1
|
Yu L, Zhang Y, Wang Y, Yao Q, Yang K. Effects of slow-release nitrogen and urea combined application on soil physicochemical properties and fungal community under total straw returning condition. ENVIRONMENTAL RESEARCH 2024; 252:118758. [PMID: 38527724 DOI: 10.1016/j.envres.2024.118758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Under the system of full straw returning, the relationship between soil fungal community diversity and soil physiochemical properties, and the combined application of slow-release nitrogen and urea is unclear. To evaluate its effect and provide an effective strategy for sustainable agricultural production, a 2-year field positioning trial was conducted using maize as the research object. The experiment was designed with two factors: straw treatment(S) and nitrogen fertilizer treatment(N),Six experimental treatments were set up,S1N0,S1N1,S1N2,S1N3,S1N4,S0N2,respectively.Analysis of 54 soil samples revealed 15 fungal phyla and 49 fungal classes. The composition of fungal communities in each treatment was basically the same, but there were significant differences in species abundance. Under total straw returning conditions, the combined application of slow-release nitrogen fertilizer and normal nitrogen fertilizer significantly increased the relative abundance of Ascomycota. During the jointing stage, tasseling stage and maturity stage, S1N4, S1N3 and S1N2 increased by 25.76%, 22.97%, 20.74%; 25.11%, 30.02%, 23.64% and 22.47%, 28.14%, 22.71% respectively compared with S0N2.The relative abundance of Basidiomycota was significantly reduced. Alpha diversity analysis showed that the straw returning mode significantly increased the Shannon index and decreased the Simpson index, which was obvious in the jointing stage and tasseling stage. The principal coordinate analysis analysis results showed that the fungal communities formed different clusters in the horizontal and vertical directions at the three growth stages of corn jointing, tasseling and maturity. At the jointing stage and tasseling stage, the communities of the straw return treatment and the straw removal treatment were separated, and the community distribution of each treatment was not significantly different in the mature stage. Total straw returning combined with slow-release fertilizer significantly (P<0.05) increased the soil organic carbon, nitrate nitrogen and ammonia nitrogen content in each growth period, and increased the soil total nitrogen and hydrolyzable nitrogen content (P>0.05).After the straw was returned to the field, the combined application of slow-release nitrogen fertilizer and common urea had a significant impact on soil urease, catalase, and sucrase activities. Among them, the three enzyme activities were the highest in the S1N3 treatment at the jointing stage and maturity stage, and the S1N4 treatment at the tasseling stage had the highest enzyme activity. Fungal community composition is closely related to environmental factors. Soil organic carbon, urease and catalase are positively correlated with Ascomycota and negatively correlated with Basidiomycota.
Collapse
Affiliation(s)
- Lihong Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, Daqing, 163319, China
| | - Yifei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, Daqing, 163319, China
| | - Yufeng Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, Daqing, 163319, China
| | - Qin Yao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, Daqing, 163319, China
| | - Kejun Yang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, Daqing, 163319, China.
| |
Collapse
|
2
|
Integrating the effects of driving forces on ecosystem services into ecological management: A case study from Sichuan Province, China. PLoS One 2022; 17:e0270365. [PMID: 35737732 PMCID: PMC9223388 DOI: 10.1371/journal.pone.0270365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Driving forces are the factors that lead to the observed changes in the quantity and quality of ecosystem services (ESs). The relationship between driving forces and ESs involves considerable scale-related information. Place-based ecological management requires this information to support local sustainable development. Despite the importance of scale in ES research, most studies have only examined the association between ESs and their drivers at a single level, and few studies have examined this relationship at various scales or analyzed spatial heterogeneity. The purpose of this paper is to explore the significance of the scale-dependent effects of drivers on ESs for localized ecological management. The biophysical values of ESs were calculated using several ecological simulation models. The effects of driving forces on ESs were explored using the geographically weighted regression (GWR) model. Variations in the effects of driving forces on ESs were examined at three scales: provincial, ecoregional, and subecoregional scales. Finally, canonical correlation analysis was used to identify the major environmental factors associated with these variations in each ecoregion. Our results show that (1) the distribution of soil conservation and water yield is highly heterogeneous; (2) four driving forces have significant positive and negative impacts on soil conservation and water yield, and their effects on the two services vary spatially (p < 0.05); (3) the impacts of drivers on ESs vary across different spatial scales, with a corresponding shift in the related environmental factors; and (4) in the study area, at the provincial scale, physical, topographical, and biophysical factors were key factors associated with the variations in the relationship between ESs and drivers, and at the ecoregional and subecoregional scales, physical, socioeconomic, topographical, and biophysical factors all contributed to these changes. Our results suggest that significant differences in topographical conditions (e.g., altitude, slope) can be incorporated for exploring the relationship between drivers and ESs and optimizing ecological management at the provincial scale, whereas significant differences in physical and socioeconomic conditions (e.g., urbanization levels, human activity, vegetation coverage) are more meaningful for localized ecological management at the ecoregional and subecological scales. These findings provide a basis for understanding the relationship between drivers and ESs at multiple scales as well as guidelines for improving localized ecological management and achieving sustainable development.
Collapse
|
3
|
Zhang H, Li S, Zheng X, Zhang J, Bai N, Zhang H, Lv W. Effects of Biogas Slurry Combined With Chemical Fertilizer on Soil Bacterial and Fungal Community Composition in a Paddy Field. Front Microbiol 2021; 12:655515. [PMID: 34526972 PMCID: PMC8435896 DOI: 10.3389/fmicb.2021.655515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
The application of biogas slurry and chemical fertilizer in paddy fields can be a practical method to reduce the environmental risk and utilize the nutrients of biogas slurry. The responses of bacterial and fungal communities to the application of biogas slurry and chemical fertilizer are important reflections of the quality of the ecological environment. In this study, based on a 3-year field experiment with different ratios of biogas slurry and chemical fertilizer (applying the same pure nitrogen amount), the Illumina MiSeq platform was used to investigate the bacterial and fungal community diversity and composition in paddy soil. Our results revealed that compared with the observations under regular chemical fertilization, on the basis of stable paddy yield, the application of biogas slurry combined with chemical fertilizer significantly enhanced the soil nutrient availability and bacterial community diversity and reduced the fungal community diversity. Dissolved organic carbon (DOC), DOC/SOC (soil organic carbon), available nitrogen (AN) and available phosphorus (AP) were positively correlated with the bacterial community diversity, but no soil property was significantly associated with the fungal community. The bacterial community was primarily driven by the application of biogas slurry combined with chemical fertilizer (40.78%), while the fungal community was almost equally affected by the addition of pure biogas slurry, chemical fertilizer and biogas slurry combined with chemical fertilizer (25.65–28.72%). Biogas slurry combined with chemical fertilizer significantly enriched Proteobacteria, Acidobacteria, Planctomycetes, Rokubacteria, and Ascomycota and depleted Chloroflexi, Bacteroidetes, Crenarchaeota, Basidiomycota, and Glomeromycota. The observation of the alteration of some bacteria- and fungus-specific taxa provides insights for the proper application of biogas slurry combined with chemical fertilizer, which has the potential to promote crop growth and inhibit pathogens.
Collapse
Affiliation(s)
- Hanlin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Shuangxi Li
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Xianqing Zheng
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Juanqin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Naling Bai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Haiyun Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, China.,Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| |
Collapse
|
4
|
Zhang T, Wang Z, Lv X, Dang H, Zhuang L. Variation of rhizosphere bacterial community diversity in the desert ephemeral plant Ferula sinkiangensis across environmental gradients. Sci Rep 2020; 10:18442. [PMID: 33116202 PMCID: PMC7595108 DOI: 10.1038/s41598-020-75591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/15/2020] [Indexed: 11/18/2022] Open
Abstract
Ferula sinkiangensis (F. sinkiangensis) is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in plant growth and adaptability. However, F. sinkiangensis rhizosphere bacterial communities and the soil physicochemical factors that drive the bacterial community distribution are currently unclear. On this study, based on high-throughput sequencing, we explored the diversity, structure and composition of F. sinkiangensis rhizosphere bacterial communities at different slope positions and soil depths and their correlation with soil physicochemical properties. Our results revealed the heterogeneity and changed trend of F. sinkiangensis rhizosphere bacterial community diversity and abundance on slope position and soil depth and found Actinobacteria (25.5%), Acidobacteria (16.9%), Proteobacteria (16.6%), Gemmatimonadetes (11.5%) and Bacteroidetes (5.8%) were the dominant bacterial phyla in F. sinkiangensis rhizosphere soil. Among all soil physicochemical variables shown in this study, there was a strong positive correlation between phosphorus (AP) and the diversity of rhizosphere bacterial community in F. sinkiangensis. In addition, Soil physicochemical factors jointly explained 24.28% of variation in F. sinkiangensis rhizosphere bacterial community structure. Among them, pH largely explained the variation of F. sinkiangensis rhizosphere bacterial community structure (5.58%), followed by total salt (TS, 5.21%) and phosphorus (TP, 4.90%).
Collapse
Affiliation(s)
- Tao Zhang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Zhongke Wang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xinhua Lv
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Hanli Dang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Li Zhuang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
5
|
Soil Type, Topography, and Land Use Interact to Control the Response of Soil Respiration to Climate Variation. FORESTS 2019. [DOI: 10.3390/f10121116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of soil and topography on the responses of soil respiration (Rs) to climatic variables must be investigated in the southeastern mountainous areas of China due to the rapid land-use change from forest to agriculture. In this study, we investigated the response of Rs to soil temperature (ST), precipitation over the previous seven days (AP7), and soil water content (SWC) across two hillslopes that had different land uses: a tea garden (TG) and a bamboo forest (BF). Meanwhile, the roles of soil properties including soil clay content and total nitrogen (TN), and topography including elevation, profile curvature (PRC), and slope on the different responses of Rs to these climatic variables were investigated. Results showed that mean Rs on the BF hillslope (2.21 umol C m−2 s−1) was 1.71 times of that on the TG hillslope (1.29 umol C m−2 s−1). Soil clay content, elevation, and PRC had negative correlations (p < 0.05) with spatial variation of Rs, and ST was positively correlated (p < 0.01) with temporal variation of Rs on both hillslopes. Across both hillslopes ST explained 33%–73% and AP7 explained 24%–38% of the temporal variations in Rs. The mean temperature sensitivities (Q10s) of Rs were 2.02 and 3.22, respectively, on the TG and BF hillslopes. The Q10 was positively correlated (p < 0.05) with the temporal mean of SWC and TN, and negatively correlated (p < 0.05) with clay and slope. The mean AP7 sensitivities (a concept similar to Q10) were greatly affected by clay and PRC. When Rs was normalized to that at 10 °C, power or quadratic relationships between Rs and SWC were observed in different sites, and the SWC explained 12%–32% of the temporal variation in Rs. When ST and SWC were integrated and considered, improved explanations (45%–81%) were achieved for the Rs temporal variation. In addition, clay and elevation had vital influences on the responses of Rs to SWC. These results highlight the influences of soil, topographic features, and land use on the spatial variations of the Rs, as well as on the responses of Rs to different climatic variables, which will supplement the understanding of controlling mechanisms of Rs on tea and bamboo land-use types in Southeastern China.
Collapse
|
6
|
Wang M, Li X, Wang S, Wang G, Zhang J. Patterns and controls of temperature sensitivity of soil respiration in a meadow steppe of the Songnen Plain, Northeast China. PLoS One 2018; 13:e0204053. [PMID: 30248117 PMCID: PMC6152973 DOI: 10.1371/journal.pone.0204053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/31/2018] [Indexed: 11/18/2022] Open
Abstract
Quantifying the temporal and spatial patterns of temperature sensitivity (Q10) of soil respiration (Rs) as well as its controlling factors is critical to reveal the response the soil ecological processes to global warming and improve carbon budget estimations at a regional scale. The seasonal and annual variations in the temperature response of Rs were assessed during the two growing seasons in 2011 and 2012 in four different vegetation sites in a meadow steppe of the Songnen Plain, China. The Q10 values across all sites exhibited significant seasonal variations with a minimum value (1.81–2.34) occurring during summer and a peak value (3.82–4.54) occurring in either spring or autumn. The mean seasonal Q10 values showed no significant differences among the four different vegetation types. On the annual scale, however, the Chloris virgata site had significantly higher annual Q10 values (3.67–4.22) than the other three community sites in 2011 and 2012 and over the two years (2.01–3.67), indicating that the response of the Rs to climate warming may vary with vegetation type. The soil temperature and moisture had interactive effects on the variations of Q10 values. Soil temperature was the dominant factor influencing Q10 values, while soil moisture was an additional contributor to the variations of Q10. Due to the significant temporal and spatial variations in soil respiration response to temperature, acclimation of Rs to temperature variation should be taken into account in forecasting future terrestrial carbon cycle and its feedback to global warming.
Collapse
Affiliation(s)
- Ming Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, Jilin, China
| | - Xiujun Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Shengzhong Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, Jilin, China
| | - Guodong Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
- * E-mail:
| | - Jitao Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| |
Collapse
|