1
|
Bhattarai S, Marsh L, Knight K, Ali L, Gomez A, Sunderhaus A, Abdel Aziz MH. NH125 Sensitizes Staphylococcus aureus to Cell Wall-Targeting Antibiotics through the Inhibition of the VraS Sensor Histidine Kinase. Microbiol Spectr 2023; 11:e0486122. [PMID: 37227302 PMCID: PMC10269531 DOI: 10.1128/spectrum.04861-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Staphylococcus aureus utilizes the two-component regulatory system VraSR to receive and relay environmental stress signals, and it is implicated in the development of bacterial resistance to several antibiotics through the upregulation of cell wall synthesis. VraS inhibition was shown to extend or restore the efficacy of several clinically used antibiotics. In this work, we study the enzymatic activity of the VraS intracellular domain (GST-VraS) to determine the kinetic parameters of the ATPase reaction and characterize the inhibition of NH125 under in vitro and microbiological settings. The rate of the autophosphorylation reaction was determined at different GST-VraS concentrations (0.95 to 9.49 μM) and temperatures (22 to 40°C) as well as in the presence of different divalent cations. The activity and inhibition by NH125, which is a known kinase inhibitor, were assessed in the presence and absence of the binding partner, VraR. The effects of inhibition on the bacterial growth kinetics and gene expression levels were determined. The GST-VraS rate of autophosphorylation increases with temperature and with the addition of VraR, with magnesium being the preferred divalent cation for the metal-ATP substrate complex. The mechanism of inhibition of NH125 was noncompetitive in nature and was attenuated in the presence of VraR. The addition of NH125 in the presence of sublethal doses of the cell wall-targeting antibiotics carbenicillin and vancomycin led to the complete abrogation of Staphylococcus aureus Newman strain growth and significantly decreased the gene expression levels of pbpB, blaZ, and vraSR in the presence of the antibiotics. IMPORTANCE This work characterizes the activity and inhibition of VraS, which is a key histidine kinase in a bacterial two-component system that is involved in Staphylococcus aureus antibiotic resistance. The results show the effect of temperature, divalent ions, and VraR on the activity and the kinetic parameters of ATP binding. The value of the KM of ATP is vital in designing screening assays to discover potent and effective VraS inhibitors with high translational potential. We report the ability of NH125 to inhibit VraS in vitro in a noncompetitive manner and investigate its effect on gene expression and bacterial growth kinetics in the presence and absence of cell wall-targeting antibiotics. NH125 effectively potentiated the effects of the antibiotics on bacterial growth and altered the expression of the genes that are regulated by VraS and are involved in mounting a resistance to antibiotics.
Collapse
Affiliation(s)
- Shrijan Bhattarai
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - Lane Marsh
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - Kelsey Knight
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - Antonio Gomez
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - Allison Sunderhaus
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - May H. Abdel Aziz
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
2
|
Poshvina DV, Dilbaryan DS, Vasilchenko AS. Gausemycin A-Resistant Staphylococcus aureus Demonstrates Affected Cell Membrane and Cell Wall Homeostasis. Microorganisms 2023; 11:1330. [PMID: 37317304 PMCID: PMC10220612 DOI: 10.3390/microorganisms11051330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Antibiotic resistance is a significant and pressing issue in the medical field, as numerous strains of infectious bacteria have become resistant to commonly prescribed antibiotics. Staphylococcus aureus is a bacterium that poses a grave threat, as it is responsible for a large number of nosocomial infections and has high mortality rates worldwide. Gausemycin A is a new lipoglycopeptide antibiotic that has considerable efficacy against multidrug-resistant S. aureus strains. Although the cellular targets of gausemycin A have been previously identified, detailing the molecular processes of action is still needed. We performed gene expression analysis to identify molecular mechanisms that may be involved in bacterial resistance to gausemycin A. In the present study, we observed that gausemycin A-resistant S. aureus in the late-exponential phase showed an increased expression of genes involved in cell wall turnover (sceD), membrane charge (dltA), phospholipid metabolism (pgsA), the two-component stress-response system (vraS), and the Clp proteolytic system (clpX). The increased expression of these genes implies that changes in the cell wall and cell membrane are essential for the bacterial resistance to gausemycin A. In the stationary phase, we observed a decrease in the expression of genes involved in the phospholipid metabolism (mprF) and Clp proteolytic system (clpX).
Collapse
Affiliation(s)
| | | | - Alexey S. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (D.V.P.); (D.S.D.)
| |
Collapse
|
3
|
Current molecular approach for diagnosis of MRSA: a meta-narrative review. Drug Target Insights 2022; 16:88-96. [PMID: 36761068 PMCID: PMC9906022 DOI: 10.33393/dti.2022.2522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction: Detection and diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) are important in ensuring a correct and effective treatment, further reducing its spread. A wide range of molecular approaches has been used for the diagnosis of antimicrobial resistance (AMR) in MRSA. This review aims to study and appraise widely used molecular diagnostic methods for detecting MRSA. Methods: This meta-narrative review was performed by searching PubMed using the following search terms: (molecular diagnosis) AND (antimicrobial resistance) AND (methicillin-resistant Staphylococcus aureus). Studies using molecular diagnostic techniques for the detection of MRSA were included, while non-English language, duplicates and non-article studies were excluded. After reviewing the libraries and a further manual search, 20 studies were included in this article. RAMESES publication standard for narrative reviews was used for this synthesis. Results: A total of 20 full papers were reviewed and appraised in this synthesis, consisting of PCR technique (n = 7), deoxyribonucleic acid (DNA) Microarray (n = 1), DNA sequencing (n = 2), Xpert MRSA/SA BC assay (n = 2), matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) (n = 2), MLST (n = 4), SCCmec typing (n = 1) and GENECUBE (n = 1). Discussion: Different diagnostic methods used to diagnose MRSA have been studied in this review. This study concludes that PCR has been extensively used due to its higher sensitivity and cost-effectiveness in the past five years
Collapse
|
4
|
Malachowa N, McGuinness W, Kobayashi SD, Porter AR, Shaia C, Lovaglio J, Smith B, Rungelrath V, Saturday G, Scott DP, Falugi F, Missiakas D, Schneewind O, DeLeo FR. Toward Optimization of a Rabbit Model of Staphylococcus aureus (USA300) Skin and Soft Tissue Infection. Microbiol Spectr 2022; 10:e0271621. [PMID: 35389241 PMCID: PMC9045089 DOI: 10.1128/spectrum.02716-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus remains a leading cause of skin and soft tissue infections (SSTIs) globally. In the United States, many of these infections are caused by isolates classified as USA300. Our understanding of the success of USA300 as a human pathogen is due in part to data obtained from animal infection models, including rabbit SSTI models. These animal models have been used to study S. aureus virulence and pathogenesis and to gain an enhanced understanding of the host response to infection. Although significant knowledge has been gained, the need to use a relatively high inoculum of USA300 (1 × 108 to 5 × 108 CFU) is a caveat of these infection models. As a step toward addressing this issue, we created mutations in USA300 that mimic those found in S. aureus strains with naturally occurring rabbit tropism-namely, single nucleotide polymorphisms in dltB and/or deletion of rot. We then developed a rabbit SSTI model that utilizes an inoculum of 106 USA300 CFU to cause reproducible disease and tested whether primary SSTI protects rabbits against severe reinfection caused by the same strain. Although there was modest protection against severe reinfection, primary infection and reinfection with rabbit-tropic USA300 strains failed to increase the overall level of circulating anti-S. aureus antibodies significantly. These findings provide additional insight into the host response to S. aureus. More work is needed to further develop a low-inoculum infection model that can be used to better test the potential of new therapeutics or vaccine target antigens. IMPORTANCE Animal models of S. aureus infection are important for evaluating bacterial pathogenesis and host immune responses. These animal infection models are often used as an initial step in the testing of vaccine antigens and new therapeutics. The extent to which animal models of S. aureus infection approximate human infections remains a significant consideration for translation of results to human clinical trials. Although significant progress has been made with rabbit models of S. aureus infection, one concern is the high inoculum needed to cause reproducible disease. Here, we generated USA300 strains that have tropism for rabbits and developed a rabbit SSTI model that uses fewer CFU than previous models.
Collapse
Affiliation(s)
- Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Will McGuinness
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Scott D. Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Adeline R. Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Brian Smith
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Viktoria Rungelrath
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Fabiana Falugi
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Frank R. DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
5
|
Ledger EVK, Sabnis A, Edwards AM. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001136. [PMID: 35118938 PMCID: PMC8941995 DOI: 10.1099/mic.0.001136] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
The polymyxin and lipopeptide classes of antibiotics are membrane-targeting drugs of last resort used to treat infections caused by multi-drug-resistant pathogens. Despite similar structures, these two antibiotic classes have distinct modes of action and clinical uses. The polymyxins target lipopolysaccharide in the membranes of most Gram-negative species and are often used to treat infections caused by carbapenem-resistant species such as Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa. By contrast, the lipopeptide daptomycin requires membrane phosphatidylglycerol for activity and is only used to treat infections caused by drug-resistant Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. However, despite having distinct targets, both antibiotic classes cause membrane disruption, are potently bactericidal in vitro and share similarities in resistance mechanisms. Furthermore, there are concerns about the efficacy of these antibiotics, and there is increasing interest in using both polymyxins and daptomycin in combination therapies to improve patient outcomes. In this review article, we will explore what is known about these distinct but structurally similar classes of antibiotics, discuss recent advances in the field and highlight remaining gaps in our knowledge.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| | - Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| |
Collapse
|
6
|
Hendriks A, van Dalen R, Ali S, Gerlach D, van der Marel GA, Fuchsberger FF, Aerts PC, de Haas CJ, Peschel A, Rademacher C, van Strijp JA, Codée JD, van Sorge NM. Impact of Glycan Linkage to Staphylococcus aureus Wall Teichoic Acid on Langerin Recognition and Langerhans Cell Activation. ACS Infect Dis 2021; 7:624-635. [PMID: 33591717 PMCID: PMC8023653 DOI: 10.1021/acsinfecdis.0c00822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Staphylococcus
aureus is the leading cause of
skin and soft tissue infections. It remains incompletely understood
how skin-resident immune cells respond to invading S. aureus and contribute to an effective immune response. Langerhans cells
(LCs), the only professional antigen-presenting cell type in the epidermis,
sense S. aureus through their pattern-recognition
receptor langerin, triggering a proinflammatory response. Langerin
recognizes the β-1,4-linked N-acetylglucosamine
(β1,4-GlcNAc) but not α-1,4-linked GlcNAc (α1,4-GlcNAc)
modifications, which are added by dedicated glycosyltransferases TarS
and TarM, respectively, on the cell wall glycopolymer wall teichoic
acid (WTA). Recently, an alternative WTA glycosyltransferase, TarP,
was identified, which also modifies WTA with β-GlcNAc but at
the C-3 position (β1,3-GlcNAc) of the WTA ribitol phosphate
(RboP) subunit. Here, we aimed to unravel the impact of β-GlcNAc
linkage position for langerin binding and LC activation. Using genetically
modified S. aureus strains, we observed that langerin
similarly recognized bacteria that produce either TarS- or TarP-modified
WTA, yet tarP-expressing S. aureus induced increased cytokine production and maturation of in vitro-generated LCs compared to tarS-expressing S. aureus. Chemically synthesized WTA
molecules, representative of the different S. aureus WTA glycosylation patterns, were used to identify langerin-WTA binding
requirements. We established that β-GlcNAc is sufficient to
confer langerin binding, thereby presenting synthetic WTA molecules
as a novel glycobiology tool for structure-binding studies and for
elucidating S. aureus molecular pathogenesis. Overall,
our data suggest that LCs are able to sense all β-GlcNAc-WTA
producing S. aureus strains, likely performing an
important role as first responders upon S. aureus skin invasion.
Collapse
Affiliation(s)
- Astrid Hendriks
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Glaxo-Smith Kline, 53100 Siena, Italy
| | - Rob van Dalen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Sara Ali
- Leiden Institute of Chemistry, Leiden University, 2311 EZ Leiden, The Netherlands
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72074 Tübingen, Germany
- Partner Site Tübingen, German Centre for Infection Research (DZIF), 72074 Tübingen, Germany
| | | | | | - Piet C. Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Carla J.C. de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72074 Tübingen, Germany
- Partner Site Tübingen, German Centre for Infection Research (DZIF), 72074 Tübingen, Germany
| | | | - Jos A.G. van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jeroen D.C. Codée
- Leiden Institute of Chemistry, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Nina M. van Sorge
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
7
|
Ji S, Jiang S, Wei X, Sun L, Wang H, Zhao F, Chen Y, Yu Y. In-Host Evolution of Daptomycin Resistance and Heteroresistance in Methicillin-Resistant Staphylococcus aureus Strains From Three Endocarditis Patients. J Infect Dis 2021; 221:S243-S252. [PMID: 32176794 DOI: 10.1093/infdis/jiz571] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Daptomycin is considered an important alternative for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). However, treatment failures associated with daptomycin nonsusceptibility isolates have been reported in recent years. METHODS In this study, we investigated serial MRSA strains from 3 endocarditis patients who had breakthrough bacteremia, despite treatment with daptomycin. The strains were analyzed by whole-genome sequencing, molecular typing, and mutation screening. Population analysis and growth curves were also applied to evaluate heteroresistance and fitness cost. RESULTS This series of MRSA strains belonged to ST5, ST59, and ST4513. The daptomycin minimum inhibitory concentrations for these MRSA strains increased after daptomycin exposure, whereas daptomycin-resistant strains emerged with mutations in mprF and yycH. Population analysis profiling results demonstrated the presence of a daptomycin-heteroresistant subpopulation among daptomycin-susceptible MRSA strains, and no significant fitness cost was observed within these heteroresistant MRSA clones. CONCLUSIONS We confirmed that daptomycin heteroresistance and resistance could emerge rapidly in MRSA strains of different lineages after daptomycin exposure. Further studies to fully understand the mechanism(s) underlying daptomycin resistance in MRSA are required.
Collapse
Affiliation(s)
- Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xiang Wei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Feng Zhao
- Department of Clinical laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Nakamura M, Kawada H, Uchida H, Takagi Y, Obata S, Eda R, Hanaki H, Kitasato H. Single nucleotide polymorphism leads to daptomycin resistance causing amino acid substitution-T345I in MprF of clinically isolated MRSA strains. PLoS One 2021; 16:e0245732. [PMID: 33481910 PMCID: PMC7822245 DOI: 10.1371/journal.pone.0245732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
Daptomycin (DAP) is one of the most potent antibiotics used for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. Due to an increase in its administration for combating MRSA infections, DAP non-susceptible (DAP-NS) MRSA strains have recently been reported in clinical settings. The presence of single nucleotide polymorphisms (SNPs) in the multiple peptide resistance factor (mprF) gene is the most frequently reported cause for the evolution of DAP-NS MRSA strains; however, there are some variations of SNPs that could lead to DAP-NS. In this study, we used two clinical MRSA strains, including DAP susceptible (DAP-S) and DAP-NS, isolated from the same patient at different time points. We introduced T345I SNP to mprF of the DAP-S MRSA strain using the gene exchange method with pIMAY vector. Further, we investigated the phenotype of the mutant strain, including drug susceptibility, cell surface positive charge, and growth speed. The mutant strain exhibited (i) resistance to DAP, (ii) up-regulation of positive surface charge, (iii) slower growth speed, and (iv) thickened cell walls. Hence, the SNP in mprF may have caused an up-regulation in MprF function, with a subsequent increase in positive surface charge. Cumulatively, these results demonstrated that the T345I amino acid substitution in mprF represents one of the primary causes of DAP-NS in MRSA strains.
Collapse
Affiliation(s)
- Masaki Nakamura
- Department of Microbiology, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
- Research Center for Infection control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
- * E-mail:
| | - Hayato Kawada
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| | - Hiroki Uchida
- Department of Microbiology, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Yusuke Takagi
- Department of Microbiology, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Shuichi Obata
- Department of Anatomical Sciences, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Kanagawa, Japan
| | - Ryotaro Eda
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| | - Hideaki Hanaki
- Research Center for Infection control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Hidero Kitasato
- Department of Microbiology, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| |
Collapse
|
9
|
Tkhilaishvili T, Wang L, Tavanti A, Trampuz A, Di Luca M. Antibacterial Efficacy of Two Commercially Available Bacteriophage Formulations, Staphylococcal Bacteriophage and PYO Bacteriophage, Against Methicillin-Resistant Staphylococcus aureus: Prevention and Eradication of Biofilm Formation and Control of a Systemic Infection of Galleria mellonella Larvae. Front Microbiol 2020; 11:110. [PMID: 32117136 PMCID: PMC7018685 DOI: 10.3389/fmicb.2020.00110] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Sessile bacteria growing on surfaces are more resistant to standard antibiotics than their planktonic counterpart. Due to their antimicrobial properties, bacteriophages have re-emerged as a promising approach to treat bacterial biofilm-associated infections. Here, we evaluated the ability of two commercially available phage formulations, Staphylococcal bacteriophage (containing the monophage Sb-1) and PYO bacteriophage (a polyphage), in preventing and eradicating an in vitro biofilm of methicillin-resistant Staphylococcus aureus (MRSA) by isothermal microcalorimetry and high-resolution confocal laser scanning microscopy (CLSM). Moreover, to assess the potential in vivo efficacy of both phage preparations, a Galleria mellonella model of MRSA systemic infection was used. Microcalorimetry measurement showed that 107 PFU/ml (the highest tested titer) of both phage formulations were able to inhibit planktonic growth in a concentration-dependent manner. However, MRSA biofilm was eradicated only by co-incubation of 5–7 days with the highest phage titers, respectively. In the experiments of biofilm prevention, isothermal microcalorimetry revealed that the heat production was completely abolished in the presence of sub-inhibitory titers (104 PFU/ml) of phages. These data were also confirmed by confocal laser scanning microscopy. Both phage formulations increased the survival of G. mellonella larvae preventing or treating MRSA infection compared to untreated control. In conclusion, tested phage formulations are promising for preventing device colonization and killing biofilm bacteria attached on a surface. Novel strategies for direct coating and release of phages from material should be investigated.
Collapse
Affiliation(s)
- Tamta Tkhilaishvili
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lei Wang
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mariagrazia Di Luca
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Kuroda M, Sekizuka T, Matsui H, Ohsuga J, Ohshima T, Hanaki H. IS 256-Mediated Overexpression of the WalKR Two-Component System Regulon Contributes to Reduced Vancomycin Susceptibility in a Staphylococcus aureus Clinical Isolate. Front Microbiol 2019; 10:1882. [PMID: 31474962 PMCID: PMC6702299 DOI: 10.3389/fmicb.2019.01882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/30/2019] [Indexed: 11/13/2022] Open
Abstract
Vancomycin (VAN)-intermediate-resistant Staphylococcus aureus (VISA) is continually isolated globally, with a systematic review suggesting a prevalence of 2% in all blood culture samples. Most VISA strains exhibit common characteristics, such as a thickened cell wall, reduced autolysis, and attenuated virulence. Here, based on multi-omics approaches, we have characterized clinical VISA isolates obtained through prolonged antimicrobial treatment in a single patient. All VISA isolates were isogenic, based on multi-locus sequence typing (MLST) ST5, SCCmec type II (2A), and spa type t17639. Core-genome single nucleotide variations (SNVs) found among thirteen isolates during the patient's hospitalization, indicated clonality, but not notable genetic features of the VISA phenotype. We determined the complete genome sequence of VAN-susceptible strain KG-03 (minimum inhibitory concentration [MIC] 0.5 μg/mL) and two VISA strains, KG-18 and KG-22 (MIC 8.0 and 4.0 μg/mL, respectively). Comparative genome analysis showed remarkable strain-specific IS256 insertions. RNA-Seq transcriptome analysis revealed IS256-mediated overexpression of the walKR two-component system in VISA KG-18, possibly leading to modulation of cell wall integrity (lytM and sceD) and surface charge (mprF and dltABCD). In addition, secretome analysis indicated that cell wall-anchored proteins (Protein A, SasG, and SdrD) were significantly decreased. KG-18 and KG-22 exhibit thickened cell wall, and are relatively resistant to lysostaphin, which cleaves a staphylococcus-unique pentaglycine chain in the peptidoglycan. We conclude that KG-18 achieved reduced susceptibility to VAN by IS256-mediated WalKR overexpression, leading to a markedly thickened cell wall for trapping free VAN molecules with redundant D-Ala-D-Ala targets. In addition, a positively charged surface with lysyl-phosphatidylglycerol and depolarization of wall teichoic acid could contribute to inhibiting cationic daptomycin and VAN antimicrobial activity. Comparative omics approaches in this study strongly suggest that fully complete and annotated genome sequences will be indispensable for characterizing overall VISA phenotype.
Collapse
Affiliation(s)
- Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Hidehito Matsui
- Infection Control Research Center, Kitasato University, Minato-ku, Japan
| | - Jun Ohsuga
- Department of Clinical Laboratory, Tokai University Oiso Hospital, Kanagawa, Japan
| | - Toshio Ohshima
- Department of Medical Risk and Crisis Management, Chiba Institute of Science, Chiba, Japan
| | - Hideaki Hanaki
- Infection Control Research Center, Kitasato University, Minato-ku, Japan
| |
Collapse
|
11
|
Lasek-Nesselquist E, Lu J, Schneider R, Ma Z, Russo V, Mishra S, Pai MP, Pata JD, McDonough KA, Malik M. Insights Into the Evolution of Staphylococcus aureus Daptomycin Resistance From an in vitro Bioreactor Model. Front Microbiol 2019; 10:345. [PMID: 30891010 PMCID: PMC6413709 DOI: 10.3389/fmicb.2019.00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/08/2019] [Indexed: 02/02/2023] Open
Abstract
The extensive use of daptomycin for treating complex methicillin-resistant Staphylococcus aureus infections has led to the emergence of daptomycin-resistant strains. Although genomic studies have identified mutations associated with daptomycin resistance, they have not necessarily provided insight into the evolution and hierarchy of genetic changes that confer resistance, particularly as antibiotic concentrations are increased. Additionally, plate-dependent in vitro analyses that passage bacteria in the presence of antibiotics can induce selective pressures unrelated to antibiotic exposure. We established a continuous culture bioreactor model that exposes S. aureus strain N315 to increasing concentrations of daptomycin without the confounding effects of nutritional depletion to further understand the evolution of drug resistance and validate the bioreactor as a method that produces clinically relevant results. Samples were collected every 24 h for a period of 14 days and minimum inhibitory concentrations were determined to monitor the acquisition of daptomycin resistance. The collected samples were then subjected to whole genome sequencing. The development of daptomycin resistance in N315 was associated with previously identified mutations in genes coding for proteins that alter cell membrane charge and composition. Although genes involved in metabolic functions were also targets of mutation, the common route to resistance relied on a combination of mutations at a few key loci. Tracking the frequency of each mutation throughout the experiment revealed that mutations need not arise progressively in response to increasing antibiotic concentrations and that most mutations were present at low levels within populations earlier than would be recorded based on single-nucleotide polymorphism (SNP) filtering criteria. In contrast, a serial-passaged population showed only one mutation in a gene associated with resistance and provided limited detail on the changes that occur upon exposure to higher drug dosages. To conclude, this study demonstrates the successful in vitro modeling of antibiotic resistance in a bioreactor and highlights the evolutionary paths associated with the acquisition of daptomycin non-susceptibility.
Collapse
Affiliation(s)
| | - Jackson Lu
- Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Ryan Schneider
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, NY, United States
| | - Zhuo Ma
- Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Vincenzo Russo
- Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Smruti Mishra
- Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Manjunath P Pai
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Janice D Pata
- Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, NY, United States
| | - Kathleen A McDonough
- Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, NY, United States
| | - Meenakshi Malik
- Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| |
Collapse
|
12
|
Sabat AJ, Tinelli M, Grundmann H, Akkerboom V, Monaco M, Del Grosso M, Errico G, Pantosti A, Friedrich AW. Daptomycin Resistant Staphylococcus aureus Clinical Strain With Novel Non-synonymous Mutations in the mprF and vraS Genes: A New Insight Into Daptomycin Resistance. Front Microbiol 2018; 9:2705. [PMID: 30459746 PMCID: PMC6232378 DOI: 10.3389/fmicb.2018.02705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/23/2018] [Indexed: 11/25/2022] Open
Abstract
Objectives: Daptomycin (DAP) resistance in Staphylococcus aureus is uncommon but there are increasing reports of the emergence of resistance during DAP therapy. Most clinical DAP-resistant S. aureus isolates investigated carried mutations in the mprF gene. The aim of this study was to identify mutations between a clinical pair of methicillin-susceptible S. aureus (MSSA) isolates (DAP-susceptible and DAP-resistant). Additionally, the activity of genes previously associated with DAP resistance was assessed. Materials and Methods: Two MSSA isolates from patient with left-sided endocarditis were analyzed by whole genome sequencing (WGS) and reverse transcription-quantitative real-time PCR (RT-qPCR). The first isolate, DAP-susceptible, was obtained before initiation of treatment and the second isolate, DAP-resistant, was recovered after 4 weeks of DAP therapy. Results: Comparison of complete genomes of DAP-susceptible and its DAP-resistant variant identified two non-synonymous and one synonymous mutations. The non-synonymous mutations consisted of a S829L substitution in mprF and a T331I substitution in vraS. The RT-qPCR experiments revealed an increased expression of vraS, dltA, mprF, and sceD genes in DAP-resistant variant. Strikingly, the expression of dltA and mprF genes was significantly downregulated by DAP. Conclusion: The mprF and vraS genes were previously associated with DAP resistance, however, none of the mutations described in this study had been previously identified and linked to DAP resistance. Moreover, we provide a new insight into the DAP action on S. aureus, in which the expression of key genes in DAP resistance is decreased by the antibiotic.
Collapse
Affiliation(s)
- Artur J Sabat
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco Tinelli
- Division of Infectious and Tropical Diseases, Hospital of Lodi, Lodi, Italy
| | - Hajo Grundmann
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Viktoria Akkerboom
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Monica Monaco
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Del Grosso
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giulia Errico
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Annalisa Pantosti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Alexander W Friedrich
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
13
|
Kanesaka I, Fujisaki S, Aiba Y, Watanabe S, Mikawa T, Katsuse AK, Takahashi H, Cui L, Kobayashi I. Characterization of compensatory mutations associated with restoration of daptomycin-susceptibility in daptomycin non-susceptible methicillin-resistant Staphylococcus aureus and the role mprF mutations. J Infect Chemother 2018; 25:1-5. [PMID: 30322736 DOI: 10.1016/j.jiac.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/26/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
The objective of this study was to investigate the underlying mechanism explaining reversion of clinical DAP non-susceptible (NS) MRSA isolates to DAP-susceptible (S) by analysis of genomic and cell wall characteristics of clinical DAP-NS MRSA and DAP-S MRSA isolates as well as in vitro revertant DAP-S MRSA using whole genome sequencing (WGS) and analysis of biological properties. WGS of the 4 clinical DAP-NS MRSA revealed mprF mutations resulting in amino acid substitutions or deletion. These same amino acid substitutions and deletion were also observed in the 4 in vitro revertant DAP-S strains. While WGS identified the presence of the same mprF mutations in both the DAP-NS and in vitro DAP-S revertant strains, new mutations were also detected in other genes and intergenic regions of in vitro DAP-S revertant strains. Transmission electron microscopy to assess cell-wall (CW) thickness of 4 sets strains (pre- and post-DAP therapy isolates and in vitro DAP-S revertant) showed that 3 of the 4 isolates developed increased thickness of the CW after DAP therapy. After reversion to DAP susceptibility, CW thickness was decreased to the same level as DAP-S MRSA. Our results indicate that in vitro conversion of DAP-NS MRSA to DAP-S is independent of mprF gene mutations and may be partially explained by a change in CW thickness. However, as some strains showed no change in the CW, further studies are required to elucidate the different mechanisms of resistance to DAP, and factors for conversion of DAP-NS to DAP-S.
Collapse
Affiliation(s)
- Izumo Kanesaka
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1, Miyama, Funabashi-shi, Chiba, 274-8510, Japan; Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo, 143-0015, Japan
| | - Shingo Fujisaki
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1, Miyama, Funabashi-shi, Chiba, 274-8510, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi, Tochigi, 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi, Tochigi, 329-0498, Japan
| | - Takashi Mikawa
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo, 143-0015, Japan
| | - Akiko Kanayama Katsuse
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo, 143-0015, Japan
| | - Hiroshi Takahashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo, 143-0015, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi, Tochigi, 329-0498, Japan
| | - Intetsu Kobayashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo, 143-0015, Japan.
| |
Collapse
|