1
|
Gambino CM, Agnello L, Vidali M, Lo Sasso B, Mansueto P, Seidita A, Giuliano A, Scazzone C, Massa D, Masucci A, Tamburello M, Vassallo R, Ciaccio AM, Candore G, Carroccio A, Ciaccio M. The role of Killer immunoglobulin-like receptors (KIRs) in the genetic susceptibility to non-celiac wheat sensitivity (NCWS). Clin Chem Lab Med 2024; 62:1814-1823. [PMID: 38639193 DOI: 10.1515/cclm-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES Non-celiac wheat sensitivity (NCWS) is an emerging clinical condition characterized by gastrointestinal and extraintestinal symptoms following the ingestion of gluten-containing foods in patients without celiac disease (CD) or wheat allergy. Despite the great interest for NCWS, the genetic risk factors still need to be fully clarified. In this study, we first assessed the possible contribution of KIR genes and KIR haplotypes on the genetic predisposition to NCWS. METHODS Fifty patients with NCWS, 50 patients with CD, and 50 healthy controls (HC) were included in this study. KIR genes and KIR genotyping were investigated in all subjects by polymerase chain reaction with the sequence oligonucleotide probe (PCR-SSOP) method using Luminex technology. RESULTS We found a statistically different distribution of some KIR genes among NCWS, CD, and HC. Specifically, NCWS showed a decreased frequency of KIR2DL1, -2DL3, -2DL5, -2DS2, -2DS3, -2DS4, -2DS5, and -3DS1 genes, and an increased frequency of -3DL1 gene respect to both CD and HC. No difference was detected in the KIR haplotype expression. At the multivariate analysis, KIR2DL5, -2DS4, and -2DS5 were independent predictors of NCWS. CONCLUSIONS Our findings suggest a role of KIR genes in NCWS susceptibility, with KIR2DL5, -2DS4, and -2DS5 having a protective effect. Further large-scale multicentric studies are required to validate these preliminary findings.
Collapse
Affiliation(s)
- Caterina Maria Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
- Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| | - Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
| | - Matteo Vidali
- Clinical Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
- Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| | - Pasquale Mansueto
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine, and Medical Specialties (PROMISE), Unit of Internal Medicine, 18998 University of Palermo , Palermo, Italy
| | - Aurelio Seidita
- Unit of Internal Medicine, "V. Cervello" Hospital, Ospedali Riuniti "Villa Sofia-Cervello", Palermo, Italy
| | - Alessandra Giuliano
- Unit of Internal Medicine, "V. Cervello" Hospital, Ospedali Riuniti "Villa Sofia-Cervello", Palermo, Italy
| | - Concetta Scazzone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
| | - Davide Massa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
| | - Anna Masucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
| | - Martina Tamburello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
| | - Roberta Vassallo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
| | - Anna Maria Ciaccio
- Department of Health Promotion, Maternal and Child Health, Internal Medicine, and Specialty Excellence "G. D'Alessandro" (PROMISE), Internal Medicine and Stroke Care Ward, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Laboratory of Immunopathology and Immunosenescence, University of Palermo , Palermo, Italy
| | - Antonio Carroccio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine, and Medical Specialties (PROMISE), Unit of Internal Medicine, 18998 University of Palermo , Palermo, Italy
- Unit of Internal Medicine, "V. Cervello" Hospital, Ospedali Riuniti "Villa Sofia-Cervello", Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
- Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| |
Collapse
|
2
|
Ponce GI, Recendiz-Nuñez MÁ, García-Torreros C, Sifuentes-Franco S, Enciso-Vargas M, Rodríguez-Sánchez IP, Huerta-Olvera SG, Graciano-Machuca O. Association between Killer Immunoglobulin-like receptor genes and susceptibility to inflammatory bowel disease: An updated meta-analysis. Heliyon 2024; 10:e33903. [PMID: 39100457 PMCID: PMC11296034 DOI: 10.1016/j.heliyon.2024.e33903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
Background Several studies have associated members of the KIR genes as susceptibility factors to inflammatory bowel diseases (IBD): ulcerative colitis (UC) and Crohn's disease (CD). Objectives To assess the association between the presence and absence KIR genes and IBD susceptibility through a meta-analysis. Method A systematic search was performed through the PubMed, Scopus, and Web of Science databases to obtain relevant articles published before March 2024. Associations between genes and susceptibility to IBDs were estimated by OR with 95 % CI. Results We found positive associations of the KIR2DS1 and KIR2DS3 genes with susceptibility to UC, while the KIR2DL3 and KIR2DS4 full genes showed a negative association. In addition, the KIR2DS1, KIR2DS3, KIR2DS4, KIR2DS5, and KIR3DS1 genes showed a positive association with susceptibility to CD, whereas the KIR2DL1 gene showed a negative association. Conclusions Our meta-analysis indicates that individuals carrying the KIR2DS1 and KIR2DS3 genes exhibit increased susceptibility to UC, whereas carriers of the KIR2DS1, KIR2DS3, KIR2DS4, KIR2DS5, and KIR3DS1 genes are more prone to CD. However, further studies are required to clarify the role of the KIR genes and their corresponding ligands in the pathology of IBD.
Collapse
Affiliation(s)
| | - Miguel Ángel Recendiz-Nuñez
- Bachelor's Degree in Pharmacobiologist Chemist, La Cienega Campus (CUCiénega), UDG, Ocotlan, 47820, Jalisco, Mexico
| | - César García-Torreros
- Bachelor's Degree in Pharmacobiologist Chemist, La Cienega Campus (CUCiénega), UDG, Ocotlan, 47820, Jalisco, Mexico
| | - Sonia Sifuentes-Franco
- Clinical Science Laboratory, Department of Health Sciences, Los Valles Campus (CUValles), University of Guadalajara (UDG), Ameca, 46600, Jalisco, Mexico
| | | | - Irám Pablo Rodríguez-Sánchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo León (UANL), San Nicolas de Los Garza, Nuevo Leon, 66455, Mexico
| | - Selene Guadalupe Huerta-Olvera
- Medical and Life Sciences Department, La Cienega Campus (CUCiénega), University of Guadalajara (UDG), Ocotlan, 47820, Jalisco, Mexico
| | - Omar Graciano-Machuca
- Laboratory of Biological Systems, Department of Health Sciences, Los Valles Campus (CUValles), University of Guadalajara (UDG), Ameca, 46600, Jalisco, Mexico
| |
Collapse
|
3
|
Bordbar A, Manches O, Nowatzky J. Biology of HLA class I associated inflammatory diseases. Best Pract Res Clin Rheumatol 2024; 38:101977. [PMID: 39085016 PMCID: PMC11441793 DOI: 10.1016/j.berh.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Human leukocyte antigen (HLA) class I association is a well-established feature of common and uncommon inflammatory diseases, but it is unknown whether it impacts the pathogenesis of these disorders. The "arthritogenic peptide" hypothesis proposed initially for HLA-B27-associated ankylosing spondylitis (AS) seems the most intuitive to serve as a model for other HLA class I-associated diseases, but evidence supporting it has been scarce. Recent technological advances and the discovery of epistatic relationships between disease-associated HLA class I and endoplasmic reticulum aminopeptidase (ERAP) coding variants have led to the generation of new data and conceptual approaches to the problem requiring its re-examination. Continued success in these endeavors holds promise to resolve a Gordian Knot in human immunobiology. It may ultimately benefit patients by enabling the development of new therapies and precision tools for assessing disease risk and predicting treatment responses.
Collapse
Affiliation(s)
- Ali Bordbar
- New York University Grossman School of Medicine, Department of Medicine, New York, NY, USA
| | - Olivier Manches
- New York University Grossman School of Medicine, Department of Medicine, New York, NY, USA
| | - Johannes Nowatzky
- New York University Grossman School of Medicine, Department of Medicine, New York, NY, USA; New York University Grossman School of Medicine, Department of Pathology, USA; New York University Grossman School of Medicine, Department of Medicine Division of Rheumatology, NYU Langone Ocular Rheumatology Program, New York, NY, USA; New York University Grossman School of Medicine, Department of Medicine, Division of Rheumatology, NYU Langone Center for Behçet's Disease, New York, NY, USA.
| |
Collapse
|
4
|
Choi EJ, Baek IC, Park S, Kim HJ, Kim TG. Development of cost-effective and fast KIR genotyping by multiplex PCR-SSP. HLA 2024; 103:e15191. [PMID: 37688498 DOI: 10.1111/tan.15191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 09/11/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIR) control natural killer (NK) cell functions by recognizing HLA molecules and modulating the activity of NK cells. The KIR gene cluster contains polymorphic and highly homologous genes. Diversity of the KIR region is achieved through differences in gene content, allelic polymorphism, and gene copy number, which result in unrelated individuals having different KIR genotypes and individualized immune responses that are relevant to multiple aspects of human health and disease. Therefore, KIR genotyping is increasingly used in epidemiological studies. Here, we developed multiplex polymerase chain reaction with sequence-specific primers (PCR-SSP) to compensate for the shortcomings of the conventional PCR-SSP method, which is most commonly used for KIR analysis. Multiplex PCR-SSP method involves six multiplex reactions that detect 16 KIR genes and distinguish variant types of some KIR genes by adding two reactions. The assay was evaluated in a blind survey using a panel of 40 reference DNA standards from the UCLA KIR Exchange Program. The results are 100% concordant with the genotype determined using Luminex-based reverse sequence-specific oligonucleotide typing systems. Additionally, we investigated the currently known 16 KIR genes and their common variants in 120 unrelated Korean individuals. The results were consistent with the KIR genotype previously reported by Hwang et al. This multiplex PCR-SSP is an efficient method for analyzing KIR genotypes in both small- and large-scale studies with minimal labor, reagents, and DNA. Furthermore, by providing a better definition of KIR polymorphisms it can contribute to developments in immunogenetics.
Collapse
Affiliation(s)
- Eun-Jeong Choi
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In-Cheol Baek
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Silvia Park
- Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tai-Gyu Kim
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Altalhi RA, Aljuaimlani A, Alswayyed M, Arafah M, Tashkandy Y, Almutairi BO, Mansour L, Alomar SY. Association of the Genetic Diversity of Killer Cell Immunoglobulin-like Receptor Genes and HLA-C Ligand in Saudi Women With Thyroid Cancer. Cancer Control 2024; 31:10732748241274495. [PMID: 39365900 PMCID: PMC11452862 DOI: 10.1177/10732748241274495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 10/06/2024] Open
Abstract
INTRODUCTION Genetic diversity in the killer immunoglobulin-like receptor (KIR) gene composition and human leukocyte antigen (HLA) class I ligands, such as HLA-C, can affect the activity of natural killer cells and determine anti-cancer immunity. Specific KIR-HLA combinations can enhance cancer predisposition by promoting immune evasion. Studying the relationship between KIR-HLA polymorphisms and thyroid cancer (TC) risk can offer insights into how natural immunity fails, leading to disease development. Therefore, we investigated the association between KIR and HLA-C genotypes and TC risk in Saudi women. METHODS In this retrospective study, sixteen KIR genotypes and 2 HLA-C allotypes were determined using the polymerase chain reaction-sequence-specific primer (PCR-SSP) method, and the genotypes of 50 Saudi female patients with TC were compared with those of 50 Saudi female healthy controls (HC). RESULTS We observed a highly significant decrease in the presence of the KIR2DS2 and KIR2DS4 genes (OR = 0.15, 95% CI = 0.05-0.41, P = 0.0001; OR = 0.06, 95% CI = 0.02-0.2, P = 0.000, respectively) and in the presence of the KIR2DL5A gene (OR = 0.05, 95% CI = 0.02-0.14, P = 0.0000) in the TC group compared to the HC group. The frequency of the HLA-C2C2 allotype was significantly higher in HC compared to patients with TC (P = 0.02). The KIR haplotype group A and AB genotypes revealed a protective effect against TC (P = 0.0003 and P = 0.000, respectively), while the BB genotype showed a risk effect on TC compared to HC. Our results showed significant differences in the KIR gene combinations and KIR-HLA combinations between Saudi female TC patients and HC. CONCLUSION These results suggest that the expression of KIR genes and their HLA-C ligands may influence the risk of TC development in Saudi women.
Collapse
Affiliation(s)
- Razan A. Altalhi
- Department of Zoology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Ali Aljuaimlani
- Department of Zoology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology and Laboratory Medicine, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Maha Arafah
- Department of Pathology and Laboratory Medicine, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Yusra Tashkandy
- Department of Statistics and Operations Research, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Bader O. Almutairi
- Department of Zoology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Lamjed Mansour
- Department of Zoology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Suliman Y. Alomar
- Department of Zoology, College of Science King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Roshan Zamir M, Ariafar A, Ghaderi A, Amirzargar A. The impact of killer cell immunoglobulin-like receptor (KIR) genes and human leukocyte antigen (HLA) class I ligands on predisposition or protection against prostate cancer. Immunobiology 2023; 228:152319. [PMID: 36599262 DOI: 10.1016/j.imbio.2022.152319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/02/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Natural killer (NK) cell development largely depends on killer cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) class I ligands. In the current study, we investigated the role of KIR genes, HLA ligands, and KIR-HLA combinations in vulnerability or protection against prostate cancer (PC). To analyze the frequency of 16 KIR genes and 5 HLA ligands, polymerase chain reaction with sequence-specific primers (PCR-SSP) was conducted in 150 PC patients and 200 healthy controls (CNs). KIR2DL5 (p = 0.0346, OR = 0.606, CI = 0.3916-0.9336), KIR2DS5 (p = 0.0227, OR = 0.587, CI = 0.3793-0.9139), HLA-B Bw4Thr80 (p = 0.0401, OR = 0.3552, CI = 0.1466-0.9059), HLA Bw4 (p = 0.0190, OR = 0.4744, CI = 0.2656-0.8521), and T4 gene cluster (including KIR2DS5-2DL5-3DS1-2DS1 genes) (p = 0.0194, OR = 0.5575, CI = 0.3449-0.8938) had a lower frequency in the PC patients compared to the control group. Moreover, a lower frequency of the genotypes contacting activating KIR (aKIR) > inhibitory KIR (iKIR) (p = 0.0298, OR = 0.5291, CI = 0.3056-0.9174) and iKIR + HLA < aKIR + HLA (p = 0.0183, OR = 0.2197, CI = 0.0672-0.7001) in PC patients compared to the CNs implies a protective role for aKIR genes. In the case of KIR-HLA interactions, we detected a significant association between KIR3DS1+ + HLA-A Bw4+ (p = 0.0113, OR = 0.5093, CI = 0.3124-0.8416) and KIR3DL1- + HLA-A Bw4+ (p = 0.0306, OR = 0.1153, CI = 0.0106-0.6537) combinations and resistance to prostate cancer. In contrast, the presence of KIR3DL1 in the absence of HLA-A Bw4 (p = 0.0040, OR = 2.00, CI = 1.264-3.111), HLA Bw4 (p = 0.0296, OR = 2.066, CI = 1.094-3.906), and HLA-Bw4Thr80 (p = 0.0071, OR = 2.505, CI = 1.319-4.703) genes probably predisposes to prostate cancer. Carrying the CxT4 genotype in PC patients was positively associated with lower tumor grades (Gleason score ≤ 6) (p = 0.0331, OR = 3.290, and CI = 1.181-8.395). Altogether, our data suggest a protective role for aKIRs, HLA-B Bw4Thr80, and HLA Bw4 ligands as well as a predisposing role for certain KIR-HLA combinations in prostate cancer. The findings of this study offer new insight into the population's risk assessment for prostate cancer in men. Additionally, predicting immunotherapy response based on KIR-HLA combinations aids in implementing the most effective therapeutic approach in the early stages of the disease.
Collapse
Affiliation(s)
- Mina Roshan Zamir
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Ariafar
- Urology-Oncology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
8
|
Sakaue S, Hosomichi K, Hirata J, Nakaoka H, Yamazaki K, Yawata M, Yawata N, Naito T, Umeno J, Kawaguchi T, Matsui T, Motoya S, Suzuki Y, Inoko H, Tajima A, Morisaki T, Matsuda K, Kamatani Y, Yamamoto K, Inoue I, Okada Y. Decoding the diversity of killer immunoglobulin-like receptors by deep sequencing and a high-resolution imputation method. CELL GENOMICS 2022; 2:100101. [PMID: 36777335 PMCID: PMC9903714 DOI: 10.1016/j.xgen.2022.100101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/07/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
The killer cell immunoglobulin-like receptor (KIR) recognizes human leukocyte antigen (HLA) class I molecules and modulates the function of natural killer cells. Despite its role in immunity, the complex genomic structure has limited a deep understanding of the KIR genomic landscape. Here we conduct deep sequencing of 16 KIR genes in 1,173 individuals. We devise a bioinformatics pipeline incorporating copy number estimation and insertion or deletion (indel) calling for high-resolution KIR genotyping. We define 118 alleles in 13 genes and demonstrate a linkage disequilibrium structure within and across KIR centromeric and telomeric regions. We construct a KIR imputation reference panel (nreference = 689, imputation accuracy = 99.7%), apply it to biobank genotype (ntotal = 169,907), and perform phenome-wide association studies of 85 traits. We observe a dearth of genome-wide significant associations, even in immune traits implicated previously to be associated with KIR (the smallest p = 1.5 × 10-4). Our pipeline presents a broadly applicable framework to evaluate innate immunity in large-scale datasets.
Collapse
Affiliation(s)
- Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Corresponding author
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
| | - Jun Hirata
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirofumi Nakaoka
- Human Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Keiko Yamazaki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Department of Public Health, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Makoto Yawata
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, and National University Health System, Singapore 119228, Singapore
- NUSMed Immunology Translational Research Programme, and Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, 812-8582, Japan
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takaaki Kawaguchi
- Division of Gastroenterology, Department of Medicine, Tokyo Yamate Medical Center, Tokyo 169-0073, Japan
| | - Toshiyuki Matsui
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Fukuoka 818-0067, Japan
| | - Satoshi Motoya
- Department of Gastroenterology, Sapporo-Kosei General Hospital, Sapporo 060-0033, Japan
| | - Yasuo Suzuki
- Department of Internal Medicine, Faculty of Medicine, Toho University, Chiba 274-8510, Japan
| | | | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
| | - Takayuki Morisaki
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
- Corresponding author
| |
Collapse
|
9
|
Harrison GF, Leaton LA, Harrison EA, Kichula KM, Viken MK, Shortt J, Gignoux CR, Lie BA, Vukcevic D, Leslie S, Norman PJ. Allele imputation for the killer cell immunoglobulin-like receptor KIR3DL1/S1. PLoS Comput Biol 2022; 18:e1009059. [PMID: 35192601 PMCID: PMC8896733 DOI: 10.1371/journal.pcbi.1009059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/04/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Highly polymorphic interaction of KIR3DL1 and KIR3DS1 with HLA class I ligands modulates the effector functions of natural killer (NK) cells and some T cells. This genetically determined diversity affects severity of infections, immune-mediated diseases, and some cancers, and impacts the course of immunotherapies, including transplantation. KIR3DL1 is an inhibitory receptor, and KIR3DS1 is an activating receptor encoded by the KIR3DL1/S1 gene that has more than 200 diverse and divergent alleles. Determination of KIR3DL1/S1 genotypes for medical application is hampered by complex sequence and structural variation, requiring targeted approaches to generate and analyze high-resolution allele data. To overcome these obstacles, we developed and optimized a model for imputing KIR3DL1/S1 alleles at high-resolution from whole-genome SNP data. We designed the model to represent a substantial component of human genetic diversity. Our Global imputation model is effective at genotyping KIR3DL1/S1 alleles with an accuracy ranging from 88% in Africans to 97% in East Asians, with mean specificity of 99% and sensitivity of 95% for alleles >1% frequency. We used the established algorithm of the HIBAG program, in a modification named Pulling Out Natural killer cell Genomics (PONG). Because HIBAG was designed to impute HLA alleles also from whole-genome SNP data, PONG allows combinatorial diversity of KIR3DL1/S1 with HLA-A and -B to be analyzed using complementary techniques on a single data source. The use of PONG thus negates the need for targeted sequencing data in very large-scale association studies where such methods might not be tractable.
Collapse
Affiliation(s)
- Genelle F. Harrison
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Laura Ann Leaton
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Erica A. Harrison
- Independent Researcher, Broomfield, Colorado, United States of America
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Marte K. Viken
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jonathan Shortt
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christopher R. Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Benedicte A. Lie
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Damjan Vukcevic
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Leslie
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
10
|
Migdal M, Ruan DF, Forrest WF, Horowitz A, Hammer C. MiDAS-Meaningful Immunogenetic Data at Scale. PLoS Comput Biol 2021; 17:e1009131. [PMID: 34228721 PMCID: PMC8284797 DOI: 10.1371/journal.pcbi.1009131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/16/2021] [Accepted: 05/30/2021] [Indexed: 12/15/2022] Open
Abstract
Human immunogenetic variation in the form of HLA and KIR types has been shown to be strongly associated with a multitude of immune-related phenotypes. However, association studies involving immunogenetic loci most commonly involve simple analyses of classical HLA allelic diversity, resulting in limitations regarding the interpretability and reproducibility of results. We here present MiDAS, a comprehensive R package for immunogenetic data transformation and statistical analysis. MiDAS recodes input data in the form of HLA alleles and KIR types into biologically meaningful variables, allowing HLA amino acid fine mapping, analyses of HLA evolutionary divergence as well as experimentally validated HLA-KIR interactions. Further, MiDAS enables comprehensive statistical association analysis workflows with phenotypes of diverse measurement scales. MiDAS thus closes the gap between the inference of immunogenetic variation and its efficient utilization to make relevant discoveries related to immune and disease biology. It is freely available under a MIT license.
Collapse
Affiliation(s)
- Maciej Migdal
- Roche Global IT Solution Centre (RGITSC), Warsaw, Poland
| | - Dan Fu Ruan
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - William F. Forrest
- Department of OMNI Bioinformatics, Genentech, South San Francisco, California, United States of America
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Christian Hammer
- Department of Cancer Immunology, Genentech, South San Francisco, California, United States of America
- Department of Human Genetics, Genentech, South San Francisco, California, United States of America
| |
Collapse
|
11
|
He M, Zheng ZZ, He QQ, Li DY, Liao KZ, An L, Weng Q, Wang NJ, Wang LP, Sun Q, Wang J, Xiao PL, Du KM, Jiang M. Distribution of killer cell immunoglobulin-like receptor (KIR) genes in a large, multi-centre cohort of Chinese donors. Ann Hum Biol 2021; 48:133-141. [PMID: 34097546 DOI: 10.1080/03014460.2021.1913223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND The killer cell immunoglobulin-like receptor (KIR), which mediates the killing function of NK cells, is an attractive candidate for adoptive cellular therapy. The ethnic distribution for China provides a unique opportunity to investigate KIR gene distribution. AIM The aim of this study was to explore the relationship between population history and the rapidly evolving KIR genetic diversity. SUBJECTS AND METHODS 8050 Chinese donors from 184 hospitals were included to analyse frequency, haplotype, and B-content data of 16 KIR genes, by PCR-SSP for KIR genotyping. RESULTS KIR gene carrier frequencies were found similar to those observed in other studies on Han, but different from Thais, Japanese, Africans, and populations of West Eurasian ancestry. High-frequency KIR genotype profiles found in the present population were consistent with other studies on Han populations but different from those conducted on other cohorts. The majority of our cohort carried group A KIR gene motifs. Additionally, populations with similar geographic locations in China were shown clustered together, while Hainan and Xinjiang provinces were slightly separated from these. CONCLUSION The distribution of KIR genes varies by geographic region, and different ethnic groups may be a confounding factor of KIR diversity.
Collapse
Affiliation(s)
- Min He
- Hematologic Disease Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | | | - Qing-Qing He
- Shanghai Tissuebank Biotechnology Co., Ltd., Shanghai, China
| | - Dai-Yang Li
- Shanghai Tissuebank Biotechnology Co., Ltd., Shanghai, China
| | - Kuan-Zhen Liao
- Shanghai Tissuebank Biotechnology Co., Ltd., Shanghai, China
| | - Lin An
- Shanghai Tissuebank Biotechnology Co., Ltd., Shanghai, China
| | - Qi Weng
- Shanghai Tissuebank Biotechnology Co., Ltd., Shanghai, China
| | - Ning-Juan Wang
- Shanghai Tissuebank Biotechnology Co., Ltd., Shanghai, China
| | - Li-Ping Wang
- Shanghai Tissuebank Biotechnology Co., Ltd., Shanghai, China
| | - Qin Sun
- Shanghai Tissuebank Biotechnology Co., Ltd., Shanghai, China
| | - Jian Wang
- Shanghai Tissuebank Biotechnology Co., Ltd., Shanghai, China
| | - Pei-Li Xiao
- Shanghai Tissuebank Biotechnology Co., Ltd., Shanghai, China
| | - Ke-Ming Du
- Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Ming Jiang
- Hematologic Disease Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| |
Collapse
|
12
|
Liu B, Shao Y, Fu R. Current research status of HLA in immune-related diseases. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:340-350. [PMID: 33657268 PMCID: PMC8127548 DOI: 10.1002/iid3.416] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Human leukocyte antigen (HLA), also known as human major histocompatibility complex (MHC), is encoded by the HLA gene complex, and is currently known to have the highest gene density and the most polymorphisms among human chromosomal areas. HLA is divided into class I antigens, class II antigens, and class III antigens according to distribution and function. Classical HLA class I antigens include HLA-A, HLA-B, and HLA-C; HLA class II antigens include HLA-DP, HLA-DQ, and HLA-DR; nonclassical HLA class I and II molecules include HLA-F, E, H, X, DN, DO, and DM; and others, such as complement, are class III antigens. HLA is closely related to the body's immune response, regulation, and surveillance and is of great significance in the study of autoimmune diseases, tumor immunity, organ transplantation, and reproductive immunity. HLA is an important research topic that bridges immunology and clinical diseases. With the development of research methods and technologies, there will be more discoveries and broader prospects.
Collapse
Affiliation(s)
- Bingnan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yuanyuan Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| |
Collapse
|
13
|
Beigmohammadi F, Mahmoudi M, Karami J, Ahmadzadeh N, Ebrahimi-Daryani N, Rezaei N. Analysis of Killer Cell Immunoglobulin-Like Receptor Genes and Their HLA Ligands in Inflammatory Bowel Diseases. J Immunol Res 2020; 2020:4873648. [PMID: 33015197 PMCID: PMC7520679 DOI: 10.1155/2020/4873648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/16/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic studies have illustrated that killer cell immunoglobulin-like receptor (KIR) genes could participate in various autoimmune disorders. We aimed to clarify the role of KIR genes, HLA ligands, HLA-KIR interactions, and their genotypes in inflammatory bowel disease (IBD) susceptibility. The study population was composed of 183 IBD subjects, comprising 100 ulcerative colitis (UC) patients, 83 Crohn's disease (CD) patients, and 274 healthy subjects. Polymerase chain reaction with sequence-specific primers (PCR-SSP) was used to evaluate the absence or presence of the 15 KIR genes, 5 HLA class I ligands, and 2 pseudogenes. We did not find any significant difference in allele frequency of KIRs and pseudogenes between IBD patients and healthy controls. In the case of HLA genes, there was a significant difference in HLA-B-Bw4Thr80 frequency between UC patients and healthy controls (P = 0.03, OR = 0.06, 95%CI = 0.008-0.4). Furthermore, we found a significant difference in HLA-C1Asn80 frequency between CD patients and healthy controls (P = 0.04, OR = 0.49, 95% CI = 0.3-0.8). In the full-array combination of KIR genes, there was no significant frequency difference between UC patients and healthy controls, while two KIR genotypes showed a significant susceptible association with CD. Our data do not support a strong role of NK cells in IBD susceptibility, but it does not rule out a role for KIR variability in IBD patients. However, there are some protective associations such as Bw4 alleles; these associations may be due to the interaction of the alleles to TCRs rather than KIRs.
Collapse
Affiliation(s)
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Rheumatology Expert Group (REG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadzadeh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Ebrahimi-Daryani
- Department of Gastroenterology and Hepatology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
14
|
Blunt MD, Khakoo SI. Activating killer cell immunoglobulin-like receptors: Detection, function and therapeutic use. Int J Immunogenet 2020; 47:1-12. [PMID: 31755661 DOI: 10.1111/iji.12461] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) have a central role in the control of natural killer (NK) cell function. The functions of the activating KIRs, as compared to those of the inhibitory KIR, have been more difficult to define due to difficulties in antibody-mediated identification and their apparent low affinities for HLA class I. Immunogenetic studies have shown associations of activating KIRs with the outcome of autoimmune diseases, pregnancy-associated disorders, infectious diseases and cancers. Activating KIR are thus thought to have important roles in the control of natural killer cell functions and their role in disease. In this review, we discuss current knowledge on activating KIR, their ligands and, their roles in the pathogenesis and potential therapy of human diseases.
Collapse
Affiliation(s)
- Matthew D Blunt
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Salim I Khakoo
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|
15
|
Yahara H, Horita S, Yanamoto S, Kitagawa Y, Asaka T, Yoda T, Morita K, Michi Y, Takechi M, Shimasue H, Maruoka Y, Kondo E, Kusukawa J, Tsujiguchi H, Sato T, Kannon T, Nakamura H, Tajima A, Hosomichi K, Yahara K. A Targeted Genetic Association Study of the Rare Type of Osteomyelitis. J Dent Res 2020; 99:271-276. [PMID: 31977282 DOI: 10.1177/0022034520901519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic nonbacterial osteomyelitis is a rare bone disorder that can be found in the jaw. It is often associated with systemic conditions, including autoimmune deficiencies. However, little is known about how the genetic and immunologic background of patients influences the disease. Here, we focus on human leukocyte antigen (HLA), killer cell immunoglobulin-like receptors (KIRs), and their specific combinations that have been difficult to analyze owing to their high diversity. We employed a recently developed technology of simultaneous typing of HLA alleles and KIR haplotype and investigated alleles of the 35 HLA loci and KIR haplotypes composed of centromeric and telomeric motifs in 18 cases and 18 controls for discovery and 472 independent controls for validation. We identified an amino acid substitution of threonine at position 94 of HLA-C in combination with the telomeric KIR genotype of haplotype tA01/tB01 that had significantly higher frequency (>20%) in the case population than in both control populations. Multiple logistic regression analysis based on a dominant model with adjustments for age and sex revealed and validated its statistical significance and high predictive accuracy (C-statistic ≥0.85). Structure-based analysis revealed that the combination of the amino acid change in HLA-C and the telomeric genotype tA01/tB01 could be associated with lower stability of HLA-C. This is the first case-control study of a rare disease that employed the latest sequencing technology enabling simultaneous typing and investigated amino acid polymorphisms at HLA loci in combination with KIR haplotype.
Collapse
Affiliation(s)
- H Yahara
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - S Horita
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - S Yanamoto
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Y Kitagawa
- Department of Oral Diagnosis and Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - T Asaka
- Department of Oral Diagnosis and Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - T Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - K Morita
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Y Michi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - M Takechi
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H Shimasue
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Y Maruoka
- Department of Oral and Maxillofacial Surgery, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - E Kondo
- Department of Dentistry and Oral Surgery, School of Medicine, Shinshu University, Matsumoto, Japan
| | - J Kusukawa
- Dental and Oral Medical Center, School of Medicine, Kurume University, Fukuoka, Japan
| | - H Tsujiguchi
- Department of Environmental and Preventive Medicine, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - T Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - T Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - H Nakamura
- Department of Environmental and Preventive Medicine, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - A Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - K Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - K Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
16
|
Barani S, Taghipour M, Ghaderi A. Positive association of Bx genotype, KIR2L5, KIR2DS5 and full-length KIR2DS4 with the risk of meningioma. Immunobiology 2019; 225:151900. [PMID: 31899050 DOI: 10.1016/j.imbio.2019.151900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/30/2019] [Accepted: 12/16/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND NK cells as a part of innate immune system, are controlled by a set of activating and inhibitory KIR receptors (aKIR, iKIR) which are implicated in tumor microenvironment immunity through a variety of activating and inhibitory immune signals. KIRs are multi gene family receptors that differ in the number and type of genes among individuals. In the current research we determined the KIRs genes and genotypes impact on predisposition to meningioma development in Iranians. METHODS Sequence-specific primers-polymerase chain reaction (SSP-PCR) was performed for genotyping of 16 KIRs in 159 meningioma cases and 362 age and sex matched healthy controls (CNs) at Shiraz Institute for Cancer Research. RESULTS Comparison of the KIR genotypes frequencies between cases and controls disclosed a highly significant increase in Bx genotype, CxTx subset and Cen AB and Tel AB in meningioma cases and a decrease in AA genotype, C4Tx subset and Cen AA, Tel AA, Tel BB in healthy controls. Among all 16 KIR genes, the carriers of KIR2DL5 and KIR2DS5 constituted a much greater proportion in meningioma than control group. Comparison of carrier frequencies of KIR2DS4 variants between case and controls revealed a higher frequency of KIR2DS4 full length (KIR2DS4fl) in meningioma cases and a lower frequency of KIR2DS4 deleted variant (KIR2DS4del) in controls. Furthermore, the simultaneous presence of 2DS5, 2DS4fl, CenAB, TelAB and absence of 2DS4del, CenAA, TelAA, TelBB, magnify the risk of developing meningioma substantially (OR ≈ 23). Altogether, 41 distinct KIR genotypes were characterized in 521 subjects. Among them, some individuals were characterized by seven peculiar genotypes that the linkage disequilibrium between KIR2DS2-KIR2DL2 and KIR2DL5-KIR2DS3-KIR2DS5 has not been detected. The carriers of certain genotypes with presence of as KIR2DL5 and absence of KIR2DS3, KIR2DS5 constituted a much higher proportion in meningioma than control group which increase the risk of meningioma up to 72 times. CONCLUSION This case- control study suggests carriers of Bx genotype, KIR2DL5, KIR2DS5, 2DS4fl, ≥ 4 iKIR, CxTx subset as well as Cen AB and Tel AB are associated with an increased risk of developing meningioma whereas carrying KIR2DS4del, AA, C4TX genotypes and Cen AA, Tel AA, Tel BB reduce the genetic predisposition for meningioma.
Collapse
Affiliation(s)
- Shaghik Barani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mousa Taghipour
- Neurosurgery Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Arima N, Kanda J, Yabe T, Morishima Y, Tanaka J, Kako S, Sakaguchi H, Kato M, Ohashi K, Ozawa Y, Fukuda T, Ota S, Tachibana T, Onizuka M, Ichinohe T, Atsuta Y, Kanda Y. Increased Relapse Risk of Acute Lymphoid Leukemia in Homozygous HLA-C1 Patients after HLA-Matched Allogeneic Transplantation: A Japanese National Registry Study. Biol Blood Marrow Transplant 2019; 26:431-437. [PMID: 31704471 DOI: 10.1016/j.bbmt.2019.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022]
Abstract
Natural killer (NK) cells expressing killer cell immunoglobulin-like receptors (KIRs) can recognize specific HLA class I molecules as their ligands. By studying a large Japanese transplant registry, we compared transplant outcomes between patients heterozygous for HLA-CAsn80/CLys80 (HLA-C1/C2) and those homozygous for HLA-C1 (HLA-C1/C1) among patients who had undergone HLA-matched hematopoietic stem cell transplantation (HSCT). A high frequency of KIR2DL1 with strong HLA-C2 binding capacity and a low frequency of HLA-C2 and KIR haplotype B are characteristic of the Japanese population. In our previous report, HLA-C1/C1 patients with myeloid leukemia were less likely to relapse than HLA-C1/C2 patients. We newly assessed 2884 patients with acute lymphoblastic leukemia (ALL) who received HLA-matched allogeneic HSCT and analyzed their leukemia relapses by using adjusted competing-risk methods. HLA-C1/C1 patients with ALL experienced significantly higher relapse rates than HLA-C1/C2 patients (hazard ratio [HR] = 1.55, P = .003), contrary to our results in patients with myeloid leukemia. We allocated patients with ALL to several subgroups and found a higher frequency of relapse (HR >1.8) in the HLA-C1/C1 group than in the HLA-C1/C2 group among patients with Ph-negative ALL, those who had no cytomegalovirus reactivation, those who received transplants from donors who were aged 41 years or older, and those who experienced acute graft-versus-host disease, especially if it required systemic treatment. One interpretation of our results is that KIR2DL1-positive NK cells disrupt T cells, antigen-presenting cells, or both from working efficiently in transplant immunity in HLA-C1/C1 patients with ALL. Another is that KIR2DS1-positive NK cells directly attack HLA-C2-positive ALL blasts in HLA-C1/C2 patients. Whether HLA-C2 can cause recurrence to decrease or increase in patients depending on the disease (ALL or myeloid leukemia) will be a very important finding. We hope that our results will provide clues to the real mechanisms behind relapse after transplantation in patients with different HLA profiles.
Collapse
Affiliation(s)
- Nobuyoshi Arima
- Department of Hematology, Shinko Hospital, Kobe, Japan; Department of Hematology, Medical Research Institute Kitano Hospital, Osaka, Japan.
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Yabe
- Laboratory Department, Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | | | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shinichi Kako
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hirotoshi Sakaguchi
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross, Nagoya First Hospital, Nagoya, Japan
| | - Motohiro Kato
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuteru Ohashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Takahiro Fukuda
- Hematopoietic Stem Cell Transplantation Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | | | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Atsuta
- The Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan; Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
18
|
Umemura T, Joshita S, Saito H, Yoshizawa K, Norman GL, Tanaka E, Ota M. KIR/HLA genotypes confer susceptibility and progression in patients with autoimmune hepatitis. JHEP Rep 2019; 1:353-360. [PMID: 32039386 PMCID: PMC7005656 DOI: 10.1016/j.jhepr.2019.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are key participants in the innate immune response. Killer cell immunoglobulin-like receptors (KIRs) are involved in the activation and inhibition of NK cells through the recognition of human leukocyte antigen (HLA) class I molecules. We investigated the impact of KIR/HLA combinations on susceptibility and long-term clinical outcome in Japanese patients with type 1 autoimmune hepatitis (AIH). Methods A total of 154 cases of AIH were recruited at Shinshu University Hospital between 1974 and 2018. KIR genes and HLA class I and II alleles were genotyped in all patients along with 201 healthy individuals. Associations between KIR/HLA pairs and clinical outcomes (liver decompensation and liver-related death) were evaluated using the Cox proportional hazards model with stepwise method. Results After a median follow-up period of 11.1 years, 12% of patients experienced liver decompensation and 8% died from liver disease. KIR3DL1/HLA-B Bw4-80Ile (p = 0.0062) and the HLA-DRB1*04:05-DQB1*04:01 haplotype (p ≪0.001) were significantly associated with AIH. Conversely, significant protective associations were found for KIR3DL1/HLA-B Bw4-80Thr (p = 0.0092) and KIR2DL1/HLA-C2 (p = 0.0025). The KIR3DL1/HLA-B Bw4-positive phenotype was strongly associated with a favorable clinical outcome (liver decompensation: hazard ratio [HR] 0.37, p = 0.037; liver-related death: HR 0.26, p = 0.038). Cirrhosis was detected in 16 (10%) patients at diagnosis and was significantly related to poor survival (HR 17.87, p ≪0.001) and progression to liver decompensation (HR 9.00, p ≪0.001). Conclusions This study revealed the impact of specific KIR/HLA pairs in AIH susceptibility and progression in Japanese patients. KIR3DL1/HLA-B Bw4-negative patients with AIH and cirrhosis at diagnosis are at high risk of adverse outcomes and require careful surveillance. Lay summary Autoimmune hepatitis (AIH) is a disease of the liver that can present in acute or chronic hepatitis. We examined whether KIR/HLA pairs were associated with AIH susceptibility or disease progression. KIR3DL1/HLA-B Bw4 was a novel KIR/HLA pair related to a favorable clinical outcome, while cirrhosis at the initial diagnosis was a risk factor for poor prognosis. Thus, frequent and careful surveillance is advised for KIR3DL1/HLA-B Bw4-negative patients with AIH and cirrhosis. KIR3DL1/HLA-B Bw4-80Ile is significantly associated with autoimmune hepatitis. KIR2DL1/HLA-C2 and KIR3DL1/HLA-B Bw4-80Thr have protective associations with autoimmune hepatitis. KIR3DL1/HLA-B Bw4 is a novel KIR/HLA pair related to a favorable outcome in autoimmune hepatitis. Combined KIR3DL1/HLA-B Bw4 and cirrhosis at diagnosis relate to autoimmune hepatitis progression.
Collapse
Affiliation(s)
- Takeji Umemura
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiromi Saito
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kaname Yoshizawa
- Department of Gastroenterology, NHO Ueda Medical Center, Ueda, Japan
| | | | - Eiji Tanaka
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masao Ota
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
19
|
Bao X, Zhang T, Wu X, Yuan X, Li Y, Chen L, He J. Population‐specific criterion to distinguish killer cell immunoglobulin‐like receptor genotypes and haplotypes in a large Eastern Han population. HLA 2019; 95:15-22. [PMID: 31496074 DOI: 10.1111/tan.13686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaojing Bao
- Department of HLA Laboratory, Jiangsu Institute of Hematology First Affiliated Hospital of Soochow University Suzhou Jiangsu PR China
| | - Tengteng Zhang
- Department of HLA Laboratory, Jiangsu Institute of Hematology First Affiliated Hospital of Soochow University Suzhou Jiangsu PR China
| | - Xiaojin Wu
- Department of Hematology, Jiangsu Institute of Hematology First Affiliated Hospital of Soochow University Suzhou Jiangsu PR China
| | - Xiaoni Yuan
- Department of HLA Laboratory, Jiangsu Institute of Hematology First Affiliated Hospital of Soochow University Suzhou Jiangsu PR China
| | - Yang Li
- Department of HLA Laboratory, Jiangsu Institute of Hematology First Affiliated Hospital of Soochow University Suzhou Jiangsu PR China
| | - Luyao Chen
- Department of HLA Laboratory, Jiangsu Institute of Hematology First Affiliated Hospital of Soochow University Suzhou Jiangsu PR China
| | - Jun He
- Department of HLA Laboratory, Jiangsu Institute of Hematology Center for Clinical Laboratory, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University Suzhou Jiangsu PR China
| |
Collapse
|
20
|
Ashton JJ, Latham K, Beattie RM, Ennis S. Review article: the genetics of the human leucocyte antigen region in inflammatory bowel disease. Aliment Pharmacol Ther 2019; 50:885-900. [PMID: 31518029 DOI: 10.1111/apt.15485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/05/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The human leucocyte antigen (HLA) complex, located at chromosome 6p21.3 is a highly polymorphic region containing the classical class I and II HLA genes. The region is highly associated with inflammatory bowel disease (IBD), largely through genome-wide association studies (GWAS). AIMS To review the role of HLA in immune function, summarise data on risk/protective HLA genotypes for IBD, discuss the role of HLA in IBD pathogenesis, treatment and examine limitations that might be addressed by future research. METHODS An organised search strategy was used to collate articles describing HLA genes in IBD, including Crohn's disease and ulcerative colitis. RESULTS All classical HLA genes with variation (including HLA-A, B, C, DRB1, DQA1, DQB1, DPA1 and DPB1) harbour IBD-associated genotypes. The most implicated gene is HLA-DRB1, with HLA-DRB1*03:01 the most associated risk allele in both Crohn's disease and ulcerative colitis. Elucidating precise disease associations is challenging due to high linkage disequilibrium between HLA genotypes. The mechanisms by which risk alleles cause disease are multifactorial, with the best evidence indicating structural and electrostatic alteration impacting antigen binding and downstream signalling. Adverse medication events have been associated with HLA genotypes including with thiopurines (pancreatitis) and anti-TNF agents (antibody formation). CONCLUSIONS The HLA complex is associated with multiple risk/protective alleles for IBD. Future research utilising long-read technology, ascertainment of zygosity and integration in disease modelling will improve the functional understanding and clinical translation of genetic findings.
Collapse
Affiliation(s)
- James J Ashton
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - Katy Latham
- Anthony Nolan Research Institute, University College London, London, UK
| | - Robert Mark Beattie
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
21
|
Barani S, Hosseini SV, Ghaderi A. Activating and inhibitory killer cell immunoglobulin like receptors (KIR) genes are involved in an increased susceptibility to colorectal adenocarcinoma and protection against invasion and metastasis. Immunobiology 2019; 224:681-686. [PMID: 31248612 DOI: 10.1016/j.imbio.2019.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/21/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND A set of activating and inhibitory KIRs (aKIR, iKIR) are involved in NK cell mediated immunity. This study was carried out in order to investigate the KIRs pattern and its association with colorectal carcinoma (CRC) development and clinical outcomes. METHODS Sequence-specific primers-polymerase chain reaction (SSP-PCR) for typing of 16 KIR genes was utilized in 165 patients with colorectal adenocarcinoma with 165 age and gender matched healthy controls (CNs). RESULTS Possessing KIR2DS1, 2DS5, 3DS1, 2DS4fl, 2DL5, telomeric half KIR genes, ≥ 4 aKIR and CXT4 genotype were associated with an increased susceptibility to colorectal adenocarcinoma while KIR2DS4del and iKIR >aKIR confer resistance to CRC. On the other hand, clinical associations revealed the defensive role of telomeric KIR3DL1, 3DS1, 2DS1, 2DS4, genotypes with ≥ 4 aKIR and more inhibitory KIRs than activating ones (I > A) against metastasis and CXTX genotype in perineural invasion. CONCLUSION According to current results it appears that KIRs system play distinctive roles in development and metastasis of colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Shaghik Barani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Samarani S, Mack DR, Bernstein CN, Iannello A, Debbeche O, Jantchou P, Faure C, Deslandres C, Amre DK, Ahmad A. Activating Killer-cell Immunoglobulin-like Receptor genes confer risk for Crohn's disease in children and adults of the Western European descent: Findings based on case-control studies. PLoS One 2019; 14:e0217767. [PMID: 31194766 PMCID: PMC6563976 DOI: 10.1371/journal.pone.0217767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Background Killer-cell Immunoglobulin-like Receptor (KIR) genes encode receptors, which are mainly expressed on, and control functional activities of, Natural Killer (NK) cells. There exist six distinct activating KIR genes in humans, who differ from one another with respect to the repertoire of these genes. Because activated NK cells can potentially cause tissue destruction, we hypothesized that variation in the inherited activating KIR genes in humans is associated with their innate susceptibility/resistance to developing Crohn disease (CD). Methods We performed case control studies on three independent Canadian CD patient cohorts (all of the Western European descent): two comprising children (Montreal having 193 cases and 245 controls, and Ottawa having 93 cases and 120 controls) and the third one comprising predominantly adults (Winnipeg having 164 cases and 200 controls). We genotyped cases and controls for activating KIR genes by PCR with gene-specific primers and investigated associations between the genes and cases using unconditional logistic regression. Results We observed strong associations between all the six KIR genes and CD in Ottawa children, with the strongest risk observed for the KIR2DS1 (p = 1.7 x10-10). Associations between all but the KIR2DS2 were replicated in the Montreal cohort with the strongest association evident for the KIR2DS5 (8.0 x 10−10). Similarly associations between five genes were observed in the adult Winnipeg cohort. In this cohort, strongest associations were evident with the KIR2DS5 (8.75 x 10−8). An overall analysis for all cohorts showed strong associations with four of the genes, with the strongest association evident for the KIR2DS5 (p = 1.35 x 10−17). In the combined analysis for four KIR genes, individuals carrying one or more of the KIR genes were at significantly higher risks for acquiring CD (p = 3.5 x 10−34). Conclusions Activating KIR genes are associated with risk for developing CD in both children and adults.
Collapse
Affiliation(s)
- Suzanne Samarani
- Laboratory of Innate Immunity, CHU Sainte-Justine Research Center/Department of Microbiology, Infectious Diseases & Immunology, University of Montreal, Montreal, Quebec, Canada
| | - David R. Mack
- Department of Gastroenterology, Hepatology & Nutrition, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Charles N. Bernstein
- IBD Clinical & Research Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alexandre Iannello
- Laboratory of Innate Immunity, CHU Sainte-Justine Research Center/Department of Microbiology, Infectious Diseases & Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Olfa Debbeche
- Laboratory of Innate Immunity, CHU Sainte-Justine Research Center/Department of Microbiology, Infectious Diseases & Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Prevost Jantchou
- CHU Sainte-Justine Research Center/Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Christophe Faure
- CHU Sainte-Justine Research Center/Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Colette Deslandres
- CHU Sainte-Justine Research Center/Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Devendra K. Amre
- CHU Sainte-Justine Research Center/Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
- * E-mail: (AA); (DKA)
| | - Ali Ahmad
- Laboratory of Innate Immunity, CHU Sainte-Justine Research Center/Department of Microbiology, Infectious Diseases & Immunology, University of Montreal, Montreal, Quebec, Canada
- * E-mail: (AA); (DKA)
| |
Collapse
|
23
|
Severance EG, Yolken RH. Deciphering microbiome and neuroactive immune gene interactions in schizophrenia. Neurobiol Dis 2018; 135:104331. [PMID: 30471416 DOI: 10.1016/j.nbd.2018.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
The body's microbiome represents an actively regulated network of novel mechanisms that potentially underlie the etiology and pathophysiology of a wide range of diseases. For complex brain disorders such as schizophrenia, understanding the cellular and molecular pathways that intersect the bidirectional gut-brain axis is anticipated to lead to new methods of treatment. The means by which the microbiome might differ across neuropsychiatric and neurological disorders are not known. Brain disorders as diverse as schizophrenia, major depression, Parkinson's disease and multiple sclerosis appear to share a common pathology of an imbalanced community of commensal microbiota, often measured in terms of a leaky gut phenotype accompanied by low level systemic inflammation. While environmental factors associated with these disease states might contribute to intestinal pathologies, products from a perturbed microbiome may also directly promote specific signs, symptoms and etiologies of individual disorders. We hypothesize that in schizophrenia, it is the putatively unique susceptibility related to genes that modulate the immune system and the gut-brain pleiotropy of these genes which leads to a particularly neuropathological response when challenged by a microbiome in dysbiosis. Consequences from exposure to this dysbiosis may occur during pre- or post-natal time periods and thus may interfere with normal neurodevelopment in those who are genetically predisposed. Here, we review the evidence from the literature which supports the idea that the intersection of the microbiome and immune gene susceptibility in schizophrenia is relevant etiologically and for disease progression. Figuring prominently at both ends of the gut-brain axis and at points in between are proteins encoded by genes found in the major histocompatibility complex (MHC), including select MHC as well as non-MHC complement pathway genes.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|