1
|
Hammond-Haley M, Chiew K, Ahmed-Jushuf F, Rajkumar CA, Foley MJ, Simader FA, Chotai S, Shun-Shin MJ, Al-Lamee R. A systematic review of enrolment criteria and treatment efficacy for microvascular angina. EUROINTERVENTION 2025; 21:46-57. [PMID: 39773830 PMCID: PMC11702509 DOI: 10.4244/eij-d-24-00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/23/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Microvascular angina (MVA) is an important contributor to morbidity and mortality in patients with non-obstructive coronary artery disease. Despite improvements in its recognition and diagnosis, uncertainty remains around the most effective treatment strategy, and more data are needed. AIMS We aimed to evaluate the quality of patient selection in treatment studies of MVA and provide a contemporary overview of the evidence base for the treatment of MVA. METHODS PubMed, the Cochrane Library and Google Scholar were searched from inception to 4 November 2023 for all treatment studies in patients with angina and non-obstructive coronary artery disease or coronary microvascular dysfunction. Populations with acute coronary syndrome were excluded (PROSPERO: CRD42023383075). RESULTS Forty-three studies were included. By contemporary definitions of MVA according to the Coronary Vasomotor Disorders International Study Group criteria, 11 (26%) studies enrolled patients with "definitive" MVA, 24 (56%) with "suspected" MVA, and 8 (19%) did not enrol patients who met the diagnostic criteria. A total of 24 unique treatment interventions were investigated. Most studies were observational and single armed (12/24, 50%) or had a single randomised study (9/24, 38%). Ranolazine is the most well-studied intervention drug. Double-blind randomised controlled trials of ranolazine (n=6) have shown inconsistent improvements in Seattle Angina Questionnaire scores and coronary flow reserve with short-term follow-up. CONCLUSIONS Treatment studies of MVA enrolled a heterogeneous population, with only a quarter meeting contemporary diagnostic criteria for definitive MVA. There is a paucity of high quality, randomised data to support any specific treatment intervention. Larger studies with robust selection criteria, blinded patient-reported outcomes, and long-term follow-up are needed.
Collapse
Affiliation(s)
| | - Kayla Chiew
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Fiyyaz Ahmed-Jushuf
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Michael J Foley
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Florentina A Simader
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Shayna Chotai
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Matthew J Shun-Shin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rasha Al-Lamee
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Dimitriadis K, Theofilis P, Koutsopoulos G, Pyrpyris N, Beneki E, Tatakis F, Tsioufis P, Chrysohoou C, Fragkoulis C, Tsioufis K. The role of coronary microcirculation in heart failure with preserved ejection fraction: An unceasing odyssey. Heart Fail Rev 2025; 30:75-88. [PMID: 39358622 DOI: 10.1007/s10741-024-10445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents an entity with complex pathophysiologic pathways, among which coronary microvascular dysfunction (CMD) is believed to be an important orchestrator. Research in the field of CMD has highlighted impaired vasoreactivity, capillary rarefaction, and inflammation as potential mediators of its development. CMD can be diagnosed via several noninvasive methods including transthoracic echocardiography, cardiac magnetic resonance, and positron emission tomography. Moreover, invasive methods such as coronary flow reserve and index of microcirculatory resistance are commonly employed in the assessment of CMD. As far as the association between CMD and HFpEF is concerned, numerous studies have highlighted the coexistence of CMD in the majority of HFpEF patients. Additionally, patients affected by both conditions may be facing an adverse prognosis. Finally, there is limited evidence suggesting a beneficial effect of renin-angiotensin-aldosterone system blockers, ranolazine, and sodium-glucose cotransporter-2 inhibitors in CMD, with further evidence being awaited regarding the impact of other pharmacotherapies such as anti-inflammatory agents.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece.
| | - Panagiotis Theofilis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Georgios Koutsopoulos
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Panagiotis Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Christina Chrysohoou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| |
Collapse
|
3
|
Abouzid MR, Eldahtoury S, Elshafei SM, Devi S, Saleh A, Esteghamati S, Kamel I. Efficacy of Angiotensin-Converting Enzyme Inhibitors in Coronary Microvascular Dysfunction: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Cureus 2024; 16:e52684. [PMID: 38260109 PMCID: PMC10801115 DOI: 10.7759/cureus.52684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Coronary microvascular dysfunction (CMD) is becoming increasingly recognized as an important contributor to the development of ischemic heart diseases. Without obstructive coronary artery disease, the physiological function of the coronary microcirculation can be altered by structural, functional, and molecular factors, leading to myocardial ischemia. CMD can significantly impact the quality of life and prognosis and imposes a huge financial burden on healthcare systems and people. This meta-analysis aims to investigate the efficacy of angiotensin-converting enzyme inhibitors (ACEIs) for treating CMD. A systematic literature review identified randomized controlled trials (RCTs) comparing ACEIs with placebo in CMD patients. Review Manager, 5.3 for Windows, was utilized. Using the Mantel-Haenszel (M-H) method, improvement in coronary flow reserve (CFR) and systolic blood pressure events was pooled as mean difference (MD) in a meta-analysis model with a fixed effect model, whereas the number of chest pain episodes was pooled as MD with a random effect model. Five randomized controlled trials involving 209 patients were included in the analysis. The analysis demonstrated a statistically significant improvement in CFR in the ACEIs group compared to the placebo group (MD -0.3, 95% CI -0.61 to 0.01, P = 0.05). However, there was no significant difference in the number of chest pain episodes between the ACEIs and placebo groups (MD 1.79, 95% CI -3.99 to 7.58, P = 0.54). Similarly, no significant difference in blood pressure change was observed between the two groups (MD 4.02, 95% CI -3.25 to 11.28, P = 0.28). In conclusion, the appropriate treatment for CMD is a source of contention because adequate data is lacking. Our findings suggest that ACEIs may have a positive effect on improving CFR in patients with microvascular angina. However, ACEIs did not demonstrate a significant impact on the number of chest pain episodes or systolic blood pressure in this patient population. Further research, including RCTs with larger sample sizes and longer follow-up durations, is warranted to provide more conclusive evidence on the role of ACEIs in CMD management.
Collapse
Affiliation(s)
- Mohamed R Abouzid
- Internal Medicine, Baptist Hospitals of Southeast Texas, Beaumont, USA
| | - Samar Eldahtoury
- Internal Medicine, Baptist Hospitals of Southeast Texas, Beaumont, USA
| | | | - Sunita Devi
- Internal Medicine, Baptist Hospitals of Southeast Texas, Beaumont, USA
| | - Amr Saleh
- Internal Medicine, Mansoura University, Mansoura, EGY
| | | | | |
Collapse
|
4
|
Zdravkovic M, Popadic V, Klasnja S, Klasnja A, Ivankovic T, Lasica R, Lovic D, Gostiljac D, Vasiljevic Z. Coronary Microvascular Dysfunction and Hypertension: A Bond More Important than We Think. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2149. [PMID: 38138252 PMCID: PMC10744540 DOI: 10.3390/medicina59122149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Coronary microvascular dysfunction (CMD) is a clinical entity linked with various risk factors that significantly affect cardiac morbidity and mortality. Hypertension, one of the most important, causes both functional and structural alterations in the microvasculature, promoting the occurrence and progression of microvascular angina. Endothelial dysfunction and capillary rarefaction play the most significant role in the development of CMD among patients with hypertension. CMD is also related to several hypertension-induced morphological and functional changes in the myocardium in the subclinical and early clinical stages, including left ventricular hypertrophy, interstitial myocardial fibrosis, and diastolic dysfunction. This indicates the fact that CMD, especially if associated with hypertension, is a subclinical marker of end-organ damage and heart failure, particularly that with preserved ejection fraction. This is why it is important to search for microvascular angina in every patient with hypertension and chest pain not associated with obstructive coronary artery disease. Several highly sensitive and specific non-invasive and invasive diagnostic modalities have been developed to evaluate the presence and severity of CMD and also to investigate and guide the treatment of additional complications that can affect further prognosis. This comprehensive review provides insight into the main pathophysiological mechanisms of CMD in hypertensive patients, offering an integrated diagnostic approach as well as an overview of currently available therapeutical modalities.
Collapse
Affiliation(s)
- Marija Zdravkovic
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
| | - Viseslav Popadic
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Slobodan Klasnja
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Andrea Klasnja
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Tatjana Ivankovic
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Ratko Lasica
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
- Clinic of Cardiology, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Dragan Lovic
- Clinic for Internal Diseases Inter Medica, 18000 Nis, Serbia;
- School of Medicine, Singidunum University, 18000 Nis, Serbia
| | - Drasko Gostiljac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Zorana Vasiljevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
| |
Collapse
|
5
|
Smilowitz NR, Prasad M, Widmer RJ, Toleva O, Quesada O, Sutton NR, Lerman A, Reynolds HR, Kesarwani M, Savage MP, Sweeny JM, Janaszek KB, Barseghian El-Farra A, Holoshitz N, Park K, Albadri A, Blair JA, Jeremias A, Kearney KE, Kobayashi Y, Miner SES, Samuels BA, Shah SM, Taqueti VR, Wei J, Fearon WF, Moses JW, Henry TD, Tremmel JA. Comprehensive Management of ANOCA, Part 2-Program Development, Treatment, and Research Initiatives: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:1264-1279. [PMID: 37704316 DOI: 10.1016/j.jacc.2023.06.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 09/15/2023]
Abstract
Centers specializing in coronary function testing are critical to ensure a systematic approach to the diagnosis and treatment of angina with nonobstructive coronary arteries (ANOCA). Management leveraging lifestyle, pharmacology, and device-based therapeutic options for ANOCA can improve angina burden and quality of life in affected patients. Multidisciplinary care teams that can tailor and titrate therapies based on individual patient needs are critical to the success of comprehensive programs. As coronary function testing for ANOCA is more widely adopted, collaborative research initiatives will be fundamental to improve ANOCA care. These efforts will require standardized symptom assessments and data collection, which will propel future large-scale clinical trials.
Collapse
Affiliation(s)
- Nathaniel R Smilowitz
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA; Cardiology Section, Department of Medicine, VA New York Harbor Healthcare System, New York, New York, USA
| | - Megha Prasad
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York, USA
| | | | - Olga Toleva
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Odayme Quesada
- Women's Heart Center, The Christ Hospital Heart and Vascular Institute, Cincinnati, Ohio, USA; The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, Ohio, USA
| | - Nadia R Sutton
- Department of Internal Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Harmony R Reynolds
- Sarah Ross Soter Center for Women's Cardiovascular Research, Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Manoj Kesarwani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Michael P Savage
- Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joseph M Sweeny
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Noa Holoshitz
- Ascension Columbia St Mary's, Milwaukee, Wisconsin, USA
| | - Ki Park
- Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida, USA
| | - Ahmed Albadri
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - John A Blair
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| | - Allen Jeremias
- St Francis Hospital & Heart Center, Roslyn, New York, USA
| | - Kathleen E Kearney
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Yuhei Kobayashi
- New York Presbyterian Brooklyn Methodist Hospital/Weill Cornell Medical College, New York, New York, USA
| | - Steven E S Miner
- Southlake Regional Medical Centre, Newmarket, Ontario, Canada, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bruce A Samuels
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Samit M Shah
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut USA
| | - Viviany R Taqueti
- Cardiovascular Imaging Program, Departments of Radiology and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janet Wei
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - William F Fearon
- Division of Cardiovascular Medicine and Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Jeffery W Moses
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York, USA; St Francis Hospital & Heart Center, Roslyn, New York, USA
| | - Timothy D Henry
- Carl and Edyth Lindner Center for Research and Education, The Christ Hospital Heart and Vascular Institute, Cincinnati, Ohio, USA
| | - Jennifer A Tremmel
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
6
|
Matsiukevich D, Kovacs A, Li T, Kokkonen-Simon K, Matkovich SJ, Oladipupo SS, Ornitz DM. Characterization of a robust mouse model of heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H203-H231. [PMID: 37204871 DOI: 10.1152/ajpheart.00038.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality particularly in older adults and patients with multiple metabolic comorbidities. Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome with multisystem organ dysfunction in which patients develop symptoms of HF as a result of high left ventricular (LV) diastolic pressure in the context of normal or near normal LV ejection fraction (LVEF; ≥50%). Challenges to create and reproduce a robust rodent phenotype that recapitulates the multiple comorbidities that exist in this syndrome explain the presence of various animal models that fail to satisfy all the criteria of HFpEF. Using a continuous infusion of angiotensin II and phenylephrine (ANG II/PE), we demonstrate a strong HFpEF phenotype satisfying major clinically relevant manifestations and criteria of this pathology, including exercise intolerance, pulmonary edema, concentric myocardial hypertrophy, diastolic dysfunction, histological signs of microvascular impairment, and fibrosis. Conventional echocardiographic analysis of diastolic dysfunction identified early stages of HFpEF development and speckle tracking echocardiography analysis including the left atrium (LA) identified strain abnormalities indicative of contraction-relaxation cycle impairment. Diastolic dysfunction was validated by retrograde cardiac catheterization and analysis of LV end-diastolic pressure (LVEDP). Among mice that developed HFpEF, two major subgroups were identified with predominantly perivascular fibrosis and interstitial myocardial fibrosis. In addition to major phenotypic criteria of HFpEF that were evident at early stages of this model (3 and 10 days), accompanying RNAseq data demonstrate activation of pathways associated with myocardial metabolic changes, inflammation, activation of extracellular matrix (ECM) deposition, microvascular rarefaction, and pressure- and volume-related myocardial stress.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is an emerging epidemic affecting up to half of patients with heart failure. Here we used a chronic angiotensin II/phenylephrine (ANG II/PE) infusion model and instituted an updated algorithm for HFpEF assessment. Given the simplicity in generating this model, it may become a useful tool for investigating pathogenic mechanisms, identification of diagnostic markers, and for drug discovery aimed at both prevention and treatment of HFpEF.
Collapse
Affiliation(s)
- Dzmitry Matsiukevich
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Scot J Matkovich
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - Sunday S Oladipupo
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - David M Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
7
|
Karev E, Verbilo SL, Malev EG, Prokudina MN. The impact of medical therapy on left ventricular strain: Current state and future perspectives. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:887-898. [PMID: 35617148 DOI: 10.1002/jcu.23244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The speckle tracking strain is becoming a frequently used marker of subclinical left ventricular systolic dysfunction. Despite the wide range of data concerning left ventricular strain variability in the general population and its changes in various pathologic conditions, the information about the impact of medical therapy on left ventricle strain is limited. This article provides an analysis of published studies of left ventricle strain changes in response to different agents and combinations of medical therapies used for hypertension and congestive heart failure.
Collapse
Affiliation(s)
- Egor Karev
- Federal State Budgetary Institution "V.A. Almazov National Medical Research Center" of the Ministry of Health of the Russian Federation, Saint Petersburg, Russia
| | - Sergey L Verbilo
- Federal State Budgetary Institution "V.A. Almazov National Medical Research Center" of the Ministry of Health of the Russian Federation, Saint Petersburg, Russia
| | - Eduard G Malev
- Research Laboratory for Connective Tissue Dysplasia, Heart and Vessels Institute, Federal State Budgetary Institution "V.A. Almazov National Medical Research Center" of the Ministry of Health of the Russian Federation, Saint Petersburg, Russia
| | - Maria N Prokudina
- Limited Liability Company "International Heart Center", 6 Tverskaya street, Saint-Petersburg, 191015, Russia
| |
Collapse
|
8
|
Common Shared Pathogenic Aspects of Small Vessels in Heart and Brain Disease. Biomedicines 2022; 10:biomedicines10051009. [PMID: 35625746 PMCID: PMC9138783 DOI: 10.3390/biomedicines10051009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Small-vessel disease (SVD), also known as microvascular endothelial dysfunction, is a disorder with negative consequences for various organs such as the heart and brain. Impaired dilatation and constriction of small vessels in the heart lead to reduced blood flow and ischemia independently of coronary artery disease (CAD) and are associated with major cardiac events. SVD is usually a silent form of subcortical vascular burden in the brain with various clinical manifestations, such as silent-lacunar-ischemic events and confluent white-matter hyperintensities. Imaging techniques are the main help for clinicians to diagnose cardiac and brain SVD correctly. Markers of inflammation, such as C-reactive protein, tumor-necrosis-factor α, and interleukin 6, provide insight into the disease and markers that negatively influence nitric-oxide bioavailability and promote oxidative stress. Unfortunately, the therapeutic approach against SVD is still not well-defined. In the last decades, various antioxidants, oxidative stress inhibitors, and superoxide scavengers have been the target of extensive investigations due to their potential therapeutic effect, but with unsatisfactory results. In clinical practice, traditional anti-ischemic and risk-reduction therapies for CAD are currently in use for SVD treatment.
Collapse
|
9
|
Reynolds HR. Rethinking the Goal of Exercise Tolerance Testing: Identifying Ischemic Heart Disease, Whether Epicardial or Microvascular. JACC Cardiovasc Imaging 2021; 15:322-324. [PMID: 34922862 DOI: 10.1016/j.jcmg.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Harmony R Reynolds
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
10
|
Abstract
Up to half of patients undergoing elective coronary angiography for the investigation of chest pain do not present with evidence of obstructive coronary artery disease. These patients are often discharged with a diagnosis of non-cardiac chest pain, yet many could have an ischaemic basis for their symptoms. This type of ischaemic chest pain in the absence of obstructive coronary artery disease is referred to as INOCA (ischaemia with non-obstructive coronary arteries). This comprehensive review of INOCA management looks at why these patients require treatment, who requires treatment based on diagnostic evaluation, what clinical treatment targets should be considered, how to treat patients using a personalised medicine approach, when to initiate treatment, and where future research is progressing.
Collapse
Affiliation(s)
- John F Beltrame
- Adelaide Medical School, University of Adelaide, Queen Elizabeth Hospital Campus, Woodville South, Adelaide, SA, Australia
- Department of Cardiology, Central Adelaide Local Health Network, SA Health, Adelaide, SA, Australia
- Basil Hetzel Institute for Translational Health Research, Queen Elizabeth Hospital, Woodville South, Adelaide, SA, Australia
| | - Rosanna Tavella
- Adelaide Medical School, University of Adelaide, Queen Elizabeth Hospital Campus, Woodville South, Adelaide, SA, Australia
- Department of Cardiology, Central Adelaide Local Health Network, SA Health, Adelaide, SA, Australia
- Basil Hetzel Institute for Translational Health Research, Queen Elizabeth Hospital, Woodville South, Adelaide, SA, Australia
| | - Dione Jones
- Adelaide Medical School, University of Adelaide, Queen Elizabeth Hospital Campus, Woodville South, Adelaide, SA, Australia
- Department of Cardiology, Central Adelaide Local Health Network, SA Health, Adelaide, SA, Australia
| | - Chris Zeitz
- Adelaide Medical School, University of Adelaide, Queen Elizabeth Hospital Campus, Woodville South, Adelaide, SA, Australia
- Department of Cardiology, Central Adelaide Local Health Network, SA Health, Adelaide, SA, Australia
- Basil Hetzel Institute for Translational Health Research, Queen Elizabeth Hospital, Woodville South, Adelaide, SA, Australia
| |
Collapse
|
11
|
Schroder J, Prescott E. Doppler Echocardiography Assessment of Coronary Microvascular Function in Patients With Angina and No Obstructive Coronary Artery Disease. Front Cardiovasc Med 2021; 8:723542. [PMID: 34778394 PMCID: PMC8585781 DOI: 10.3389/fcvm.2021.723542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Echocardiographic evaluation is an essential part of the diagnostic work-up in patients with known or suspected cardiovascular disease. Transthoracic Doppler echocardiography (TTDE) enables straightforward and reliable visualization of flow in the left anterior descending artery. In the absence of obstructive coronary artery disease, low TTDE-derived coronary flow velocity reserve (CFVR) is considered a marker of coronary microvascular dysfunction (CMD). TTDE CFVR is free from ionizing radiation and widely available, utilizing high-frequency transducers, pharmacologic vasodilator stress, and pulsed-wave Doppler quantification of diastolic peak flow velocities. European Society of Cardiology guidelines recommend TTDE CFVR evaluation only following preceding anatomic invasive or non-invasive coronary imaging excluding obstructive CAD. Accordingly, clinical use of TTDE CFVR is limited and CMD frequently goes undiagnosed. An evolving body of evidence underlines that low CFVR is an important and robust predictor of adverse prognosis and continuing symptoms in angina patients both with and without obstructive CAD. The majority of angina patients have no obstructive CAD, particularly among women. This has led to the suggestion that there may be a gender-specific female atherosclerotic phenotype with less epicardial obstruction, and a low CFVR signifying CMD instead. Nevertheless, available evidence indicates low CFVR is an equally important prognostic marker in both men and women. In this review, TTDE CFVR was evaluated regarding indication, practical and technical aspects, and interpretation of results. Association with symptoms and prognosis, comparison with alternative invasive and non-invasive imaging modalities, and possible interventions in angina patients with low CFVR were discussed, and key research questions were proposed.
Collapse
Affiliation(s)
- Jakob Schroder
- Department of Cardiology, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
12
|
Reynolds HR, Picard MH, Spertus JA, Peteiro J, Lopez-Sendon JL, Senior R, El-Hajjar MC, Celutkiene J, Shapiro MD, Pellikka PA, Kunichoff DF, Anthopolos R, Alfakih K, Abdul-Nour K, Khouri M, Bershtein L, De Belder M, Poh KK, Beltrame JF, Min JK, Fleg JL, Li Y, Maron DJ, Hochman JS. Natural History of Patients with Ischemia and No Obstructive Coronary Artery Disease: The CIAO-ISCHEMIA Study. Circulation 2021; 144:1008-1023. [PMID: 34058845 DOI: 10.1161/circulationaha.120.046791] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Ischemia with no obstructive coronary artery disease (INOCA) is common and has an adverse prognosis. We set out to describe the natural history of symptoms and ischemia in INOCA. Methods: CIAO-ISCHEMIA (Changes in Ischemia and Angina over One year in ISCHEMIA trial screen failures with INOCA) was an international cohort study conducted from 2014-2019 involving angina assessments (Seattle Angina Questionnaire [SAQ]) and stress echocardiograms 1-year apart. This was an ancillary study that included patients with history of angina who were not randomized in the ISCHEMIA trial. Stress-induced wall motion abnormalities were determined by an echocardiographic core laboratory blinded to symptoms, coronary artery disease (CAD) status and test timing. Medical therapy was at the discretion of treating physicians. The primary outcome was the correlation between changes in SAQ Angina Frequency score and change in echocardiographic ischemia. We also analyzed predictors of 1-year changes in both angina and ischemia, and compared CIAO participants with ISCHEMIA participants with obstructive CAD who had stress echocardiography before enrollment, as CIAO participants did. Results: INOCA participants in CIAO were more often female (66% of 208 vs. 26% of 865 ISCHEMIA participants with obstructive CAD, p<0.001), but the magnitude of ischemia was similar (median 4 ischemic segments [IQR 3-5] both groups). Ischemia and angina were not significantly correlated at enrollment in CIAO (p=0.46) or ISCHEMIA stress echocardiography participants (p=0.35). At 1 year, the stress echocardiogram was normal in half of CIAO participants and 23% had moderate or severe ischemia (≥3 ischemic segments). Angina improved in 43% and worsened in 14%. Change in ischemia over one year was not significantly correlated with change in angina (rho=0.029). Conclusions:Improvement in ischemia and improvement in angina were common in INOCA, but not correlated. Our INOCA cohort had a similar degree of inducible wall motion abnormalities to concurrently enrolled ISCHEMIA participants with obstructive CAD. Our results highlight the complex nature of INOCA pathophysiology and the multifactorial nature of angina. Clinical Trial Registration: URL: https://clinicaltrials.gov Unique Identifier: NCT02347215.
Collapse
Affiliation(s)
| | | | - John A Spertus
- Saint Luke's Mid America Heart Institute/UMKC, Kansas City, MO
| | - Jesus Peteiro
- CHUAC, Universidad de A Coruña,/CIBER-CV, A Coruna, Spain
| | | | - Roxy Senior
- Royal Brompton Hospital, London, UK; Northwick Park Hospital, Harrow, UK
| | | | - Jelena Celutkiene
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine/ State Research Institute Centre For Innovative Medicine, Vilnius, Lithuania
| | | | - Patricia A Pellikka
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, UNITED STATES
| | | | | | | | | | | | - Leonid Bershtein
- Internal Medicine & Cardiology, North-Western State Medical University n.a. I.I Mechnikov, Saint Petersburg, Russia, RUSSIAN FEDERATION
| | | | - Kian Keong Poh
- National University Heart Centre, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John F Beltrame
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - James K Min
- University of Adelaide /Central Adelaide Local Health Network, South Australia, Adelaide, Australia
| | | | - Yi Li
- New York University Grossman School of Medicine, New York, NY
| | - David J Maron
- National Heart, Lung, and Blood Institute, Bethesda, MD
| | | |
Collapse
|
13
|
Suh SH, Mathew AP, Choi HS, Vasukutty A, Kim CS, Kim IJ, Ma SK, Kim SW, Park IK, Bae EH. Kidney-accumulating olmesartan-loaded nanomicelles ameliorate the organ damage in a murine model of Alport syndrome. Int J Pharm 2021; 600:120497. [PMID: 33753165 DOI: 10.1016/j.ijpharm.2021.120497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
ACE inhibitors or angiotensin II receptor blockers (ACEi/ARBs) have been a cornerstone of the management in kidney disease, but their use is often limited by undesired systemic effects, such as symptomatic hypotension. To minimize the extra-renal effects of ACEi/ARBs, we formulated hydrophobically modified glycol chitosan (HGC) nanomicelles releasing olmesartan (HGC-Olm) that specifically accumulated in the kidney, and investigated whether kidney-specific delivery of olmesartan by HGC nanomicelles could ameliorate organ damage in Col4a3-/- mouse, a murine model of progressive chronic kidney disease mimicking human Alport syndrome. Ex vivo tracing demonstrated that intravenously injected HGC-Olm nanomicelles were specifically delivered to the kidney, with sustained release of olmesartan for more than 48 h. Contrary to the conventional delivery of olmesartan via oral route, injection of HGC-Olm nanomicelles did not alter blood pressure in Col4a3-/- mice. Immunohistochemistry revealed that HGC nanomicelles were diffusely distributed from the cortex and glomeruli to the outer medulla, sparing the inner medulla. Phenotypic analysis showed that the attenuation of kidney fibrosis in the kidney of Col4a3-/- mice by HGC-Olm nanomicelles was comparable to that noted with conventionally delivered olmesartan. Therefore, our results suggest that HGC-Olm nanomicelles could be a safe and effective alternative drug delivery system for kidney diseases.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ansuja Pulickal Mathew
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - In Jin Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
14
|
Bove KB, Nilsson M, Pedersen LR, Mikkelsen N, Suhrs HE, Astrup A, Prescott E. Comprehensive treatment of microvascular angina in overweight women - a randomized controlled pilot trial. PLoS One 2020; 15:e0240722. [PMID: 33151955 PMCID: PMC7644075 DOI: 10.1371/journal.pone.0240722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/01/2020] [Indexed: 01/09/2023] Open
Abstract
AIMS Coronary microvascular dysfunction (CMD) carries a poor cardiovascular prognosis and may explain angina in women without obstructive coronary artery disease (CAD). Currently, no evidence-based treatment for CMD exists. We investigated whether reducing cardiovascular risk factors improves symptoms and microvascular function in women with non-endothelial dependent CMD and no obstructive CAD. METHODS We randomized 62 women aged 40-75, with body mass index (BMI) >25 kg/m2, angina ≥monthly, and coronary flow velocity reserve (CFVR) ≤2.5 to a 24-week intervention comprising low energy diet, exercise training, and optimized treatment of hypertension, dyslipidemia and diabetes or to control. Patients were assessed before randomization and after 24 weeks. Primary outcomes were CFVR assessed by transthoracic Doppler stress-echocardiography and angina burden by Seattle Angina Questionnaire (SAQ). Secondary outcomes were exercise capacity, body composition, glycemic control, myocardial function, and anxiety and depression symptoms. RESULTS Fifty-six participants (90%) completed the study. Median (IQR) age was 65.2 (57.1;70.7) years, BMI was 30.1 (28.4;32.7) kg/m2. The intervention resulted in relevant improvement in angina symptoms (9-21-point increase on SAQ-scales (all p<0.01)) but had no effect on CFVR (p = 0.468). Mean (CI) weight loss was 9.6 (7.80;11.48) kg, (p<0.0001). There was a significant mean (CI) decrease in depression symptoms = 1.16 (0.22;2.12), triglycerides = 0.52 (0.25;0.78) mmol/L, total cholesterol = 0.55 (0.12;0.98) mmol/L, and HbA1c in diabetics = 27.1 (1.60;52.6) mmol/mol but no effect on other secondary outcomes. CONCLUSION A major weight loss and intensified risk factor control resulted in significantly improved angina burden but no improvement of coronary microvascular function among women with microvascular angina.
Collapse
Affiliation(s)
- Kira Bang Bove
- Department of Cardiology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Malin Nilsson
- Department of Endocrinology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lene Rørholm Pedersen
- Department of Cardiology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Mikkelsen
- Department of Cardiology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hannah Elena Suhrs
- Department of Cardiology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Eva Prescott
- Department of Cardiology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Schumann C, Bourque JM. Coronary microvascular dysfunction: Filling the research gaps with careful patient selection. J Nucl Cardiol 2019; 26:1853-1856. [PMID: 30288679 PMCID: PMC6447487 DOI: 10.1007/s12350-018-1449-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Christopher Schumann
- Department of Medicine, Cardiovascular Imaging Center, University of Virginia Health System, 800662, 1215 Lee Street, Charlottesville, VA, 22908, USA
- Department of Radiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Jamieson M Bourque
- Department of Medicine, Cardiovascular Imaging Center, University of Virginia Health System, 800662, 1215 Lee Street, Charlottesville, VA, 22908, USA.
- Department of Radiology, University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Abstract
Heart disease is the leading cause of death among women in the industrialized world. However, women after myocardial infarctions (MIs) are less likely to receive preventive medications or revascularization and as many as 47% experience heart failure, stroke or die within 5 years. Premenopausal women with MIs frequently have coronary plaque erosions or dissections. Women under 50 years with angina and nonobstructive epicardial coronary artery disease often have coronary microvascular dysfunction (CMD) with reductions in coronary flow reserve that may require nontraditional therapies. In women with coronary artery disease treated with stents, the 3-year incidence of recurrent MI or death is 9.2%. Coronary bypass surgery operative mortality averages 4.6% for women compared with 2.4% in men. Addition of internal mammary artery and radial artery coronary grafts in women does not increase operative survival but improves 5-year outcome to greater than 80%.
Collapse
|