1
|
Obeso I, Loayza FR, González-Redondo R, Villagra F, Luis E, Jahanshahi M, Obeso JA, Pastor MA. The causal role of the subthalamic nucleus in the inhibitory network. Ann N Y Acad Sci 2024; 1538:117-128. [PMID: 39116019 DOI: 10.1111/nyas.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The neural network mediating successful response inhibition mainly includes right hemisphere activation of the pre-supplementary motor area, inferior frontal gyrus (IFG), subthalamic nucleus (STN), and caudate nucleus. However, the causal role of these regions in the inhibitory network is undefined. Five patients with Parkinson's disease were assessed prior to and after therapeutic thermal ablation of the right STN in two separate functional magnetic resonance imaging (fMRI) sessions while performing a stop-signal task. Initiation times were faster but motor inhibition with the left hand (contralateral to the lesion) was significantly impaired as evident in prolonged stop-signal reaction times. Reduced inhibition after right subthalamotomy was associated (during successful inhibition) with the recruitment of basal ganglia regions outside the established inhibitory network. They included the putamen and caudate together with the anterior cingulate cortex and IFG of the left hemisphere. Subsequent network connectivity analysis (with the seed over the nonlesioned left STN) revealed a new inhibitory network after right subthalamotomies. Our results highlight the causal role of the right STN in the neural network for motor inhibition and the possible basal ganglia mechanisms for compensation upon losing a key node of the inhibition network.
Collapse
Affiliation(s)
| | - Francis R Loayza
- Neuroimaging and BioEngineering Laboratory, Faculty of Mechanical Engineering, Polytechnic University (ESPOL), Guayaquil, Ecuador
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | - Federico Villagra
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Elkin Luis
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Marjan Jahanshahi
- Cognitive-Motor Neuroscience Group, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology & The National Hospital for Neurology and Neurosurgery, London, UK
| | - José A Obeso
- CIBERNED, Instituto Carlos III, Madrid, Spain
- HM-CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain
| | - Maria A Pastor
- Neuroimaging Laboratory, Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
2
|
Masoudi M, Ehsani F, Hedayati R, Ramezani M, Jaberzadeh S. Different montages of transcranial direct current stimulation on postural stability in chronic low back pain patients: A randomized sham-controlled study. J Back Musculoskelet Rehabil 2024; 37:1151-1161. [PMID: 38607747 DOI: 10.3233/bmr-230229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
BACKGROUND Impairment in both the motor and cognitive aspects of postural control is a critical issue in patients with chronic low back pain (CLBP) who experience high pain anxiety (HPA). OBJECTIVE This study aimed to compare the effects of cathodal and anodal transcranial direct current stimulation (c-tDCS and a-tDCS) over the dorsolateral prefrontal cortex (DLPFC) on postural control during cognitive postural tasks in CLBP patients with HPA. METHODS This study included 66 patients randomly assigned to three groups: DLPFC a-tDCS, DLPFC c-tDCS, and sham tDCS. All groups received 20 minutes of tDCS, but the stimulation was gradually turned off in the sham group. Postural stability indices were assessed using the Biodex Balance System. RESULTS Both the a-tDCS and c-tDCS groups showed a significant reduction in most postural stability indices at static and dynamic levels after the interventions (immediately, 24 hours, and one-week follow-up) during the cognitive postural task (P< 0.01). Additionally, there was a significant improvement in postural balance in the a-tDCS and c-tDCS groups compared to the sham tDCS group (P< 0.01). Furthermore, the a-tDCS group showed significantly greater improvement than the c-tDCS group (P< 0.01). CONCLUSION Based on the results, both a-tDCS and c-tDCS over the DLPFC had positive effects on postural control during cognitive postural tasks in CLBP patients with HPA.
Collapse
Affiliation(s)
- Mona Masoudi
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Rozita Hedayati
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mona Ramezani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
van Ruitenbeek P, Franzen L, Mason NL, Stiers P, Ramaekers JG. Methylphenidate as a treatment option for substance use disorder: a transdiagnostic perspective. Front Psychiatry 2023; 14:1208120. [PMID: 37599874 PMCID: PMC10435872 DOI: 10.3389/fpsyt.2023.1208120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
A transition in viewing mental disorders from conditions defined as a set of unique characteristics to one of the quantitative variations on a collection of dimensions allows overlap between disorders. The overlap can be utilized to extend to treatment approaches. Here, we consider the overlap between attention-deficit/hyperactivity disorder and substance use disorder to probe the suitability to use methylphenidate as a treatment for substance use disorder. Both disorders are characterized by maladaptive goal-directed behavior, impaired cognitive control, hyperactive phasic dopaminergic neurotransmission in the striatum, prefrontal hypoactivation, and reduced frontal cortex gray matter volume/density. In addition, methylphenidate has been shown to improve cognitive control and normalize associated brain activation in substance use disorder patients and clinical trials have found methylphenidate to improve clinical outcomes. Despite the theoretical basis and promising, but preliminary, outcomes, many questions remain unanswered. Most prominent is whether all patients who are addicted to different substances may equally profit from methylphenidate treatment.
Collapse
Affiliation(s)
- Peter van Ruitenbeek
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | | | | | | | | |
Collapse
|
4
|
Emadi M, Moossavi A, Akbari M. Combined Bifrontal Transcranial Direct Current Stimulation and Auditory Stroop Training in Chronic Tinnitus. Indian J Otolaryngol Head Neck Surg 2023; 75:8-13. [PMID: 37007882 PMCID: PMC10050537 DOI: 10.1007/s12070-022-03258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with tinnitus experience difficulties in cognitive control and executive functions. Many of which are regarded as the cause of tinnitus rather than its complications. Methods for the improvement of inhibitory and cognitive control seem to be effective in the control of tinnitus. In this study, transcranial direct current stimulation and auditory Stroop exercise were have been to improve inhibitory control and the ability to ignore tinnitus in patients suffering from chronic tinnitus. 34 patients with chronic tinnitus (> 6 months) were randomly divided into two groups. The first group consist of 17 patients who received 6 sessions of tDCS followed by 6 sessions of auditory Stroop training. The second group received 6 sessions of sham tDCS followed by 6 sessions of auditory Stroop training. The initial evaluations including pure tone audiometry, psychoacoustic measurements, tinnitus handicap inventory (THI) survey and visual analog scale (VAS) of annoyance and loudness were performed before, immediately after, and one month after the tDCS, sham, and Stroop training. The results of this study revealed a significant reduction in THI score, VAS of loudness, and annoyance of tinnitus. A significant correlation was detected between the reaction time of incongruent words in the Stroop task and improvement of THI score and VAS of annoyance. Combined tDCS and Stroop training efficiently improve chronic tinnitus.
Collapse
Affiliation(s)
- Maryam Emadi
- Department of Audiology, School of Rehabilitation Sciences, Hamadan University of Medical Sciences, Fahmideh Street, Pazhoohesh Square, Hamadan, Iran
| | - Abdollah Moossavi
- Department of Otolaryngology and Head and Neck Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Akbari
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Westwood SJ, Criaud M, Lam SL, Lukito S, Wallace-Hanlon S, Kowalczyk OS, Kostara A, Mathew J, Agbedjro D, Wexler BE, Cohen Kadosh R, Asherson P, Rubia K. Transcranial direct current stimulation (tDCS) combined with cognitive training in adolescent boys with ADHD: a double-blind, randomised, sham-controlled trial. Psychol Med 2023; 53:497-512. [PMID: 34225830 PMCID: PMC9899574 DOI: 10.1017/s0033291721001859] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) could be a side-effect-free alternative to psychostimulants in attention-deficit/hyperactivity disorder (ADHD). Although there is limited evidence for clinical and cognitive effects, most studies were small, single-session and stimulated left dorsolateral prefrontal cortex (dlPFC). No sham-controlled study has stimulated the right inferior frontal cortex (rIFC), which is the most consistently under-functioning region in ADHD, with multiple anodal-tDCS sessions combined with cognitive training (CT) to enhance effects. Thus, we investigated the clinical and cognitive effects of multi-session anodal-tDCS over rIFC combined with CT in double-blind, randomised, sham-controlled trial (RCT, ISRCTN48265228). METHODS Fifty boys with ADHD (10-18 years) received 15 weekday sessions of anodal- or sham-tDCS over rIFC combined with CT (20 min, 1 mA). ANCOVA, adjusting for baseline measures, age and medication status, tested group differences in clinical and ADHD-relevant executive functions at posttreatment and after 6 months. RESULTS ADHD-Rating Scale, Conners ADHD Index and adverse effects were significantly lower at post-treatment after sham relative to anodal tDCS. No other effects were significant. CONCLUSIONS This rigorous and largest RCT of tDCS in adolescent boys with ADHD found no evidence of improved ADHD symptoms or cognitive performance following multi-session anodal tDCS over rIFC combined with CT. These findings extend limited meta-analytic evidence of cognitive and clinical effects in ADHD after 1-5 tDCS sessions over mainly left dlPFC. Given that tDCS is commercially and clinically available, the findings are important as they suggest that rIFC stimulation may not be indicated as a neurotherapy for cognitive or clinical remediation for ADHD.
Collapse
Affiliation(s)
- Samuel J. Westwood
- Department of Child & Adolescent Psychiatry, King's College London, London, UK
| | - Marion Criaud
- Department of Child & Adolescent Psychiatry, King's College London, London, UK
| | - Sheut-Ling Lam
- Department of Child & Adolescent Psychiatry, King's College London, London, UK
| | - Steve Lukito
- Department of Child & Adolescent Psychiatry, King's College London, London, UK
| | | | - Olivia S. Kowalczyk
- Department of Child & Adolescent Psychiatry, King's College London, London, UK
- Department of Neuroimaging, King's College London, London, UK
| | - Afroditi Kostara
- Department of Child & Adolescent Psychiatry, King's College London, London, UK
| | - Joseph Mathew
- Department of Child & Adolescent Psychiatry, King's College London, London, UK
| | | | - Bruce E. Wexler
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Philip Asherson
- Social Genetic & Developmental Psychiatry, King's College London, London, UK
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, King's College London, London, UK
| |
Collapse
|
6
|
Orlov ND, Muqtadir SA, Oroojeni H, Averbeck B, Rothwell J, Shergill SS. Stimulating learning: A functional MRI and behavioral investigation of the effects of transcranial direct current stimulation on stochastic learning in schizophrenia. Psychiatry Res 2022; 317:114908. [PMID: 37732853 DOI: 10.1016/j.psychres.2022.114908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/19/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022]
Abstract
Transcranial direct current stimulation (tDCS) of the medial prefrontal cortex (mPFC) is under clinical investigation as a treatment for cognitive deficits. We investigate the effects of tDCS over the mPFC on performance SSLT in individuals with schizophrenia, and the underlying neurophysiological effect in regions associated with learning values and stimulus-outcome relationships. In this parallel-design double-blind pilot study, 49 individuals with schizophrenia, of whom 28 completed a fMRI, were randomized into active or sham tDCS stimulation groups. Subjects participated in 4 days of SSLT training (days 1, 2, 14, 56) with tDCS applied at day-1, and during a concurrent MRI scan at day-14. The SSLT demonstrated a significant mean difference in performance in the tDCS treatment group: at day-2 and at day-56. Active tDCS was associated with increased insular activity, and reduced amygdala activation. tDCS may offer an important novel approach to modulating brain networks to ameliorate cognitive deficits in schizophrenia, with this study being the first to show a longer-term effect on SSLT.
Collapse
Affiliation(s)
- Natasza D Orlov
- Cognition Schizophrenia Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Liu Lab, Athinoula A. Martinos Center for Biomedical Imaging Center, Massachusetts General Hospital, Charlestown, MA, USA; Lab of Precision Brain Imaging, Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Syed Ali Muqtadir
- Cognition Schizophrenia Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Lahore University of Management and Sciences, Lon, Lahore, Pakistan
| | - Hooman Oroojeni
- Department of Computing, Goldsmiths College, London, United Kingdom
| | - Bruno Averbeck
- Laboratory for Neuropsychology Section on Learning and Decision Making, National Institute of Mental Health Research, Bethesda, MD, United States
| | - John Rothwell
- Institute of Neurology, University College London, London, United Kingdom
| | - Sukhi S Shergill
- Cognition Schizophrenia Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Kent and Medway Medical School, Canterbury, United Kingdom
| |
Collapse
|
7
|
Zhang D, Liu J, Fan L, Liu Q. Quantitative description of the relationship between the enhancement of distraction-suppression and brain local state alteration after transcranial direct current stimulation. Front Neurosci 2022; 16:984893. [PMID: 36148150 PMCID: PMC9485618 DOI: 10.3389/fnins.2022.984893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Anodal transcranial direct current stimulation (tDCS) over the left dorsal lateral prefrontal cortex (lDLPFC) can improve distraction suppression ability, possibly by distantly regulating the connection properties of several large-scale brain networks and local brain state changes. However, little is known about the local state alteration that tDCS can induce in distant but task-related regions and the relationship between performance enhancement and local state alteration in potentially related regions, resulting in inefficient and uncertain tDCS regulation. We aimed to examine the alteration of brain local state before and after tDCS and its relationship with performance enhancement. With the within-subject design, the participants received anodal (1.5 mA) and sham tDCS at F3 (lDLPFC) for 20 min. The visual search task and resting-state functional magnetic resonance imaging (rsfMRI) were performed before and after stimulation. Anodal tDCS significantly enhanced distraction suppression. The amplitude of low-frequency fluctuation (ALFF) in the left parietal region significantly decreased, the decrement significantly positively correlated with performance enhancement after anodal tDCS. As well, the regional homogeneity (ReHo) in the left precuneus significantly increased, and the increasement significantly positively correlated with performance enhancement. Anodal tDCS over the lDLPFC can distantly modulate the local state of the brain and improve the distraction suppression ability. These two aspects are closely related and provide a direct and efficient approach to enhancing performance.
Collapse
Affiliation(s)
- Di Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Jiaojiao Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Li Fan
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- *Correspondence: Qiang Liu,
| |
Collapse
|
8
|
Verveer I, Hill AT, Franken IHA, Yücel M, van Dongen JDM, Segrave R. Modulation of control: Can HD-tDCS targeting the dACC reduce impulsivity? Brain Res 2021; 1756:147282. [PMID: 33515536 DOI: 10.1016/j.brainres.2021.147282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The dorsal anterior cingulate cortex (dACC) and its neurocircuits are central in impulsivity, and maladaptive dACC activity has been implicated in psychological disorders characterized by high trait impulsivity. High-Definition transcranial Direct Current Stimulation (HD-tDCS) is a non-invasive neuromodulation tool that, with certain electrode configurations, can be optimized for targeting deeper subcorticalbrainstructures, such as the dACC. OBJECTIVES Using behavioural and electrophysiological measures we investigated whether HD-tDCS targeting the dACC could modulate two key components of impulsivity, inhibitory control and error processing. METHODS Twenty-three healthy adults with high trait impulsivity participated in two experimental sessions. Participants received active or sham HD-tDCS in counterbalanced order with a wash-out period of at least 3 days, as part of a single-blind, cross-over design. EEG was recorded during the Go-NoGo task before, directly after, and 30 min after HD-tDCS. RESULTS HD-tDCS targeting the dACC did not affect inhibitory control performance on the Go-NoGo task, but there was evidence for a delayed change in underlying neurophysiological components of motor inhibition (NoGo P3) and error processing (error related negativity; ERN) after one session of HD-tDCS. CONCLUSION HD-tDCS has potential to modulate underlying neurophysiological components of impulsivity. Future studies should further explore to what degree the dACC was affected and whether multi-session HD-tDCS has the capacity to also induce behavioural changes, particularly in clinical samples characterized by high trait impulsivity.
Collapse
Affiliation(s)
- Ilse Verveer
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University, Rotterdam, The Netherlands.
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
| | - Ingmar H A Franken
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University, Rotterdam, The Netherlands
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Josanne D M van Dongen
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University, Rotterdam, The Netherlands
| | - Rebecca Segrave
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
The effect of non-invasive brain stimulation on executive functioning in healthy controls: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 125:122-147. [PMID: 33503477 DOI: 10.1016/j.neubiorev.2021.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
In recent years, there has been a heightened interest in the effect of non-invasive brain stimulation on executive functioning. However, there is no comprehensive overview of its effects on different executive functioning domains in healthy individuals. Here, we assessed the state of the field by conducting a systematic review and meta-analysis on the effectiveness of non-invasive brain stimulation (i.e. repetitive transcranial magnetic stimulation and transcranial direct current stimulation) over prefrontal regions on tasks assessing working memory, inhibition, flexibility, planning and initiation performance. Our search yielded 63 studies (n = 1537), and the effectiveness of excitatory and inhibitory non-invasive brain stimulation were assessed per executive functioning task. Our analyses showed that excitatory non-invasive brain stimulation had a small but positive effect on Stop Signal Task and Go/No-Go Task performance, and that inhibitory stimulation had a small negative effect on Flanker Task performance. Non-invasive brain stimulation did not affect performance on working memory and flexibility tasks, and effects on planning tasks were inconclusive.
Collapse
|
10
|
Verveer I, Remmerswaal D, van der Veen FM, Franken IH. Long-term tDCS effects on neurophysiological measures of cognitive control in tobacco smokers. Biol Psychol 2020; 156:107962. [DOI: 10.1016/j.biopsycho.2020.107962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
|
11
|
Effects of transcranial direct current stimulation of left and right inferior frontal gyrus on creative divergent thinking are moderated by changes in inhibition control. Brain Struct Funct 2020; 225:1691-1704. [PMID: 32556475 PMCID: PMC7321900 DOI: 10.1007/s00429-020-02081-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/04/2020] [Indexed: 11/16/2022]
Abstract
Divergent thinking (DT) as one component of creativity is the ability to search for multiple solutions to a single problem and is reliably tested with the Alternative Uses Task (AUT). DT depends on activity in the inferior frontal gyrus (IFG), a prefrontal region that has also been associated with inhibitory control (IC). Experimentally manipulating IC through transcranial direct current stimulation (tDCS) led to alterations in DT. Here, we aimed at further examining such potential mediating effects of IC on DT (measured as flexibility, fluency, and originality in the AUT) by modulating IC tDCS. Participants received either cathodal tDCS (c-tDCS) of the left IFG coupled with anodal tDCS (a-tDCS) of the right IFG (L−R + ; N = 19), or the opposite treatment (L + R−; N = 21). We hypothesized that L + R− stimulation would enhance IC assessed with the Go NoGo task (GNGT), and that facilitated IC would result in lower creativity scores. The reversed stimulation arrangement (i.e., L− R +) should result in higher creativity scores. We found that tDCS only affected the originality component of the AUT but not flexibility or fluency. We also found no effects on IC, and thus, the mediation effect of IC could not be confirmed. However, we observed a moderation effect: inhibition of left and facilitation of right IFG (L−R +) resulted in enhanced flexibility and originality scores, only when IC performance was also improved. We conclude that inducing a right-to-left gradient in IFG activity by tDCS is efficient in enhancing DT, but only under conditions where tDCS is sufficient to alter IC performance as well.
Collapse
|
12
|
Dormal V, Lannoy S, Bollen Z, D'Hondt F, Maurage P. Can we boost attention and inhibition in binge drinking? Electrophysiological impact of neurocognitive stimulation. Psychopharmacology (Berl) 2020; 237:1493-1505. [PMID: 32036388 DOI: 10.1007/s00213-020-05475-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
RATIONALE Binge drinking (i.e. excessive episodic alcohol consumption) among young adults has been associated with deleterious consequences, notably at the cognitive and brain levels. These behavioural impairments and brain alterations have a direct impact on psychological and interpersonal functioning, but they might also be involved in the transition towards severe alcohol use disorders. Development of effective rehabilitation programs to reduce these negative effects as they emerge thus constitutes a priority in subclinical populations. OBJECTIVES The present study tested the behavioural and electrophysiological impact of neurocognitive stimulation (i.e. transcranial direct current stimulation (tDCS) applied during a cognitive task) to improve attention and inhibition abilities in young binge drinkers. METHODS Two groups (20 binge drinkers and 20 non-binge drinkers) performed two sessions in a counterbalanced order. Each session consisted of an inhibition task (i.e. Neutral Go/No-Go) while participants received left frontal tDCS or sham stimulation, immediately followed by an Alcohol-related Go/No-Go task, while both behavioural and electrophysiological measures were recorded. RESULTS No significant differences were observed between groups or sessions (tDCS versus sham stimulation) at the behavioural level. However, electrophysiological measurements during the alcohol-related inhibition task revealed a specific effect of tDCS on attentional resource mobilization (indexed by the N2 component) in binge drinkers, whereas later inhibition processes (indexed by the P3 component) remained unchanged in this population. CONCLUSIONS The present findings indicate that tDCS can modify the electrophysiological correlates of cognitive processes in binge drinking. While the impact of such brain modifications on actual neuropsychological functioning and alcohol consumption behaviours remains to be determined, these results underline the potential interest of developing neurocognitive stimulation approaches in this population.
Collapse
Affiliation(s)
- Valérie Dormal
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, Université catholique de Louvain, Place Cardinal Mercier, 10, 1348, Louvain-la-Neuve, Belgium
| | - Séverine Lannoy
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, Université catholique de Louvain, Place Cardinal Mercier, 10, 1348, Louvain-la-Neuve, Belgium
| | - Zoé Bollen
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, Université catholique de Louvain, Place Cardinal Mercier, 10, 1348, Louvain-la-Neuve, Belgium
| | - Fabien D'Hondt
- CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, University Lille, 59000, Lille, France.,Clinique de Psychiatrie, CURE, CHU Lille, 59000, Lille, France
| | - Pierre Maurage
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, Université catholique de Louvain, Place Cardinal Mercier, 10, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
13
|
Osimo SA, Korb S, Aiello M. Obesity, subliminal perception and inhibition: Neuromodulation of the prefrontal cortex. Behav Res Ther 2019; 119:103408. [DOI: 10.1016/j.brat.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/03/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
|
14
|
Di Rosa E, Brigadoi S, Cutini S, Tarantino V, Dell'Acqua R, Mapelli D, Braver TS, Vallesi A. Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study. Neuroimage 2019; 202:116062. [PMID: 31369810 DOI: 10.1016/j.neuroimage.2019.116062] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 01/12/2023] Open
Abstract
Several studies have evaluated the effect of anodal transcranial direct current stimulation (tDCS) over the prefrontal cortex (PFC) for the enhancement of working memory (WM) performance in healthy older adults. However, the mixed results obtained so far suggest the need for concurrent brain imaging, in order to more directly examine tDCS effects. The present study adopted a continuous multimodal approach utilizing functional near-infrared spectroscopy (fNIRS) to examine the interactive effects of tDCS combined with manipulations of reward motivation. Twenty-one older adults (mean age = 69.7 years; SD = 5.05) performed an experimental visuo-spatial WM task before, during and after the delivery of 1.5 mA anodal tDCS/sham over the left prefrontal cortex (PFC). During stimulation, participants received performance-contingent reward for every fast and correct response during the WM task. In both sessions, hemodynamic activity of the bilateral frontal, motor and parietal areas was recorded across the entire duration of the WM task. Cognitive functions and reward sensitivity were also assessed with standard measures. Results demonstrated a significant impact of tDCS on both WM performance and hemodynamic activity. Specifically, faster responses in the WM task were observed both during and after anodal tDCS, while no differences were found under sham control conditions. However, these effects emerged only when taking into account individual visuo-spatial WM capacity. Additionally, during and after the anodal tDCS, increased hemodynamic activity relative to sham was observed in the bilateral PFC, while no effects of tDCS were detected in the motor and parietal areas. These results provide the first evidence of tDCS-dependent functional changes in PFC activity in healthy older adults during the execution of a WM task. Moreover, they highlight the utility of combining reward motivation with prefrontal anodal tDCS, as a potential strategy to improve WM efficiency in low performing healthy older adults.
Collapse
Affiliation(s)
- Elisa Di Rosa
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, USA.
| | - Sabrina Brigadoi
- Department of Developmental Psychology, University of Padova, Padova, Italy; Department of Information Engineering, University of Padova, Padova, Italy
| | - Simone Cutini
- Department of Developmental Psychology, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Vincenza Tarantino
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Roberto Dell'Acqua
- Department of Developmental Psychology, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Daniela Mapelli
- Department of General Psychology, University of Padova, Padova, Italy
| | - Todd S Braver
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, USA
| | - Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|