1
|
Zhang X, Liu S, Yang L, Cheng C, Wang H, Hu D, Zhang X, Zhang M, Liu Y, Tian X, Zhang H, Xu KF. Omics research in lymphangioleiomyomatosis: status and challenges. Expert Rev Respir Med 2024; 18:805-814. [PMID: 39257348 DOI: 10.1080/17476348.2024.2403498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Lymphangioleiomyomatosis (LAM) is a rare and progressive disorder that usually arises in the lung and almost exclusively affects women of childbearing age. In recent years, a number of molecules have been shown to be differentially expressed between patients with LAM and healthy control individuals, and some of these molecules, in addition to vascular endothelial growth factor D (VEGF-D), have the potential to be novel biomarkers. AREAS COVERED This review summarizes the recent advances in omics research, including genomics, transcriptomics, proteomics, and metabolomics, in LAM biomarker discovery. It also retrieves the literature on LAM biomarkers studied by omics techniques in the last 10 years using PubMed and other retrieval tools. EXPERT OPINION Further research on expanded sample sizes can be conducted to construct specific models to study the role of these molecules in the pathogenesis of LAM and clarify the underlying mechanisms involved. In the future, in terms of technology, the combination of various omics methods is expected to result in novel biomarker discovery.
Collapse
Affiliation(s)
- Xinhe Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Song Liu
- Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Luning Yang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chongsheng Cheng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hanghang Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Danjing Hu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoxin Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Miaoyan Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yaping Liu
- Department of Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongbing Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Lin SM, Rue R, Mukhitov AR, Goel A, Basil MC, Obraztsova K, Babu A, Crnkovic S, Ledwell OA, Ferguson LT, Planer JD, Nottingham AN, Vanka KS, Smith CJ, Cantu E, Kwapiszewska G, Morrisey EE, Evans JF, Krymskaya VP. Hyperactive mTORC1 in lung mesenchyme induces endothelial cell dysfunction and pulmonary vascular remodeling. J Clin Invest 2023; 134:e172116. [PMID: 38127441 PMCID: PMC10866655 DOI: 10.1172/jci172116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a progressive cystic lung disease caused by tuberous sclerosis complex 1/2 (TSC1/2) gene mutations in pulmonary mesenchymal cells, resulting in activation of the mechanistic target of rapamycin complex 1 (mTORC1). A subset of patients with LAM develop pulmonary vascular remodeling and pulmonary hypertension. Little, however, is known regarding how LAM cells communicate with endothelial cells (ECs) to trigger vascular remodeling. In end-stage LAM lung explants, we identified EC dysfunction characterized by increased EC proliferation and migration, defective angiogenesis, and dysmorphic endothelial tube network formation. To model LAM disease, we used an mTORC1 gain-of-function mouse model with a Tsc2 KO (Tsc2KO) specific to lung mesenchyme (Tbx4LME-Cre Tsc2fl/fl), similar to the mesenchyme-specific genetic alterations seen in human disease. As early as 8 weeks of age, ECs from mice exhibited marked transcriptomic changes despite an absence of morphological changes to the distal lung microvasculature. In contrast, 1-year-old Tbx4LME-Cre Tsc2fl/fl mice spontaneously developed pulmonary vascular remodeling with increased medial thickness. Single-cell RNA-Seq of 1-year-old mouse lung cells identified paracrine ligands originating from Tsc2KO mesenchyme, which can signal through receptors in arterial ECs. These ECs had transcriptionally altered genes including those in pathways associated with blood vessel remodeling. The proposed pathophysiologic mesenchymal ligand-EC receptor crosstalk highlights the importance of an altered mesenchymal cell/EC axis in LAM and other hyperactive mTORC1-driven diseases. Since ECs in patients with LAM and in Tbx4LME-Cre Tsc2fl/fl mice did not harbor TSC2 mutations, our study demonstrates that constitutively active mTORC1 lung mesenchymal cells orchestrated dysfunctional EC responses that contributed to pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Susan M. Lin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
- Lung Biology Institute, and
| | - Ryan Rue
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
| | - Alexander R. Mukhitov
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
| | - Akansha Goel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
| | - Maria C. Basil
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
- Lung Biology Institute, and
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kseniya Obraztsova
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
| | | | - Slaven Crnkovic
- Division of Physiology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Justus-Liebig University Giessen, Giessen, Germany
| | - Owen A. Ledwell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
| | - Laura T. Ferguson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
- Lung Biology Institute, and
| | - Joseph D. Planer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
- Lung Biology Institute, and
| | - Ana N. Nottingham
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
- Lung Biology Institute, and
| | - Kanth Swaroop Vanka
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
| | - Carly J. Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
| | - Edward Cantu
- Lung Biology Institute, and
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Grazyna Kwapiszewska
- Division of Physiology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Justus-Liebig University Giessen, Giessen, Germany
| | - Edward E. Morrisey
- Lung Biology Institute, and
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jillian F. Evans
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
| | - Vera P. Krymskaya
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine
- Lung Biology Institute, and
| |
Collapse
|
3
|
Champion JD, Dodd KM, Lam HC, Alzahrani MAM, Seifan S, Rad E, Scourfield DO, Fishel ML, Calver BL, Ager A, Henske EP, Davies DM, Kelley MR, Tee AR. Drug Inhibition of Redox Factor-1 Restores Hypoxia-Driven Changes in Tuberous Sclerosis Complex 2 Deficient Cells. Cancers (Basel) 2022; 14:6195. [PMID: 36551683 PMCID: PMC9776744 DOI: 10.3390/cancers14246195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Therapies with the mechanistic target of rapamycin complex 1 (mTORC1) inhibitors are not fully curative for tuberous sclerosis complex (TSC) patients. Here, we propose that some mTORC1-independent disease facets of TSC involve signaling through redox factor-1 (Ref-1). Ref-1 possesses a redox signaling activity that stimulates the transcriptional activity of STAT3, NF-kB, and HIF-1α, which are involved in inflammation, proliferation, angiogenesis, and hypoxia, respectively. Here, we demonstrate that redox signaling through Ref-1 contributes to metabolic transformation and tumor growth in TSC cell model systems. In TSC2-deficient cells, the clinically viable Ref-1 inhibitor APX3330 was effective at blocking the hyperactivity of STAT3, NF-kB, and HIF-1α. While Ref-1 inhibitors do not inhibit mTORC1, they potently block cell invasion and vasculature mimicry. Of interest, we show that cell invasion and vasculature mimicry linked to Ref-1 redox signaling are not blocked by mTORC1 inhibitors. Metabolic profiling revealed that Ref-1 inhibitors alter metabolites associated with the glutathione antioxidant pathway as well as metabolites that are heavily dysregulated in TSC2-deficient cells involved in redox homeostasis. Therefore, this work presents Ref-1 and associated redox-regulated transcription factors such as STAT3, NF-kB, and HIF-1α as potential therapeutic targets to treat TSC, where targeting these components would likely have additional benefits compared to using mTORC1 inhibitors alone.
Collapse
Affiliation(s)
- Jesse D. Champion
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Kayleigh M. Dodd
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Hilaire C. Lam
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Sara Seifan
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Ellie Rad
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | | - Melissa L. Fishel
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian L. Calver
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Ann Ager
- Division of Infection and Immunity, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Elizabeth P. Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David Mark Davies
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
- Department of Oncology, South West Wales Cancer Centre, Singleton Hospital, Swansea SA2 8QA, UK
| | - Mark R. Kelley
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew R. Tee
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
4
|
Modulation of IGF2 Expression in the Murine Thymus and Thymic Epithelial Cells Following Coxsackievirus-B4 Infection. Microorganisms 2021; 9:microorganisms9020402. [PMID: 33672010 PMCID: PMC7919294 DOI: 10.3390/microorganisms9020402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Coxsackievirus B4 (CV-B4) can infect human and murine thymic epithelial cells (TECs). In a murine TEC cell line, CV-B4 can downregulate the transcription of the insulin-like growth factor 2 (Igf2) gene coding for the self-peptide of the insulin family. In this study, we show that CV-B4 infections of a murine TEC cell line decreased Igf2 P3 promoter activity by targeting a region near the transcription start site; however, the stability of Igf2 transcripts remained unchanged, indicating a regulation of Igf2 transcription. Furthermore, CV-B4 infections decreased STAT3 phosphorylation in vitro. We also showed that mice infected with CV-B4 had an altered expression of Igf2 isoforms as detected in TECs, followed by a decrease in the pro-IGF2 precursor in the thymus. Our study sheds new light on the intrathymic regulation of Igf2 transcription during CV-B4 infections and supports the hypothesis that a viral infection can disrupt central self-tolerance to insulin by decreasing Igf2 transcription in the thymic epithelium.
Collapse
|
5
|
Péladeau C, Jasmin BJ. Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biol 2020; 18:1238-1251. [PMID: 33164678 DOI: 10.1080/15476286.2020.1847894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Obraztsova K, Basil MC, Rue R, Sivakumar A, Lin SM, Mukhitov AR, Gritsiuta AI, Evans JF, Kopp M, Katzen J, Robichaud A, Atochina-Vasserman EN, Li S, Carl J, Babu A, Morley MP, Cantu E, Beers MF, Frank DB, Morrisey EE, Krymskaya VP. mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline. Nat Commun 2020; 11:5640. [PMID: 33159078 PMCID: PMC7648630 DOI: 10.1038/s41467-020-18979-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of Tsc2 in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal Tsc2-deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype.
Collapse
Affiliation(s)
- Kseniya Obraztsova
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C Basil
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Rue
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Susan M Lin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander R Mukhitov
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrei I Gritsiuta
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jilly F Evans
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meghan Kopp
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremy Katzen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Elena N Atochina-Vasserman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shanru Li
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Justine Carl
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Apoorva Babu
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Morley
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Cantu
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael F Beers
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - David B Frank
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
- Children Hospital of Philadelphia, Philadelphia, PA, USA
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward E Morrisey
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Vera P Krymskaya
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Inhibition of Growth of TSC2-Null Cells by a PI3K/mTOR Inhibitor but Not by a Selective MNK1/2 Inhibitor. Biomolecules 2019; 10:biom10010028. [PMID: 31878201 PMCID: PMC7022412 DOI: 10.3390/biom10010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare metastatic cystic lung disease due to a mutation in a TSC tumor suppressor, resulting in hyperactive mTOR growth pathways. Sirolimus (rapamycin), an allosteric mTORC1 inhibitor, is a therapeutic option for women with LAM but it only maintains lung volume during treatment and does not provide benefit for all LAM patients. The two major mTORC1 protein synthesis pathways are via S6K/S6 or 4E-BP/eIF4E activation. We aimed to investigate rapamycin in combination with compounds that target associated growth pathways, with the potential to be additive to rapamycin. In this study we demonstrated that rapamycin, at a clinically tolerable concentration (10 nM), inhibited the phosphorylation of S6, but not the critical eIF4E releasing Thr 37/46 phosphorylation sites of 4E-BP1 in TSC2-deficient LAM-derived cells. We also characterized the abundant protein expression of peIF4E within LAM lesions. A selective MNK1/2 inhibitor eFT508 inhibited the phosphorylation of eIF4E but did not reduce TSC2-null cell growth. In contrast, a PI3K/mTOR inhibitor omipalisib blocked the phosphorylation of Akt and both S6K/S6 and 4E-BP/eIF4E branches, and additively decreased the growth of TSC2-null cells with rapamycin. Omipalisib, or another inhibitor of both major mTORC1 growth pathways and pAkt, might provide therapeutic options for TSC2-deficient cancers including, but not limited to, LAM.
Collapse
|