1
|
Hao X, Lin H, Lin Z, Yang K, Hu J, Ma Z, Yu W. Effect of Dietary Astragalus polysaccharides (APS) on the Growth Performance, Antioxidant Responses, Immunological Parameters, and Intestinal Microbiota of Coral Trout ( Plectropomus leopardus). Microorganisms 2024; 12:1980. [PMID: 39458289 PMCID: PMC11509791 DOI: 10.3390/microorganisms12101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
The potential effects of Astragalus polysaccharides (APS) were evaluated in coral trout (Plectropomus leopardus). Five APS levels (0%, 0.05%, 0.10%, 0.15%, and 0.20%) were added to the diet of coral trout, and a 56-day growth trial (initial weight 18.62 ± 0.05 g) was conducted. Dietary APS enhanced growth performance, with the highest improvement observed in fish fed the 0.15% APS diet. This concentration also enhanced the antioxidant capacity and immunomodulation of the fish by regulating the expression of genes associated with antioxidant enzymes and immune responses. Intestinal microbiota analysis revealed that APS supplementation significantly increased the Chao1 index and relative abundance of beneficial bacteria (Firmicutes and Bacillus). A high level of APS (0.20%) did not provide additional benefits for growth and health compared to a moderate level (0.15%). These findings indicate that an optimal APS dose promotes growth, enhances antioxidant activity, supports immune function, and improves intestinal microbiota in coral trout. Based on a cubic regression analysis of the specific growth rate, the optimal APS level for the maximal growth of coral trout was determined to be 0.1455%.
Collapse
Affiliation(s)
- Xiaoqi Hao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Ziyang Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
| | - Keng Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
| | - Jing Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
| | - Zhenhua Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| | - Wei Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| |
Collapse
|
2
|
Ding H, Wang M, Wang M, Wu S, Guo Y, Gao Y, Li L, Bao Z, Wang B, Hu J. Synchronously sexual maturity in hermaphrodite fish as revealed by transcriptome analysis in Plectropomus leopardus. Gene 2024; 901:148166. [PMID: 38242379 DOI: 10.1016/j.gene.2024.148166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Leopard coral grouper (Plectropomus leopardus) is a type of hermaphrodite fish, but the mechanisms of gonadal development and gametogenesis remain unclear. In the present study, we performed histological observation and transcriptomic analysis during the process of sexual differentiation in P. leopardus. According to the histological results, sexual differentiation was completed at 15 months old, developed synchronously in male and female individuals at 2 years old, and matured synchronously at 3 years old. Comparative transcriptomic analyses showed that the gonadal had differentiated by 15 months old, with enrichment of pathways associated with cell proliferation, transcriptional metabolism, and germline stem cell differentiation. Furthermore, cilium movement and fatty acid anabolism, which are associated with spermatogenesis and oocyte growth, were significantly enriched at 3 years old. In addition, key genes associated with male and female sex differentiation, such as amh, dmrt1, dmrt2a, zp4, sox3, gdf9, and gsdf, were identified by weighted gene co-expression network analysis (WGCNA). Finally, the localization and expression of the key genes amh and sox3 were observed in different cell types within the testes and ovaries, reflecting the development of the testes and ovaries, respectively. All the evidence indicates that P. leopardus is a hermaphrodite and synchronously sexually mature fish. Our study complements the gonadal development patterns of hermaphroditic fish by providing new insights into the molecular mechanisms underlying sexual differentiation and sex change in hermaphroditic groupers.
Collapse
Affiliation(s)
- Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Yilan Guo
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Yurui Gao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Lin Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China; Hainan Seed Industry Laboratory, Sanya 572025, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China; Hainan Seed Industry Laboratory, Sanya 572025, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China; Hainan Seed Industry Laboratory, Sanya 572025, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
3
|
Wu SX, Zeng QF, Han WT, Wang MY, Ding H, Teng MX, Wang MY, Li PY, Gao X, Bao ZM, Wang B, Hu JJ. Deciphering the population structure and genetic basis of growth traits from whole-genome resequencing of the leopard coral grouper ( Plectropomus leopardus). Zool Res 2024; 45:329-340. [PMID: 38485503 PMCID: PMC11017084 DOI: 10.24272/j.issn.2095-8137.2023.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
The leopard coral grouper ( Plectropomus leopardus) is a species of significant economic importance. Although artificial cultivation of P. leopardus has thrived in recent decades, the advancement of selective breeding has been hindered by the lack of comprehensive population genomic data. In this study, we identified over 8.73 million single nucleotide polymorphisms (SNPs) through whole-genome resequencing of 326 individuals spanning six distinct groups. Furthermore, we categorized 226 individuals with high-coverage sequencing depth (≥14×) into eight clusters based on their genetic profiles and phylogenetic relationships. Notably, four of these clusters exhibited pronounced genetic differentiation compared with the other populations. To identify potentially advantageous loci for P. leopardus, we examined genomic regions exhibiting selective sweeps by analyzing the nucleotide diversity ( θπ) and fixation index ( F ST) in these four clusters. Using these high-coverage resequencing data, we successfully constructed the first haplotype reference panel specific to P. leopardus. This achievement holds promise for enabling high-quality, cost-effective imputation methods. Additionally, we combined low-coverage sequencing data with imputation techniques for a genome-wide association study, aiming to identify candidate SNP loci and genes associated with growth traits. A significant concentration of these genes was observed on chromosome 17, which is primarily involved in skeletal muscle and embryonic development and cell proliferation. Notably, our detailed investigation of growth-related SNPs across the eight clusters revealed that cluster 5 harbored the most promising candidate SNPs, showing potential for genetic selective breeding efforts. These findings provide a robust toolkit and valuable insights into the management of germplasm resources and genome-driven breeding initiatives targeting P. leopardus.
Collapse
Affiliation(s)
- Shao-Xuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Qi-Fan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572025, China
| | - Wen-Tao Han
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Meng-Ya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Ming-Xuan Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Ming-Yi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Pei-Yu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Xin Gao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
| | - Zhen-Min Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572025, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou, Guangdong 511458, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572025, China. E-mail:
| | - Jing-Jie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572025, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou, Guangdong 511458, China. E-mail:
| |
Collapse
|
4
|
Dong Y, Li Y, Ge M, Takatsu T, Wang Z, Zhang X, Ding D, Xu Q. Distinct gut microbial communities and functional predictions in divergent ophiuroid species: host differentiation, ecological niches, and adaptation to cold-water habitats. Microbiol Spectr 2023; 11:e0207323. [PMID: 37889056 PMCID: PMC10715168 DOI: 10.1128/spectrum.02073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Gastrointestinal microorganisms are critical to the survival and adaptation of hosts, and there are few studies on the differences and functions of gastrointestinal microbes in widely distributed species. This study investigated the gut microbes of two ophiuroid species (Ophiura sarsii and its subspecies O. sarsii vadicola) in cold-water habitats of the Northern Pacific Ocean. The results showed that a combination of host and environmental factors shapes the intestinal microbiota of ophiuroids. There was a high similarity in microbial communities between the two groups living in different regions, which may be related to their similar ecological niches. These microorganisms played a vital role in the ecological success of ophiuroids as the foundation for their adaptation to cold-water environments. This study revealed the complex relationship between hosts and their gut microbes, providing insights into the role they play in the adaptation and survival of marine species.
Collapse
Affiliation(s)
- Yue Dong
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yixuan Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiling Ge
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Tetsuya Takatsu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Dewen Ding
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| |
Collapse
|
5
|
Kusumawaty D, Augustine SMN, Aryani A, Effendi Y, Emran TB, Tallei TE. Configuration of gut bacterial community profile and their potential functionality in the digestive tract of the wild and cultivated Indonesian shortfin elver-phase eels ( Anguilla bicolor bicolor McClelland, 1844). 3 Biotech 2023; 13:153. [PMID: 37131968 PMCID: PMC10148933 DOI: 10.1007/s13205-023-03561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023] Open
Abstract
This study aimed to explore the bacteria present in the digestive tracts of wild and cultivated Indonesian shortfin eel during the elver phase. The eel has high export potential due to its vitamin and micronutrient content, but slow growth and vulnerability to collapse in farm conditions hinder its cultivation. The microbiota in the eel's digestive tract is crucial for its health, particularly during the elver phase. This study used Next Generation Sequencing to analyze the community structure and diversity of bacteria in the eels' digestive tracts, focusing on the V3-V4 regions of the 16S rRNA gene. Mothur software was used for data analysis and PAST v.3.26 was used to calculate alpha diversity. The results showed that Proteobacteria (64.18%) and Firmicutes (33.55%) were the predominant phyla in the digestive tract of cultivated eels, while Bacteroidetes (54.16%), Firmicutes (14.71%), and Fusobacteria (10.56%) were predominant in wild eels. The most prevalent genera in cultivated and wild elver were Plesiomonas and Cetobacterium, respectively. The microbiota in the digestive tract of cultivated eels was diverse despite uneven distribution. The KEGG database analysis revealed that the primary function of the microbiome was to facilitate the eel's absorption of nutrients by contributing significantly to the metabolism of carbohydrates and amino acids. This study's findings can aid in assessing eel health and improving eel farming conditions.
Collapse
Affiliation(s)
- Diah Kusumawaty
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung, 40154 Indonesia
| | - Stella Melbournita Noor Augustine
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung, 40154 Indonesia
| | - Any Aryani
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung, 40154 Indonesia
| | - Yunus Effendi
- Department of Biology, Faculty of Science and Technology, Al-Azhar Indonesia University, Jakarta, 12110 Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381 Bangladesh
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, 95115 North Sulawesi Indonesia
| |
Collapse
|
6
|
Zou S, Ni M, Liu M, Xu Q, Zhou D, Gu Z, Yuan J. Starvation alters gut microbiome and mitigates off-flavors in largemouth bass (Micropterus salmoides). Folia Microbiol (Praha) 2023:10.1007/s12223-022-01027-7. [PMID: 36637769 DOI: 10.1007/s12223-022-01027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/09/2022] [Indexed: 01/14/2023]
Abstract
The present study aimed to investigate the response of intestinal microbiota during 3 weeks' starvation of largemouth bass (Micropterus salmoides), an economically important freshwater fish, using 16S rRNA gene amplicon sequencing and PICRUSt2 predictive functional profiling. Overall, the microbiota was mainly represented by Mycoplasma, Pseudomonas, Acinetobacter, and Microbacterium in the initial group. This pattern contrasted with that of Cetobacterium and Aeromonas, which were major representative genera in the starved group. Significant differences in the richness and composition of intestinal microbial community induced by starvation were observed. Notably, earthy-musty off-flavor compounds (geosmin and 2-methylisoborneol) were significantly decreased during starvation, which were significantly correlated with the abundance of certain actinobacterial taxa, namely, Microbacterium and Nocardioides. Additionally, the functional pathways involved in synthesis of off-flavor compounds, protein digestion, fatty acid degradation, and biosynthesis of cofactors greatly decreased with starvation, indicating that microbiota modulated the specific metabolic pathway to adapt to food deprivation. These results emphasize that starvation can modulate diversity, community structure, and functions of the intestinal microbiota and mitigate the off-flavors, which has important implications for strategies to eliminate off-flavor odorants through the application of probiotics to manipulate the gut microbiome and ultimately enhance flesh quality of freshwater fish.
Collapse
Affiliation(s)
- Songbao Zou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China
| | - Meng Ni
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China
| | - Mei Liu
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China
| | - Qing Xu
- College of Life Science, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Dan Zhou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China
| | - Zhimin Gu
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China
| | - Julin Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China.
| |
Collapse
|
7
|
Wang Q, Liu JH, Wen B, Gao JZ, Chen ZZ. Gut microbiota communities of reciprocal hybrids from koi (Cyprinus carpio) and goldfish (Carassius auratus) are more similar to koi than goldfish. J Appl Microbiol 2022; 133:960-971. [PMID: 35543337 DOI: 10.1111/jam.15616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
AIMS To investigate the gut microbiota communities of reciprocal hybrids and inbred lines of koi (Cyprinus carpio) and goldfish (Carassius auratus), as well as the genetic effect of intestinal microbiota between hybrids and parents. METHODS AND RESULTS The reciprocal hybrids and inbred lines derived from the parents, koi and goldfish, were established. Then the bacterial 16S rRNA gene of intestinal contents was sequenced using Illumina Miseq PE300. Alpha diversity in the two types of hybrids was lower than inbred lines of koi or goldfish and was highest in goldfish, followed by koi. For beta diversity, microbial samples presented clear clusters and the two types of hybrids were more similar to koi than goldfish, indicating the gut microbiota of the reciprocal hybrids was more affected by koi. The dominant phyla were Proteobacteria, Actinobacteria and Firmicutes in koi, and Proteobacteria, Fusobacteria and Actinobacteria in goldfish, and Proteobacteria, Fusobacteria and Firmicutes in the reciprocal hybrids. In the case of Proteobacteria, the dominant classes were Alphaproteobacteria and Gammaproteobacteria in four fish. The dominant genera were norank_f_Rhizobiales_Incertae_Sedis and Plesiomonas in koi, Cetobacterium in goldfish, and Cetobacterium and ZOR0006 in the reciprocal hybrids. PICRUSt1 predictive function analysis showed that the reciprocal hybrids had lower abundance in the most functional categories than koi and goldfish. CONCLUSIONS The gut microbiota of reciprocal hybrids was more affected by koi. Two types of hybrids possessed the same dominated phyla and were different from the inbred lines of koi and goldfish. SIGNIFICANCE AND IMPACT OF THE STUDY It enhanced our understanding of gut microbiota of hybrid lines of goldfish and koi and provided a new perspective for the selective breeding of gut microbiota traits.
Collapse
Affiliation(s)
- Qin Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jun-Heng Liu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
8
|
Nyholm L, Odriozola I, Martin Bideguren G, Aizpurua O, Alberdi A. Gut microbiota differences between paired intestinal wall and digesta samples in three small species of fish. PeerJ 2022; 10:e12992. [PMID: 35223211 PMCID: PMC8877339 DOI: 10.7717/peerj.12992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
The microbial gut communities of fish are receiving increased attention for their relevance, among others, in a growing aquaculture industry. The members of these communities are often split into resident (long-term colonisers specialised to grow in and adhere to the mucus lining of the gut) and transient (short-term colonisers originated from food items and the surrounding water) microorganisms. Separating these two communities in small fish are impeded by the small size and fragility of the gastrointestinal tract. With the aim of testing whether it is possible to recover two distinct communities in small species of fish using a simple sampling technique, we used 16S amplicon sequencing of paired intestinal wall and digesta samples from three small Cyprinodontiformes fish. We examined the diversity and compositional variation of the two recovered communities, and we used joint species distribution modelling to identify microbes that are most likely to be a part of the resident community. For all three species we found that the diversity of intestinal wall samples was significantly lower compared to digesta samples and that the community composition between sample types was significantly different. Across the three species we found seven unique families of bacteria to be significantly enriched in samples from the intestinal wall, encompassing most of the 89 ASVs enriched in intestinal wall samples. We conclude that it is possible to characterise two different microbial communities and identify potentially resident microbes through separately analysing samples from the intestinal wall and digesta from small species of fish. We encourage researchers to be aware that different sampling procedures for gut microbiome characterization will capture different parts of the microbiome and that this should be taken into consideration when reporting results from such studies on small species of fish.
Collapse
Affiliation(s)
- Lasse Nyholm
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Iñaki Odriozola
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Garazi Martin Bideguren
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Zhao Z, Zhang X, Zhao F, Zhou Z, Zhao F, Wang J, Liu T, Yang X, Zhang X, Li Z. Stress responses of the intestinal digestion, antioxidant status, microbiota and non-specific immunity in Songpu mirror carp (Cyprinus carpio L.) under starvation. FISH & SHELLFISH IMMUNOLOGY 2022; 120:411-420. [PMID: 34915148 DOI: 10.1016/j.fsi.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Songpu mirror carp, Cyprinus carpio L., is a new variety of common carp that has become an economically important freshwater fish in China. However, it remains unknown how its metabolism is regulated under starvation. Here, we investigated how intestinal digestion, antioxidant status, microbiota and immune activities were affected under starvation stress. The feeding regimes were designed as follows: ST0 comprised fish allowed to feed continuously; ST1 comprised fish starved for 1 week; ST2 comprised fish starved for 2 weeks; ST3 comprised fish starved for 3 weeks; ST4 comprised fish starved for 4 weeks. Our results showed a significant decrease in the level of intestinal amylase, lipase, and protease activities in the group ST4 (P < 0.05). Compared with the control group, intestinal antioxidant enzyme activities were significantly increased during short-term starvation. The gene expression levels of interleukin 1β (IL-1β), interleukin 8 (IL-8) and tumor necrosis factor-alpha (TNF-α) were elevated in the groups ST3 and ST4. We also detected the reduction in the expression levels of interleukin 10 (IL-10) and transforming growth factor β (TGF-β2) compared with those of the group ST0. Notably, the gut microbial composition was dominated by Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. The relative abundance of the dominant microbial phyla changed significantly under starvation stress. Taken together, our results suggest that starvation can induce the change of intestinal digestion, non-specific immunity and microbiota in Songpu mirror carp, and provide new insights into its habitat selection and adaptation to environmental changes.
Collapse
Affiliation(s)
- Zhenxin Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China.
| | - Xianbo Zhang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Fei Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Zhou Zhou
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Feng Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Jinle Wang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Ting Liu
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Xing Yang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Xiaoping Zhang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| | - Zhengyou Li
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China; Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, 550025, China
| |
Collapse
|
10
|
Liu C, Zhao LP, Shen YQ. A systematic review of advances in intestinal microflora of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:2041-2053. [PMID: 34750711 DOI: 10.1007/s10695-021-01027-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/13/2021] [Indexed: 05/26/2023]
Abstract
Intestinal flora is closely related to the health of organisms and the occurrence and development of diseases. The study of intestinal flora will provide a reference for the research and treatment of disease pathogenesis. Upon hatching, fish begin to acquire a microbial community in the intestine. In response to the environment and the host itself, the fish gut eventually develops a unique set of microflora, with some microorganisms being common to different fish. The existence of intestinal microorganisms creates an excellent microecological environment for the host, while the fish symbiotically provides conditions for the growth and reproduction of intestinal microflora. The intestinal flora and the host are interdependent and mutually restrictive. This review mainly describes the formation of fish intestinal flora, the function of normal intestinal flora, factors affecting intestinal flora, and a series of fish models.
Collapse
Affiliation(s)
- Chang Liu
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Li-Ping Zhao
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Yan-Qin Shen
- Wuxi Medical School of Jiangnan University, Wuxi, China.
| |
Collapse
|
11
|
Legrand T, Wos‐Oxley M, Wynne J, Weyrich L, Oxley A. Dead or alive: microbial viability treatment reveals both active and inactive bacterial constituents in the fish gut microbiota. J Appl Microbiol 2021; 131:2528-2538. [PMID: 33945191 PMCID: PMC8596808 DOI: 10.1111/jam.15113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/22/2021] [Accepted: 04/17/2021] [Indexed: 12/26/2022]
Abstract
AIMS This study evaluated the microbial viability of fish gut microbiota in both digesta (faecal) and mucosal samples using a modified propidium monoazide (PMA) protocol, followed by 16S ribosomal RNA (rRNA) gene sequencing. METHODS AND RESULTS Digesta and gut mucosal samples from farmed yellowtail kingfish (Seriola lalandi) were collected and a modified PMA treatment was applied prior to DNA extraction to differentiate both active and nonviable microbial cells in the samples. All samples were then sequenced using a standard 16S rRNA approach. The digesta and mucosal samples contained significantly different bacterial communities, with a higher diversity observed in digesta samples. In addition, PMA treatment significantly reduced the microbial diversity and richness of digesta and mucosal samples and depleted bacterial constituents typically considered to be important within fish, such as Lactobacillales and Clostridales taxa. CONCLUSIONS These findings suggest that important bacterial members may not be active in the fish gut microbiota. In particular, several beneficial lactic acid bacteria (LAB) were identified as nonviable bacterial cells, potentially influencing the functional potential of the fish microbiota. SIGNIFICANCE AND IMPACTS OF THE STUDY Standardizing the methods for characterizing the fish microbiota are paramount in order to compare studies. In this study, we showed that both sample type and PMA treatment influence the bacterial communities found in the fish gut microbiota. Our findings also suggest that several microbes previously described in the fish gut may not be active constituents. As a result, these factors should be considered in future studies to better evaluate the active bacterial communities associated with the host.
Collapse
Affiliation(s)
- T.P.R.A. Legrand
- School of Biological SciencesThe University of AdelaideAdelaideSAAustralia
- CSIRO, Agriculture and FoodHobartTasAustralia
- South Australian Research and Development InstituteAquatic Sciences CentreWest BeachSAAustralia
| | - M.L. Wos‐Oxley
- College of Science and EngineeringFlinders UniversityAdelaideSAAustralia
| | - J.W. Wynne
- CSIRO, Agriculture and FoodHobartTasAustralia
| | - L.S. Weyrich
- School of Biological SciencesThe University of AdelaideAdelaideSAAustralia
- Department of Anthropology and Huck Institutes of Life SciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - A.P.A. Oxley
- Faculty of Science Engineering and Built EnvironmentSchool of Life and Environmental SciencesDeakin UniversityGeelongVic.Australia
| |
Collapse
|
12
|
Naya-Català F, do Vale Pereira G, Piazzon MC, Fernandes AM, Calduch-Giner JA, Sitjà-Bobadilla A, Conceição LEC, Pérez-Sánchez J. Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream ( Sparus aurata) Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization. Front Physiol 2021; 12:748265. [PMID: 34675821 PMCID: PMC8523787 DOI: 10.3389/fphys.2021.748265] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023] Open
Abstract
New types of fish feed based on processed animal proteins (PAPs), insect meal, yeast, and microbial biomasses have been used with success in gilthead sea bream. However, some drawback effects on feed conversion and inflammatory systemic markers were reported in different degrees with PAP- and non-PAP-based feed formulations. Here, we focused on the effects of control and two experimental diets on gut mucosal-adherent microbiota, and how it correlated with host transcriptomics at the local (intestine) and systemic (liver and head kidney) levels. The use of tissue-specific PCR-arrays of 93 genes in total rendered 13, 12, and 9 differentially expressed (DE) genes in the intestine, liver, and head kidney, respectively. Illumina sequencing of gut microbiota yielded a mean of 125,350 reads per sample, assigned to 1,281 operational taxonomic unit (OTUs). Bacterial richness and alpha diversity were lower in fish fed with the PAP diet, and discriminant analysis displayed 135 OTUs driving the separation between groups with 43 taxa correlating with 27 DE genes. The highest expression of intestinal pcna and alpi was achieved in PAP fish with intermediate values in non-PAP, being the pro-inflammatory action of alpi associated with the presence of Psychrobacter piscatorii. The intestinal muc13 gene was down-regulated in non-PAP fish, with this gene being negatively correlated with anaerobic (Chloroflexi and Anoxybacillus) and metal-reducing (Pelosinus and Psychrosinus) bacteria. Other inflammatory markers (igm, il8, tnfα) were up-regulated in PAP fish, positively correlating the intestinal igm gene with the inflammasome activator Escherichia/Shigella, whereas the systemic expression of il8 and tnfα was negatively correlated with the Bacilli class in PAP fish and positively correlated with Paracoccus yeei in non-PAP fish. Overall changes in the expression pattern of il10, galectins (lgals1, lgals8), and toll-like receptors (tlr2, tlr5, tlr9) reinforced the anti-inflammatory profile of fish fed with the non-PAP diet, with these gene markers being associated with a wide range of OTUs. A gut microbiota-liver axis was also established, linking the microbial generation of short chain fatty acids with the fueling of scd1- and elovl6-mediated lipogenesis. In summary, by correlating the microbiome with host gene expression, we offer new insights in the evaluation of fish diets promoting gut and metabolism homeostasis, and ultimately, the health of farmed fish.
Collapse
Affiliation(s)
- Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ana Margarida Fernandes
- SPAROS Lda, Area Empresarial de Marim, Olhăo, Portugal.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
13
|
Kikuchi J, Yamada S. The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science. RSC Adv 2021; 11:30426-30447. [PMID: 35480260 PMCID: PMC9041152 DOI: 10.1039/d1ra03008f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
The environment, from microbial ecosystems to recycled resources, fluctuates dynamically due to many physical, chemical and biological factors, the profile of which reflects changes in overall state, such as environmental illness caused by a collapse of homeostasis. To evaluate and predict environmental health in terms of systemic homeostasis and resource balance, a comprehensive understanding of these factors requires an approach based on the "exposome paradigm", namely the totality of exposure to all substances. Furthermore, in considering sustainable development to meet global population growth, it is important to gain an understanding of both the circulation of biological resources and waste recycling in human society. From this perspective, natural environment, agriculture, aquaculture, wastewater treatment in industry, biomass degradation and biodegradable materials design are at the forefront of current research. In this respect, nuclear magnetic resonance (NMR) offers tremendous advantages in the analysis of samples of molecular complexity, such as crude bio-extracts, intact cells and tissues, fibres, foods, feeds, fertilizers and environmental samples. Here we outline examples to promote an understanding of recent applications of solution-state, solid-state, time-domain NMR and magnetic resonance imaging (MRI) to the complex evaluation of organisms, materials and the environment. We also describe useful databases and informatics tools, as well as machine learning techniques for NMR analysis, demonstrating that NMR data science can be used to evaluate the exposome in both the natural environment and human society towards a sustainable future.
Collapse
Affiliation(s)
- Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Shunji Yamada
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Prediction Science Laboratory, RIKEN Cluster for Pioneering Research 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
- Data Assimilation Research Team, RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
14
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Laparra JM, Boscá L. Beyond classic concepts in thyroid homeostasis: Immune system and microbiota. Mol Cell Endocrinol 2021; 533:111333. [PMID: 34048865 DOI: 10.1016/j.mce.2021.111333] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
It has long been known that thyroid hormones have implications for multiple physiological processes and can lead to serious illness when there is an imbalance in its metabolism. The connections between thyroid hormone metabolism and the immune system have been extensively described, as they can participate in inflammation, autoimmunity, or cancer progression. In addition, changes in the normal intestinal microbiota involve the activation of the immune system while triggering different pathophysiological disorders. Recent studies have linked the microbiota and certain bacterial fragments or metabolites to the regulation of thyroid hormones and the general response in the endocrine system. Even if the biology and function of the thyroid gland has attracted more attention due to its pathophysiological importance, there are essential mechanisms and issues related to it that are related to the interplay between the intestinal microbiota and the immune system and must be further investigated. Here we summarize additional information to uncover these relationships, the knowledge of which would help establish new personalized medical strategies.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - José M Laparra
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra. Cantoblanco 8, 28049, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| |
Collapse
|
15
|
Chen X, Lu D, Li Z, Yue W, Wang J, Jiang X, Han H, Wang C. Plant and Animal-Type Feedstuff Shape the Gut Microbiota and Metabolic Processes of the Chinese Mitten Crab Eriocheir sinensis. Front Vet Sci 2021; 8:589624. [PMID: 33575282 PMCID: PMC7870710 DOI: 10.3389/fvets.2021.589624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/05/2021] [Indexed: 01/14/2023] Open
Abstract
In animals, growth and development are strongly correlated with the gut microbiota and metabolic profiles. In this study, gut microbiome communities, metabolic profiles, and growth performance of Eriocheir sinensis under three dietary feed types based on waterweed plants only, freshwater snails only, and waterweed plants combined with freshwater snails were studied by using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry. Results indicated that different feed types dramatically affected the growth performances of E. sinensis by altering the gut microbiota and metabolic profiles. Aquatic plants, such as waterweeds, played essential roles in shaping gut microbiome communities, and the optimal Bacteroides-to-Firmicutes ratio might strongly promote growth performance. Waterweed plants also helped decrease maleficent Proteobacteria caused by excess animal-type feedstuff, such as freshwater snails, and might have positive roles in antibacterial functions in gut. A diet based on waterweeds only resulted in lipid metabolism disorders, which significantly retarded the growth of E. sinensis. In summary, E. sinensis cultured with a diet of waterweeds and freshwater snails showed superior growth performance due to their healthy gut microbiota and metabolic homeostasis. Our findings unveiled the roles of aquatic plants and animal-type food such as freshwater snail in shaping the gut microbiota and metabolic processes and provided guidance for the aquaculture of E. sinensis in future.
Collapse
Affiliation(s)
- Xiaowen Chen
- School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Deyin Lu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Zhihua Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Wucheng Yue
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Jiang
- School of Medicine, Tongji University, Shanghai, China
| | - Hua Han
- School of Medicine, Tongji University, Shanghai, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
16
|
Zheng X, Zhou S, Hu J, Yang R, Gu Z, Qin JG, Ma Z, Yu G. Could the gut microbiota community in the coral trout Plectropomus leopardus (Lacepède, 1802) be affected by antibiotic bath administration? Vet Med Sci 2020; 6:649-657. [PMID: 32307901 PMCID: PMC7397917 DOI: 10.1002/vms3.267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 01/03/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Gut microbiota in fish plays an important role in the nutrient digestion, immune responses and disease resistance. To understand the effect of fluoroquinolone antibiotic bath administration on fish gut microbiota, the gut microbiota community in the coral trout Plectropomus leopardus (Lacepède, 1802) was studied after enrofloxacin bathing treatment at two concentrations (5 and 10 mg/L) and 0 mg/L as control. A total of 90 fish were used in this study, and three replicates were used for each treatment. After a 24‐hr bath, the gut bacterial composition was analyzed using high‐throughput Illumina sequencing. The results indicated that the richness, diversity and the dominant bacterial taxa of P. leopardus gut bacteria were not affected by enrofloxacin bathing (p > .05). Proteobacteria and Firmicutes were the dominant phyla, and Exiguobacterium, Citrobacter, Vibrio, Acinetobacter, Pseudomonas were the dominant genus. The findings in the present study provide an understanding on the relationship between fish gut bacteria community and antibiotic bath administration. The findings of this study are instructive on the antibiotic bath administration applied for the management of P. leopardus health in aquaculture.
Collapse
Affiliation(s)
- Xing Zheng
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Ocean College, Hainan University, Haikou, P. R. China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Shengjie Zhou
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Jing Hu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Rui Yang
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Zhifeng Gu
- Ocean College, Hainan University, Haikou, P. R. China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Gang Yu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| |
Collapse
|
17
|
Foysal MJ, Fotedar R, Siddik MAB, Tay A. Lactobacillus acidophilus and L. plantarum improve health status, modulate gut microbiota and innate immune response of marron (Cherax cainii). Sci Rep 2020; 10:5916. [PMID: 32246011 PMCID: PMC7125160 DOI: 10.1038/s41598-020-62655-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/13/2020] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate the combined effects of two most potent probiotic bacteria Lactobacillus acidophilus and Lactobacillus plantarum on overall health and immune status of freshwater crayfish, marron under laboratory conditions. A total of 36 marron were distributed into six different tanks and two different feeding groups, control and probiotic-fed group. After acclimation, control group was fed with basal diet while probiotic group was fed 109 CFU/mL per kg of bacterial supplemented feed for 60 days. The results showed no significant differences in weight gain, however, probiotic feed significantly enhanced some hemolymph parameters and biochemical composition of tail muscle. Histology data revealed better hepatopancreas health and higher microvilli counts in the marron gut fed probiotic diet. The probiotic bacteria triggered significant shift of microbial communities at different taxa level, mostly those reported as beneficial for crayfish. The probiotic diet also enriched the metabolic functions and genes associated with innate immune response of crayfish. Further correlation analysis revealed significant association of some taxa with increased activity for hemolymph and immune genes. Therefore, dietary Lactobacillus supplementation can modulate the overall health and immunity as well as gut microbial composition and interaction network between gut microbiota and immune system in crayfish.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Muhammad A B Siddik
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Alfred Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
18
|
Foysal MJ, Momtaz F, Kawsar AQMR, Rahman MM, Gupta SK, Tay ACY. Next-generation sequencing reveals significant variations in bacterial compositions across the gastrointestinal tracts of the Indian major carps, rohu (Labeo rohita), catla (Catla catla) and mrigal (Cirrhinus cirrhosis). Lett Appl Microbiol 2019; 70:173-180. [PMID: 31782823 DOI: 10.1111/lam.13256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/25/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
Bacterial communities strongly influence the digestion, health and immune status of fish. This study investigates the microbial distribution of the anterior, middle and distal gut sections of three economically important carp species in Bangladesh, rohu, catla and mrigal (commonly known as Indian major carps), using 16S rRNA-based Illumina sequencing technology. The alpha-diversity measurement with one-way ANOVA indicated high species richness, Shannon and Simpson indices in the middle and distal gut, while the anterior gut of IMCs had the lowest diversity. At the phylum level, there was high abundance of Proteobacteria in the GITs of rohu and mrigal, whereas Fusobacteria was dominant in the anterior and middle guts of catla. At the genus level, diverse microbial communities were identified across the three GIT sections, with six indicator genera found in rohu, catla and mrigal, as revealed by linear discriminant analysis (LDA) at a 0·05 level of significance. Of the 218 genera identified, only 33 were common across the anterior, middle and distal guts of all three species. Bacterial diversity was significantly higher (P < 0·05) in mrigal, followed by catla and rohu, respectively. Alongside the common bacteria Aeromonas, Enterobacter and Serratia, the overwhelming abundance of Cetobacterium, Shewanella and Plesiomonas warrants further investigation. SIGNIFICANCE AND IMPACT OF THE STUDY: This study investigates the microbial communities of the gastrointestinal tracts (GITs) of three Indian major carp (IMC) species-rohu, catla and mrigal, obtained from a polyculture pond under the same feeding regime. Diverse microbial communities were found, with significantly different relative abundances and diversities of phyla and genera. The results provide valuable information on GIT microbial communities that may be useful for nutrition and health management in IMCs.
Collapse
Affiliation(s)
- M J Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - F Momtaz
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - A Q M R Kawsar
- Department of Aquaculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M M Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - S K Gupta
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - A C Y Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
19
|
Foysal MJ, Fotedar R, Tay CY, Gupta SK. Dietary supplementation of black soldier fly ( Hermetica illucens) meal modulates gut microbiota, innate immune response and health status of marron ( Cherax cainii, Austin 2002) fed poultry-by-product and fishmeal based diets. PeerJ 2019; 7:e6891. [PMID: 31149398 PMCID: PMC6534111 DOI: 10.7717/peerj.6891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to evaluate the dietary supplementary effects of black soldier fly (Hermetia illucens) (BSF) meal on the bacterial communities in the distal gut, immune response and growth of freshwater crayfish, marron (Cherax cainii) fed poultry-by-product meal (PBM) as an alternative protein source to fish meal (FM). A total of 64 marron were randomly distributed into 16 different tanks with a density of four marron per tank. After acclimation, a 60-days feeding trial was conducted on marron fed isonitrogenouts and isocalorific diets containing protein source from FM, PBM, and a combination of FM + BSF and PBM + BSF. At the end of the trial, weight gain and growth of marron were found independent of any dietary treatment, however, the two diets supplemented with BSF significantly (P < 0.05) enhanced haemolymph osmolality, lysozyme activity, total haemocyte counts, and protein and energy contents in the tail muscle. In addition, the analysis of microbiota and its predicted metabolic pathways via 16s rRNA revealed a significantly (P < 0.05) higher bacterial activity and gene function correlated to biosynthesis of protein, energy and secondary metabolites in PBM + BSF than other dietary groups. Diets FM + BSF and PBM + BSF were seen to be associated with an up-regulation of cytokine genes in the intestinal tissue of marron. Overall, PBM + BSF diet proved to be a superior diet in terms of improved health status, gut microbiota and up-regulated expression of cytokine genes for marron culture.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Sanjay Kumar Gupta
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
20
|
Butt RL, Volkoff H. Gut Microbiota and Energy Homeostasis in Fish. Front Endocrinol (Lausanne) 2019; 10:9. [PMID: 30733706 PMCID: PMC6353785 DOI: 10.3389/fendo.2019.00009] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
The microorganisms within the intestinal tract (termed gut microbiota) have been shown to interact with the gut-brain axis, a bidirectional communication system between the gut and the brain mediated by hormonal, immune, and neural signals. Through these interactions, the microbiota might affect behaviors, including feeding behavior, digestive/absorptive processes (e.g., by modulating intestinal motility and the intestinal barrier), metabolism, as well as the immune response, with repercussions on the energy homeostasis and health of the host. To date, research in this field has mostly focused on mammals. Studies on non-mammalian models such as fish may provide novel insights into the specific mechanisms involved in the microbiota-brain-gut axis. This review describes our current knowledge on the possible effects of microbiota on feeding, digestive processes, growth, and energy homeostasis in fish, with emphasis on the influence of brain and gut hormones, environmental factors, and inter-specific differences.
Collapse
Affiliation(s)
| | - Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
21
|
Li W, Liu J, Tan H, Yang C, Ren L, Liu Q, Wang S, Hu F, Xiao J, Zhao R, Tao M, Zhang C, Qin Q, Liu S. Genetic Effects on the Gut Microbiota Assemblages of Hybrid Fish From Parents With Different Feeding Habits. Front Microbiol 2018; 9:2972. [PMID: 30564218 PMCID: PMC6288232 DOI: 10.3389/fmicb.2018.02972] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota play critical roles in host nutrition and metabolism. However, little is known about the genetic effects on the gut microbiota assemblages because a suitable model for investigation is lacking. In the present study, we established the reciprocal hybrid fish lineages derived from the parents with different feeding habits, namely, herbivorous blunt snout bream (Megalobrama amblycephala, BSB, 2n = 48) and carnivorous topmouth culter (Culter alburnus, TC, 2n = 48). We investigated the genetic effects on gut microbiota assemblages by using 16S rRNA gene sequencing. The results showed that the gut characteristics (structure, relative gut length, relative gut mass, and Zihler’s index) differed between the two types of hybrids and the two parents. In particular, a strong correlation between genotype and gut microbial assemblages indicated that host genetic (subgenome) significantly altered the gut microbial communities. In addition, the microbial structures (composition and abundance) in the two types of hybrids were more similar to those in BSB parent (P > 0.05) than to those in TC parent (P < 0.05), and the cellulase contents in the gut (produced by gut microbes) also showed the similar results. The results suggested that the host genomic interaction (mainly subgenome domination) had a sizeable effect on shaping the gut microbiota assemblages in reciprocal hybrid fish. This study enriches our understanding of the relationship between host genetic and gut microbiota assemblages, and provides insight into gut microbiota and metabonomics.
Collapse
Affiliation(s)
- Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Junmei Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|