1
|
Sato K, Sato T, Hirotani R, Bam M. Effect of combined blue light and 5-ALA on mitochondrial functions and cellular responses in B16F1 melanoma and HaCaT cells. Cytotechnology 2024; 76:795-816. [PMID: 39435424 PMCID: PMC11490642 DOI: 10.1007/s10616-024-00654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/21/2024] [Indexed: 10/23/2024] Open
Abstract
In this study, we investigated the effects of blue light and 5-aminolevulinic acid (5-ALA) co-treatment on B16F1 melanoma cells and HaCaT keratinocytes. We focused on cellular responses, including mitochondrial function, DNA integrity, and gene expression. Co-treatment significantly damaged the mitochondria, altered their morphology, induced mitochondrial membrane depolarization, increased intracellular reactive oxygen species, and led to cardiolipin peroxidation in both cell types. This approach promoted DNA fragmentation and apoptosis. However, blue light and co-treatment with 5-ALA did not enhance the formation of cyclobutane pyrimidine dimers, 6-4 photoproducts, or Dewar photoproducts. Moreover, it triggered complex, time-dependent changes in gene expression, particularly the upregulation of MMP-1 and p21 in HaCaT cells. Our findings revealed that blue light and 5-ALA co-treatment caused substantial cellular stress and damage, suggesting their therapeutic potential against melanoma and highlighting the need for caution and precision in their application to avoid harming normal cells. This underscores the necessity for further research to refine therapeutic approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00654-x.
Collapse
Affiliation(s)
- Kazuomi Sato
- Graduate School of Agriculture, Tamagawa University, 6-1-1 Machida, Tokyo, 1940-8610 Japan
- Biosystems and Biofunctions Research Center, Tamagawa University Research Institute, 6-1-1 Machida, Tokyo, 194-8610 Japan
| | - Taiki Sato
- Graduate School of Agriculture, Tamagawa University, 6-1-1 Machida, Tokyo, 1940-8610 Japan
| | - Riku Hirotani
- Graduate School of Agriculture, Tamagawa University, 6-1-1 Machida, Tokyo, 1940-8610 Japan
| | - Munetsugu Bam
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3998 Yamanashi Japan
| |
Collapse
|
2
|
Wei J, Zhang M, Wang X, Yang K, Xiao Q, Zhu X, Pan X. Role of cardiolipin in regulating and treating atherosclerotic cardiovascular diseases. Eur J Pharmacol 2024; 979:176853. [PMID: 39067567 DOI: 10.1016/j.ejphar.2024.176853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cardiovascular diseases, mainly caused by atherosclerosis, are the leading causes of morbidity and mortality worldwide. Despite the discrepancies in clinical manifestations between different abnormalities, atherosclerosis shares similar pathophysiological processes, such as mitochondrial dysfunction. Cardiolipin (CL) is a conserved mitochondria-specific lipid that contributes to the cristae structure of the inner mitochondrial membrane (IMM). Alterations in the CL, including oxidative modification, reduced quantity, and abnormal localization, contribute to the onset and progression of atherosclerosis. In this review, we summarize the knowledge that CL is involved in the pathogenesis of atherosclerosis. On the one hand, CL and its oxidative modification promote the progression of atherosclerosis via several mechanisms, including oxidative stress, apoptosis, and inflammation in response to stress. On the other hand, CL externalizes to the outer mitochondrial membrane (OMM) and acts as the pivotal "eat-me" signal in mitophagy, removing dysfunctional mitochondria and safeguarding against the progression of atherosclerosis. Given the imbalance between proatherogenic and antiatherogenic effects, we provide our understanding of the roles of the CL and its oxidative modification in atherosclerotic cardiovascular diseases, in addition to potential therapeutic strategies aimed at restoring the CL. Briefly, CL is far more than a structural IMM lipid; broader significances of the evolutionarily conserved lipid need to be explored.
Collapse
Affiliation(s)
- Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Gao Y, Huang D, Huang S, Li H, Xia B. Rational design of ROS generation nanosystems to regulate innate immunity of macrophages, dendrtical and natural killing cells for immunotherapy. Int Immunopharmacol 2024; 139:112695. [PMID: 39024751 DOI: 10.1016/j.intimp.2024.112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Innate immunity serves as the first line of host defense in the body against pathogenic infections or malignant diseases. Reactive oxygen species (ROS), as vital signaling mediators, can efficiently elicit innate immune responses to oxidative-related stress or damage. In the era of nanomedicine, various immunostimulatory nanosystems have been extensively designed and synthesized to elicit immune responses for the immunotherapy of cancer or infectious diseases. In this review, we emphasize that ROS derived from nanosystems regulates innate immune cells to potentiate immunotherapeutic efficacy, such as primarily dendritic cells, macrophages, or natural killer cells. Meanwhile, we also summarize the pathway of ROS generation triggered by exogenous nanosystems in innate immune cells of DCs, macrophages, and NK cells.
Collapse
Affiliation(s)
- Yan Gao
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China
| | - Di Huang
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuodan Huang
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China
| | - Huiying Li
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China.
| | - Bing Xia
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China; Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China.
| |
Collapse
|
4
|
Zhang Y, Yang Y, Feng Y, Gao X, Pei L, Li X, Gao B, Liu L, Wang C, Gao S. Sonodynamic therapy for the treatment of atherosclerosis. J Pharm Anal 2024; 14:100909. [PMID: 38799235 PMCID: PMC11127226 DOI: 10.1016/j.jpha.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 05/29/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium-sized arteries that leads to ischemic heart disease, stroke, and peripheral vascular disease. Despite the current treatments, mortality and disability still remain high. Sonodynamic therapy (SDT), a non-invasive and localized methodology, has been developed as a promising new treatment for inhibiting atherosclerotic progression and stabilizing plaques. Promising progress has been made through cell and animal assays, as well as clinical trials. For example, the effect of SDT on apoptosis and autophagy of cells in AS, especially macrophages, and the concept of non-lethal SDT has also been proposed. In this review, we summarize the ultrasonic parameters and known sonosensitizers utilized in SDT for AS; we elaborate on SDT's therapeutic effects and mechanisms in terms of macrophages, T lymphocytes, neovascularization, smooth muscle cells, lipid, extracellular matrix and efferocytosis within plaques; additionally, we discuss the safety of SDT. A comprehensive summary of the confirmed effects of SDT on AS is conducted to establish a framework for future researchers.
Collapse
Affiliation(s)
- Yan Zhang
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ying Yang
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yudi Feng
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xueyan Gao
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liping Pei
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaopan Li
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bingxin Gao
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Liu
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chengzeng Wang
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuochen Gao
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
5
|
Wu G, Yu G, Zheng M, Peng W, Li L. Recent Advances for Dynamic-Based Therapy of Atherosclerosis. Int J Nanomedicine 2023; 18:3851-3878. [PMID: 37469455 PMCID: PMC10352141 DOI: 10.2147/ijn.s402678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/06/2023] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, which may lead to high morbidity and mortality. Currently, the clinical treatment strategy for AS is administering drugs and performing surgery. However, advanced therapy strategies are urgently required because of the deficient therapeutic effects of current managements. Increased number of energy conversion-based organic or inorganic materials has been used in cancer and other major disease treatments, bringing hope to patients with the development of nanomedicine and materials. These treatment strategies employ specific nanomaterials with specific own physiochemical properties (external stimuli: light or ultrasound) to promote foam cell apoptosis and cholesterol efflux. Based on the pathological characteristics of vulnerable plaques, energy conversion-based nano-therapy has attracted increasing attention in the field of anti-atherosclerosis. Therefore, this review focuses on recent advances in energy conversion-based treatments. In addition to summarizing the therapeutic effects of various techniques, the regulated pathological processes are highlighted. Finally, the challenges and prospects for further development of dynamic treatment for AS are discussed.
Collapse
Affiliation(s)
- Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Guanye Yu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Meiling Zheng
- Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 101121, People’s Republic of China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Lei Li
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
6
|
Betlazar C, Middleton RJ, Banati R, Liu GJ. The Translocator Protein (TSPO) in Mitochondrial Bioenergetics and Immune Processes. Cells 2020; 9:cells9020512. [PMID: 32102369 PMCID: PMC7072813 DOI: 10.3390/cells9020512] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
The translocator protein (TSPO) is an outer mitochondrial membrane protein that is widely used as a biomarker of neuroinflammation, being markedly upregulated in activated microglia in a range of brain pathologies. Despite its extensive use as a target in molecular imaging studies, the exact cellular functions of this protein remain in question. The long-held view that TSPO plays a fundamental role in the translocation of cholesterol through the mitochondrial membranes, and thus, steroidogenesis, has been disputed by several groups with the advent of TSPO knockout mouse models. Instead, much evidence is emerging that TSPO plays a fundamental role in cellular bioenergetics and associated mitochondrial functions, also part of a greater role in the innate immune processes of microglia. In this review, we examine the more direct experimental literature surrounding the immunomodulatory effects of TSPO. We also review studies which highlight a more central role for TSPO in mitochondrial processes, from energy metabolism, to the propagation of inflammatory responses through reactive oxygen species (ROS) modulation. In this way, we highlight a paradigm shift in approaches to TSPO functioning.
Collapse
Affiliation(s)
- Calina Betlazar
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| | - Ryan J. Middleton
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
| | - Richard Banati
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Guo-Jun Liu
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| |
Collapse
|
7
|
Chen L, Yao X, Yao H, Ji Q, Ding G, Liu X. Exosomal miR-103-3p from LPS-activated THP-1 macrophage contributes to the activation of hepatic stellate cells. FASEB J 2020; 34:5178-5192. [PMID: 32061112 DOI: 10.1096/fj.201902307rrr] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
Hepatic fibrosis occurs during chronic hepatic injury and is involved in hepatic stellate cells (HSCs) activated by several types of immune cells. Among the immune cells, hepatic macrophages and their crosstalk with HSCs play a vital role in all stages of hepatic fibrosis. Exosomes, which are 30-150 nm lipid bilayer vehicles, can transfer specific lipid, nucleic acids, proteins, and other bioactive molecules. Exosomes can act as good communication between macrophages and HSCs. Herein, we investigated the role of exosomes between THP-1 macrophage and HSCs in the progression of liver fibrosis. Exosomes originating from lipopolysaccharide (LPS)-treated THP-1 macrophages promoted HSCs proliferation and induced the increased expression of fibrotic genes. LPS could alter the miRNA profile in exosomes secreted from THP-1 macrophages. The changed miR-103-3p in exosomes could promote HSCs proliferation and activation by targeting Krüppel-like factor 4 (KLF4) and it plays important roles in the crosstalk between THP-1 macrophages and HSCs during the progression of liver fibrosis. Moreover, miR-103-3p in serum exosomes from liver fibrosis patients could be a biomarker for liver fibrosis. Therefore, exosomes may have important roles in the crosstalk between macrophage and HSCs in the progression of chronic liver diseases.
Collapse
Affiliation(s)
- Lisha Chen
- Central Laboratory of Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xingwang Yao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongbing Yao
- The Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qin Ji
- Department of Hepatobiliary and Pancreatic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangfeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Nagler R, Weizman A, Gavish A. Cigarette smoke, saliva, the translocator protein 18 kDa (TSPO), and oral cancer. Oral Dis 2019; 25:1843-1849. [DOI: 10.1111/odi.13178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Rafael Nagler
- Department of Neuroscience, Faculty of Medicine Rappaport Family Institute for Research in the Medical Sciences, Technion – Israel Institute of Technology Haifa Israel
| | - Abraham Weizman
- Research Unit, Geha Mental Health Center and Laboratory of Biological Psychiatry Felsenstein Medical Research Center Petah Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Avishai Gavish
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| |
Collapse
|
9
|
Da Pozzo E, Tremolanti C, Costa B, Giacomelli C, Milenkovic VM, Bader S, Wetzel CH, Rupprecht R, Taliani S, Da Settimo F, Martini C. Microglial Pro-Inflammatory and Anti-Inflammatory Phenotypes Are Modulated by Translocator Protein Activation. Int J Mol Sci 2019; 20:ijms20184467. [PMID: 31510070 PMCID: PMC6770267 DOI: 10.3390/ijms20184467] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
A key role of the mitochondrial Translocator Protein 18 KDa (TSPO) in neuroinflammation has been recently proposed. However, little is known about TSPO-activated pathways underlying the modulation of reactive microglia. In the present work, the TSPO activation was explored in an in vitro human primary microglia model (immortalized C20 cells) under inflammatory stimulus. Two different approaches were used with the aim to (i) pharmacologically amplify or (ii) silence, by the lentiviral short hairpin RNA, the TSPO physiological function. In the TSPO pharmacological stimulation model, the synthetic steroidogenic selective ligand XBD-173 attenuated the activation of microglia. Indeed, it reduces and increases the release of pro-inflammatory and anti-inflammatory cytokines, respectively. Such ligand-induced effects were abolished when C20 cells were treated with the steroidogenesis inhibitor aminoglutethimide. This suggests a role for neurosteroids in modulating the interleukin production. The highly steroidogenic ligand XBD-173 attenuated the neuroinflammatory response more effectively than the poorly steroidogenic ones, which suggests that the observed modulation on the cytokine release may be influenced by the levels of produced neurosteroids. In the TSPO silencing model, the reduction of TSPO caused a more inflamed phenotype with respect to scrambled cells. Similarly, during the inflammatory response, the TSPO silencing increased and reduced the release of pro-inflammatory and anti-inflammatory cytokines, respectively. In conclusion, the obtained results are in favor of a homeostatic role for TSPO in the context of dynamic balance between anti-inflammatory and pro-inflammatory mediators in the human microglia-mediated inflammatory response. Interestingly, our preliminary results propose that the TSPO expression could be stimulated by NF-κB during activation of the inflammatory response.
Collapse
Affiliation(s)
- Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
- Correspondence:
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Vladimir M. Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| |
Collapse
|
10
|
TSPO Ligands Promote Cholesterol Efflux and Suppress Oxidative Stress and Inflammation in Choroidal Endothelial Cells. Int J Mol Sci 2018; 19:ijms19123740. [PMID: 30477223 PMCID: PMC6321017 DOI: 10.3390/ijms19123740] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Choroidal endothelial cells supply oxygen and nutrients to retinal pigment epithelial (RPE) cells and photoreceptors, recycle metabolites, and dispose of metabolic waste through the choroidal blood circulation. Death of the endothelial cells of the choroid may cause abnormal deposits including unesterified and esterified cholesterol beneath RPE cells and within Bruch’s membrane that contribute to the progression of age-related macular degeneration (AMD), the most prevalent cause of blindness in older people. Translocator protein (TSPO) is a cholesterol-binding protein that is involved in mitochondrial cholesterol transport and other cellular functions. We have investigated the role of TSPO in choroidal endothelial cells. Immunocytochemistry showed that TSPO was localized to the mitochondria of choroidal endothelial cells. Choroidal endothelial cells exposed to TSPO ligands (Etifoxine or XBD-173) had significantly increased cholesterol efflux, higher expression of cholesterol homeostasis genes (LXRα, CYP27A1, CYP46A1, ABCA1 and ABCG1), and reduced biosynthesis of cholesterol and phospholipids from [14C]acetate, when compared to untreated controls. Treatment with TSPO ligands also resulted in reduced production of reactive oxygen species (ROS), increased antioxidant capacity, and reduced release of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and VEGF) induced by oxidized LDL. These data suggest TSPO ligands may offer promise for the treatment of AMD.
Collapse
|