications for fertility preservation and priorities for future research.
Collapse
Affiliation(s)
- Johanne Grosbois
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Melody Devos
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Demeestere
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium.,Obstetrics and Gynecology Department, Erasme Hospital, Brussels, Belgium
| |
Collapse
|
20
|
Hohos NM, Elliott EM, Cho KJ, Lin IS, Rudolph MC, Skaznik-Wikiel ME. High-fat diet-induced dysregulation of ovarian gene expression is restored with chronic omega-3 fatty acid supplementation. Mol Cell Endocrinol 2020; 499:110615. [PMID: 31628964 PMCID: PMC6878773 DOI: 10.1016/j.mce.2019.110615] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Abstract
Chronic high-fat diet (HFD) consumption causes ovarian dysfunction in rodents. Acute dietary treatment with docosahexaenoic acid (DHA) increases oocyte quality and ovarian reserve at advanced reproductive age. We hypothesized that DHA supplementation after HFD exposure reverses HFD-induced ovarian defects. We conducted a dietary intervention with reversal to chow, DHA-supplemented chow, or DHA-supplemented HFD after HFD consumption. After 10 weeks, HFD-fed mice had impaired estrous cyclicity, decreased primordial follicles, and altered ovarian expression of 24 genes compared to chow controls. Diet reversal to either chow or chow + DHA restored estrous cyclicity, however only chow + DHA appeared to mitigated the impact of HFD on ovarian reserve. All dietary interventions restored HFD-dysregulated gene expression to chow levels. We found no association between follicular fluid DHA levels and ovarian reserve. In conclusion our data suggest some benefit of DHA supplementation after HFD, particularly in regards to ovarian gene expression, however complete restoration of ovarian function was not achieved.
Collapse
Affiliation(s)
- Natalie M Hohos
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Emily M Elliott
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kirstin J Cho
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ivy S Lin
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael C Rudolph
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, 12700 East 19th Ave, Aurora, CO, 80045, USA
| | | |
Collapse
|
21
|
Lee HN, Chang EM. Primordial follicle activation as new treatment for primary ovarian insufficiency. Clin Exp Reprod Med 2019; 46:43-49. [PMID: 31181871 PMCID: PMC6572666 DOI: 10.5653/cerm.2019.46.2.43] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
Primordial follicle activation is a process in which individual primordial follicles leave their dormant state and enter a growth phase. While existing hormone stimulation strategies targeted the growing follicles, the remaining dormant primordial follicles were ruled out from clinical use. Recently, in vitro activation (IVA), which is a method for controlling primordial follicle activation, has provided an innovative technology for primary ovarian insufficiency (POI) patients. IVA was developed based on Hippo signaling and phosphatase and tensin homolog (PTEN)/phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/forkhead box O3 (FOXO3) signaling modulation. With this method, dormant primordial follicles are activated to enter growth phase and developed into competent oocytes. IVA has been successfully applied in POI patients who only have a few remaining remnant primordial follicles in the ovary, and healthy pregnancies and deliveries have been reported. IVA may also provide a promising option for fertility preservation in cancer patients and prepubertal girls whose fertility preservation choices are limited to tissue cryopreservation. Here, we review the basic mechanisms, translational studies, and current clinical results for IVA. Limitations and further study requirements that could potentially optimize IVA for future use will also be discussed.
Collapse
Affiliation(s)
- Hye Nam Lee
- Department of Obstetrics and Gynecology, Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Eun Mi Chang
- Department of Obstetrics and Gynecology, Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| |
Collapse
|
22
|
Chaudhary GR, Yadav PK, Yadav AK, Tiwari M, Gupta A, Sharma A, Pandey AN, Pandey AK, Chaube SK. Necroptosis in stressed ovary. J Biomed Sci 2019; 26:11. [PMID: 30665407 PMCID: PMC6340166 DOI: 10.1186/s12929-019-0504-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Stress is deeply rooted in the modern society due to limited resources and large competition to achieve the desired goal. Women are more frequently exposed to several stressors during their reproductive age that trigger generation of reactive oxygen species (ROS). Accumulation of ROS in the body causes oxidative stress (OS) and adversely affects ovarian functions. The increased OS triggers various cell death pathways in the ovary. Beside apoptosis and autophagy, OS trigger necroptosis in granulosa cell as well as in follicular oocyte. The OS could activate receptor interacting protein kinase-1(RIPK1), receptor interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) to trigger necroptosis in mammalian ovary. The granulosa cell necroptosis may deprive follicular oocyte from nutrients, growth factors and survival factors. Under these conditions, oocyte becomes more susceptible towards OS-mediated necroptosis in the follicular oocytes. Induction of necroptosis in encircling granulosa cell and oocyte may lead to follicular atresia. Indeed, follicular atresia is one of the major events responsible for the elimination of majority of germ cells from cohort of ovary. Thus, the inhibition of necroptosis could prevent precautious germ cell depletion from ovary that may cause reproductive senescence and early menopause in several mammalian species including human.
Collapse
Affiliation(s)
- Govind R Chaudhary
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Anil K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, 221005, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
23
|
Xin M, He J, Zhang Y, Wu Y, Yang W, Liang X, Yin X. Chinese herbal decoction of Wenshen Yangxue formula improved fertility and pregnancy rate in mice through PI3K/Akt signaling. J Cell Biochem 2018; 120:3082-3090. [PMID: 30474873 DOI: 10.1002/jcb.27483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Traditional Chinese medicine (TCM) is an effective management to infertility. The association between TCM-mediated fertility and inhibition of phosphatidylinositol-3-kinase (PI3K) would be investigated. METHODS Institute of Cancer Research mice were treated with three herbal decoctions, named Wenshen Yangxue formula, Wenshen formula, and Yangxue formula, plus with human gonadotropins. PI3K inhibitor wortmannin was administrated to half of mice. Some index such as body weight, fertility ability would be investigated. The expression of P13K/Akt signaling was detected by using Western blot analysis. RESULTS No difference was observed in body weight among groups. Mice receiving the administration of human gonadotropins and herbal decoctions showed increased follicle numbers, percentage of fertilization, and promoted embryonic development. The treatment of Wenshen Yangxue formula decoction showed the highest efficiency, significant higher than Wenshen and Yangxue formulas. And increased the expression of p-PI3K and p-Akt proteins. CONCLUSION These results suggested the herbal decoctions promoted the fertilization of mice, which was related to the charge of PI3K/Akt activation.
Collapse
Affiliation(s)
- Mingwei Xin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Junqin He
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ying Wu
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wei Yang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xinyun Liang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiaodan Yin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Fabbri R, Zamboni C, Vicenti R, Macciocca M, Paradisi R, Seracchioli R. Update on oogenesis in vitro. ACTA ACUST UNITED AC 2018; 70:588-608. [PMID: 29999288 DOI: 10.23736/s0026-4784.18.04273-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Ovarian tissue is increasingly being collected from cancer patients and cryopreserved for fertility preservation. Alternately to the autologous transplantation, the development of culture systems that support oocyte development from the primordial follicle stage represent a valid strategy to restore fertility. The aim of this study is to review the most recent data regarding oogenesis in vitro and to provide an up-to-date on the contemporary knowledge of follicle growth and development in vitro. EVIDENCE ACQUISITION A comprehensive systematic MEDLINE search was performed since February 2018 for English-language reports by using the following terms: "ovary," "animal and human follicle," "in vitro growth and development," "ovarian tissue culture," "fertility preservation," "IVM," "oocyte." Previous published reviews and recent published original articles were preferred in order to meet our study scope. EVIDENCE SYNTHESIS Over time, many studies have been conducted with the aim to optimize the characteristics of ovarian tissue culture systems and to better support the three main phases: 1) activation of primordial follicles; 2) isolation and culture of growing preantral follicles; 3) removal from the follicle environment and maturation of oocyte cumulus complexes. While complete oocyte in vitro development has been achieved in mouse, with the production of live offspring, the goal of obtaining oocytes of sufficient quality to support embryo development has not been completely reached into higher mammals despite decades of effort. CONCLUSIONS Over the years, many improvements have been made on ovarian tissue cultures with the future purpose that patients will be provided with a greater number of developmentally competent oocytes for fertility preservation.
Collapse
Affiliation(s)
- Raffaella Fabbri
- Unit of Gynecology and Physiopathology of Human Reproduction, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Chiara Zamboni
- Unit of Gynecology and Physiopathology of Human Reproduction, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy -
| | - Rossella Vicenti
- Unit of Gynecology and Physiopathology of Human Reproduction, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Maria Macciocca
- Unit of Gynecology and Physiopathology of Human Reproduction, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Renato Seracchioli
- Unit of Gynecology and Physiopathology of Human Reproduction, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|