1
|
Franco MS, Raulefs S, Schilling D, Combs SE, Schmid TE. Impact of Radiation on Invasion and Migration of Glioma In Vitro and In Vivo. Cancers (Basel) 2024; 16:3900. [PMID: 39682088 DOI: 10.3390/cancers16233900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma (GBM) constitutes the most common primary brain tumor and it remains incurable despite therapeutic advances. The high infiltration/invasion potential of GBM cells is considered to be one of the reasons for the inevitable recurrence of the disease. Radiotherapy (RT) is part of the standard care for patients with GBM, and its benefits on overall survival are extensively reported. However, numerous preclinical studies show that X-ray irradiation can enhance the motility of GBM cells. In the present review, we bring together state-of-the-art research on the impact of radiation on GBM cell motility. The mechanisms through which irradiation impacts the brain tumor microenvironment and the tumor cells themselves, leading to more aggressive/invasive tumors, are described. Finally, we summarize potential pharmacological strategies to overcome this problem. Clinical data validating the occurrence of these processes are urgently needed as they could be of great value for patient outcomes. With this comprehensive review, we expect to highlight the need for methods which allow for monitoring the post-irradiation invasive behavior of GBM in patients.
Collapse
Affiliation(s)
- Marina Santiago Franco
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Susanne Raulefs
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Daniela Schilling
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Stephanie E Combs
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Thomas E Schmid
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| |
Collapse
|
2
|
Sezer A, Ozalp H, Imge Ucar-Goker B, Gencer A, Ozogul E, Cennet O, Yazici G, Arica Yegin B, Yabanoglu-Ciftci S. Protective role of transforming growth factor-Β3 (TGF-Β3) in the formation of radiation-induced capsular contracture around a breast implant: In vivo experimental study. Int J Pharm 2024; 665:124715. [PMID: 39284424 DOI: 10.1016/j.ijpharm.2024.124715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Postmastectomy radiotherapy causes capsular contracture due to fibroproliferation of the capsular tissue around the implant. In fibrosis, unlike normal wound healing, structural and functional disorders are observed in the tissues caused by excessive/irregular accumulation of extracellular matrix proteins. It has been reported that transforming growth factor-β3 (TGF-β3) prevents and reverses fibrosis in various tissues or provides scarless healing with its antifibrotic effect. Additionally, TGF-β3 has been shown to reduce fibrosis in radiotherapy-induced fibrosis syndrome. However, no study in the literature investigates the effects of exogenously applied TGF-β3 on capsular contracture in aesthetic or reconstructive breast implant application. TGF-β3, which has a very short half-life, has low bioavailability with parenteral administration. Within the scope of this study, free TGF-β3 was loaded into the nanoparticles to increase its low bioavailability and extend its duration of action by providing controlled release. The aim of this study is to investigate the preventive/improving effects of radiation induced capsular contracture using chitosan film formulations containing TGF-β3 loaded poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles in implant-based breast reconstruction. In the characterization studies of nanoparticles, the particle size and zeta potential of the TGF-β3-loaded PLGA-b-PEG nanoparticle formulation selected to be used in the treatment group were found to be 123.60 ± 2.09 nm and -34.87 ± 1.42 mV, respectively. The encapsulation efficiency of the formulation was calculated as 99.91 %. A controlled release profile was obtained in in vitro release studies. Chitosan film formulations containing free TGF-β3 or TGF-β3-loaded PLGA-b-PEG nanoparticles were used in in vivo studies. In animal studies, rats were randomly distributed into 6 groups (n = 8) as sham, implant, implant + radiotherapy, implant + radiotherapy + chitosan film containing unloaded nanoparticles, implant + radiotherapy + chitosan film containing free TGF-β3, implant + radiotherapy + chitosan film containing TGF-β3 loaded nanoparticle. In all study groups, a 2 cm incision was made along the posterior axillary line at the thoracic vertebral level in rats to reach the lateral edge of the latissimus dorsi. The fascial attachment to the chest wall was then bluntly dissected to create a pocket for the implants. In the treatment groups, the wound was closed after films were placed on the outer surface of the implants. After administering prophylactic antibiotics, rats were subjected to irradiation with 10 Gy photon beams targeted to each implant site. Each implant and the surrounding excised tissue were subjected to the necessary procedures for histological (capsule thickness, cell density), immunohistochemical, and biochemical (α-SMA, vimentin, collagen type I and type III, TGF-β1 and TGF-β3: expression level/protein level) examinations. It was determined that the levels of TGF-β1 and TGF-β3 collagen type III, which decreased as a result of radiotherapy, were brought to the control level with free TGF-β3 film and TGF-β3 nanoparticle film formulations. Histological analyses, consistent with biochemical analyses, showed that thick collagen and fibrosis, which increased with radiotherapy, were brought to the control level with free TGF-β3 film and TGF-β3 nanoparticle film treatments. In biochemical analyses, the decrease in thick collagen was compatible with the decrease in the collagen type I/type III ratio in the free TGF-β3 film and TGF-β3 nanoparticle film groups. Changes in protein expression show that TGF-β3 loaded nanoparticles are more successful than free TGF-β3 in wound healing. In line with these results and the literature, it is thought that the balance of TGF-β1 and TGF-β3 should be maintained to ensure scarless wound healing with no capsule contracture.
Collapse
Affiliation(s)
- Aysima Sezer
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, 06100 Ankara, Turkey
| | - Hulya Ozalp
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 06100 Ankara, Turkey
| | - Bercis Imge Ucar-Goker
- Kütahya Health Sciences University, Faculty of Medicine, Department of General Surgery, 43000 Kutahya, Turkey
| | - Ayse Gencer
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Ece Ozogul
- Hacettepe University, Department of Pathology, 06100 Ankara, Turkey
| | - Omer Cennet
- Hacettepe University, Faculty of Medicine, Department of General Surgery, 06100 Ankara, Turkey
| | - Gozde Yazici
- Hacettepe University, Faculty of Medicine, Department of Radiation Oncology, 06100 Ankara, Turkey
| | - Betul Arica Yegin
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 06100 Ankara, Turkey; Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Samiye Yabanoglu-Ciftci
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, 06100 Ankara, Turkey; Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 06100 Ankara, Turkey; Hacettepe University, Institute of Health Sciences, Department of One Health, 06100 Ankara, Turkey.
| |
Collapse
|
3
|
Koning T, Calaf GM. Genes Related to Motility in an Ionizing Radiation and Estrogen Breast Cancer Model. BIOLOGY 2024; 13:849. [PMID: 39596804 PMCID: PMC11591951 DOI: 10.3390/biology13110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Breast cancer is a major global health concern as it is the primary cause of cancer death for women. Environmental radiation exposure and endogenous factors such as hormones increase breast cancer risk, and its development and spread depend on cell motility and migration. The expression of genes associated with cell motility, such as ADAM12, CYR61, FLRT2, SLIT2, VNN1, MYLK, MAP1B, and TUBA1A, was analyzed in an experimental breast cancer model induced by radiation and estrogen. The results showed that TUBA1A, SLIT2, MAP1B, MYLK, and ADAM12 gene expression increased in the irradiated Alpha3 cell line but not in the control or the malignant Tumor2 cell line. Bioinformatic analysis indicated that FLERT2, SLIT2, VNN1, MAP1B, MYLK, and TUBA1A gene expressions were found to be higher in normal tissue than in tumor tissue of breast cancer patients. However, ADAM12 and CYR61 expressions were found to be higher in tumors than in normal tissues, and they had a negative correlation with ESR1 gene expression. Concerning ESR2 gene expression, there was a negative correlation with CYR61, but there was a positive correlation with FLRT2, MYLK, MAP1B, and VNN1. Finally, a decreased survival rate was observed in patients exhibiting high expression levels of TUBA1A and MAP1B. These genes also showed a negative ER status, an important parameter for endocrine therapy. The genes related to motility were affected by ionizing radiation, confirming its role in the initiation process of breast carcinogenesis. In conclusion, the relationship between the patient's expression of hormone receptors and genes associated with cell motility presents a novel prospect for exploring therapeutic strategies.
Collapse
Affiliation(s)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile;
| |
Collapse
|
4
|
Di Giuseppe F, Ricci-Vitiani L, Pallini R, Di Pietro R, Di Iorio P, Ascani G, Ciccarelli R, Angelucci S. Changes Induced by P2X7 Receptor Stimulation of Human Glioblastoma Stem Cells in the Proteome of Extracellular Vesicles Isolated from Their Secretome. Cells 2024; 13:571. [PMID: 38607010 PMCID: PMC11011151 DOI: 10.3390/cells13070571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Extracellular vesicles (EVs) are secreted from many tumors, including glioblastoma multiforme (GBM), the most common and lethal brain tumor in adults, which shows high resistance to current therapies and poor patient prognosis. Given the high relevance of the information provided by cancer cell secretome, we performed a proteomic analysis of microvesicles (MVs) and exosomes (EXOs) released from GBM-derived stem cells (GSCs). The latter, obtained from the brain of GBM patients, expressed P2X7 receptors (P2X7Rs), which positively correlate with GBM growth and invasiveness. P2X7R stimulation of GSCs caused significant changes in the EV content, mostly ex novo inducing or upregulating the expression of proteins related to cytoskeleton reorganization, cell motility/spreading, energy supply, protection against oxidative stress, chromatin remodeling, and transcriptional regulation. Most of the induced/upregulated proteins have already been identified as GBM diagnostic/prognostic factors, while others have only been reported in peripheral tumors. Our findings indicate that P2X7R stimulation enhances the transport and, therefore, possible intercellular exchange of GBM aggressiveness-increasing proteins by GSC-derived EVs. Thus, P2X7Rs could be considered a new druggable target of human GBM, although these data need to be confirmed in larger experimental sets.
Collapse
Affiliation(s)
- Fabrizio Di Giuseppe
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| | - Lucia Ricci-Vitiani
- Department of Medical, Oral and Biotechnological Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Roberto Pallini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Rome, Italy;
| | - Roberta Di Pietro
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy;
| | - Patrizia Di Iorio
- Department of Medicine and Aging Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Giuliano Ascani
- UOSD Maxillofacial Surgery, Azienda Sanitaria Locale di Pescara, Via Renato Paolini 47, 65124 Pescara, Italy;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
| | - Stefania Angelucci
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| |
Collapse
|
5
|
Li Q, Huang L, Ding Y, Sherchan P, Peng W, Zhang JH. Recombinant Slit2 suppresses neuroinflammation and Cdc42-mediated brain infiltration of peripheral immune cells via Robo1-srGAP1 pathway in a rat model of germinal matrix hemorrhage. J Neuroinflammation 2023; 20:249. [PMID: 37899442 PMCID: PMC10613398 DOI: 10.1186/s12974-023-02935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Germinal matrix hemorrhage (GMH) is a devastating neonatal stroke, in which neuroinflammation is a critical pathological contributor. Slit2, a secreted extracellular matrix protein, plays a repulsive role in axon guidance and leukocyte chemotaxis via the roundabout1 (Robo1) receptor. This study aimed to explore effects of recombinant Slit2 on neuroinflammation and the underlying mechanism in a rat model of GMH. METHODS GMH was induced by stereotactically infusing 0.3 U of bacterial collagenase into the germinal matrix of 7-day-old Sprague Dawley rats. Recombinant Slit2 or its vehicle was administered intranasally at 1 h after GMH and daily for 3 consecutive days. A decoy receptor recombinant Robo1 was co-administered with recombinant Slit2 after GMH. Slit2 siRNA, srGAP1 siRNA or the scrambled sequences were administered intracerebroventricularly 24 h before GMH. Neurobehavior, brain water content, Western blotting, immunofluorescence staining and Cdc42 activity assays were performed. RESULTS The endogenous brain Slit2 and Robo1 expressions were increased after GMH. Robo1 was expressed on neuron, astrocytes and infiltrated peripheral immune cells in the brain. Endogenous Slit2 knockdown by Slit2 siRNA exacerbated brain edema and neurological deficits following GMH. Recombinant Slit2 (rSlit2) reduced neurological deficits, proinflammatory cytokines, intercellular adhesion molecules, peripheral immune cell markers, neuronal apoptosis and Cdc42 activity in the brain tissue after GMH. The anti-neuroinflammation effects were reversed by recombinant Robo1 co-administration or srGAP1 siRNA. CONCLUSIONS Recombinant Slit2 reduced neuroinflammation and neuron apoptosis after GMH. Its anti-neuroinflammation effects by suppressing onCdc42-mediated brain peripheral immune cells infiltration was at least in part via Robo1-srGAP1 pathway. These results imply that recombinant Slit2 may have potentials as a therapeutic option for neonatal brain injuries.
Collapse
Affiliation(s)
- Qian Li
- Department of Pediatrics, Army Medical Center, Army Medical University, 10 Changjiang Access Rd, Yuzhong District, Chongqing, 400042, China
- Women and Children's Hospital of Chongqing Medical University, 120 Longshan Access Rd, Yubei District, Chongqing, 400010, China
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Wenjie Peng
- Department of Pediatrics, Army Medical Center, Army Medical University, 10 Changjiang Access Rd, Yuzhong District, Chongqing, 400042, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
- Department of Neurosurgery, School of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
6
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
7
|
Liu Z, Huang W, Zhu M, Xu Z, Xu Z, Yu C, Huang H. Mechanism of Robo1 in the pentylenetetrazol-kindled epilepsy mouse model. IBRAIN 2023; 9:369-380. [PMID: 38680506 PMCID: PMC11045194 DOI: 10.1002/ibra.12127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 04/28/2024]
Abstract
The neural network hypothesis is one of the important pathogenesis of drug-resistant epilepsy. Axons guide molecules through synaptic remodeling and brain tissue remodeling, which may result in the formation of abnormal neural networks. Therefore, axon guidance plays a crucial role in disease progression. However, although Robo1 is one of the important components of axon guidance, the role of Robo1 in epilepsy remains unclear. In this study, we aimed to explore the mechanism of Robo1 in epilepsy. Male adult C57BL/6 mice were intraperitoneally injected with pentylenetetrazol to establish an epilepsy model. Lentivirus (LV) was given via intracranial injection 2 weeks before pentylenetetrazol injection. Different expressions of Robo1 between the control group, LV-mediated Robo1 short hairpin RNA group, empty vector control LV group, and normal saline group were analyzed using Western blot, immunofluorescence staining, Golgi staining, and video monitoring. Robo1 was increased in the hippocampus in the pentylenetetrazol-induced epilepsy mouse model; lentiviral Robo1 knockdown prolonged the latency of seizure and reduced the seizure grade in mice and resulted in a decrease in dendritic spine density, while the number of mature dendritic spines was maintained. We speculate that Robo1 has been implicated in the development and progression of epilepsy through its effects on dendritic spine morphology and density. Epileptic mice with Robo1 knockdown virus intervention had lower seizure grade and longer latency. Follow-up findings suggest that Robo1 may modulate seizures by affecting dendritic spine density and morphology. Downregulation of Robo1 may negatively regulate epileptogenesis by decreasing the density of dendritic spines and maintaining a greater number of mature dendritic spines.
Collapse
Affiliation(s)
- Zheng Liu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Wei Huang
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Man‐Min Zhu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Zhong‐Xiang Xu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Zu‐Cai Xu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Chang‐Yin Yu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Hao Huang
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
8
|
Huang X, Shi S, Wang H, Zhao T, Wang Y, Huang S, Su Y, Zhao C, Yang M. Advances in antibody-based drugs and their delivery through the blood-brain barrier for targeted therapy and immunotherapy of gliomas. Int Immunopharmacol 2023; 117:109990. [PMID: 37012874 DOI: 10.1016/j.intimp.2023.109990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Gliomas are highly invasive and are the most common type of primary malignant brain tumor. The routine treatments for glioma include surgical resection, radiotherapy, and chemotherapy. However, glioma recurrence and patient survival remain unsatisfactory after employing these traditional treatment approaches. With the rapid development of molecular immunology, significant breakthroughs have been made in targeted glioma therapy and immunotherapy. Antibody-based therapy has excellent advantages in treating gliomas due to its high specificity and sensitivity. This article reviewed various targeted antibody drugs for gliomas, including anti-glioma surface marker antibodies, anti-angiogenesis antibodies, and anti-immunosuppressive signal antibodies. Notably, many antibodies have been validated clinically, such as bevacizumab, cetuximab, panitumumab, and anti-PD-1 antibodies. These antibodies can improve the targeting of glioma therapy, enhance anti-tumor immunity, reduce the proliferation and invasion of glioma, and thus prolong the survival time of patients. However, the existence of the blood-brain barrier (BBB) has caused significant difficulties in drug delivery for gliomas. Therefore, this paper also summarized drug delivery methods through the BBB, including receptor-mediated transportation, nano-based carriers, and some physical and chemical methods for drug delivery. With these exciting advancements, more antibody-based therapies will likely enter clinical practice and allow more successful control of malignant gliomas.
Collapse
Affiliation(s)
- Xin Huang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Shuyou Shi
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Hongrui Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yibo Wang
- The College of Clinical College, Jilin University, Changchun, China
| | - Sihua Huang
- The College of Clinical College, Jilin University, Changchun, China
| | - Yingying Su
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Chunyan Zhao
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| | - Ming Yang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
9
|
Peng K, Liao Y, Li X, Zeng D, Ye Y, Chen L, Zeng Z, Zeng Y. Vimentin Is an Attachment Receptor for Mycoplasma pneumoniae P1 Protein. Microbiol Spectr 2023; 11:e0448922. [PMID: 36912679 PMCID: PMC10100666 DOI: 10.1128/spectrum.04489-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Mycoplasma pneumoniae is the most common pathogen causing respiratory tract infection, and the P1 protein on its adhesion organelle plays a crucial role during the pathogenic process. Currently, there are many studies on P1 and receptors on host cells, but the adhesion mechanism of P1 protein is still unclear. In this study, a modified virus overlay protein binding assay (VOPBA) and liquid chromatography-mass spectrometry (LC-MS) were performed to screen for proteins that specifically bind to the region near the carboxyl terminus of the recombinant P1 protein (rP1-C). The interaction between rP1-C and vimentin or β-4-tubulin were confirmed by far-Western blotting and coimmunoprecipitation. Results verified that vimentin and β-4-tubulin were mainly distributed on the cell membrane and cytoplasm of human bronchial epithelial (BEAS-2B) cells, but only vimentin could interact with rP1-C. The results of the adhesion and adhesion inhibition assays indicated that the adhesion of M. pneumoniae and rP1-C to cells could be partly inhibited by vimentin and its antibody. When vimentin was downregulated with the corresponding small interfering RNA (siRNA) or overexpressed in BEAS-2B cells, the adhesion of M. pneumoniae and rP1-C to cells was decreased or increased, respectively, which indicated that vimentin was closely associated with the adhesion of M. pneumoniae and rP1-C to BEAS-2B cells. Our results demonstrate that vimentin could be a receptor on human bronchial epithelial cells for the P1 protein and plays an essential role in the adhesion of M. pneumoniae to cells, which may clarify the pathogenesis of M. pneumoniae. IMPORTANCE Mycoplasma pneumoniae is the most common pathogen causing respiratory tract infection, and the P1 protein on its adhesion organelle plays a crucial role during the pathogenic process. A variety of experiments, including enzyme-linked immunosorbent assay (ELISA), coimmunoprecipitation, adhesion, and adhesion inhibition assay, have demonstrated that the M. pneumoniae P1 protein can interact with vimentin, that the adhesion of M. pneumoniae and recombinant P1 protein to BEAS-2B cells was affected by the expression level of vimentin. This provides a new idea for the prevention and treatment of Mycoplasma pneumoniae infection.
Collapse
Affiliation(s)
- Kailan Peng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Yating Liao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Xia Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Dongdong Zeng
- Department of Cardiocascular Medicine, the Third Affiliated Hospital, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Youyuan Ye
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Li Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Zhuo Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| |
Collapse
|
10
|
Yu R, Zhao R, Sun X, Zhang Z, Wang S, Gao X, Sun Z, Xue H, Li G. MicroRNA-588 regulates the invasive, migratory and vasculogenic mimicry-forming abilities of hypoxic glioma cells by targeting ROBO1. Mol Biol Rep 2023; 50:1333-1347. [PMID: 36459288 PMCID: PMC9889532 DOI: 10.1007/s11033-022-08063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND The microenvironment of hypoxia is an important factor contributing to the development of glioblastoma (GBM). MicroRNA-588 and its potential target Roundabout-directed receptor 1 (ROBO1) have been reported to promote tumor invasion and proliferation in diseases such as gastric, pancreatic and hepatocellular carcinoma, while their function in GBM and response to hypoxic states remain elusive. METHODS A microarray was leveraged to identify differentially expressed microRNAs in U251 glioma cells cultured under normoxic and hypoxic conditions. The expression of miR-588 was assessed using quantitative real-time PCR (qRT‒PCR). Gain- and loss-of-function studies were used to evaluate the role of miR-588 under hypoxic and normoxic conditions. Cell invasion, migration, proliferation, and vasculogenic mimicry (VM) formation experiments were performed. The relationship between miR-588 and ROBO1 was confirmed using western blot and luciferase reporter assays. Intracranial xenograft tumor mouse models were used to study the function of miR-588 in vivo. RESULTS The expression of miR-588 was significantly upregulated in hypoxic glioma cells relative to normoxic glioma cells. miR-588 inhibited the invasive, migratory and VM-forming abilities of glioma cells in vitro and in vivo. Mechanistically, roundabout guidance receptor 1 (ROBO1) is a direct, functionally relevant target of miR-588 in glioma. ROBO1 knockdown suppressed the expression of matrix metallopeptidase 2 (MMP2) and matrix metallopeptidase 9 (MMP9), thereby inhibiting the invasive, migratory and VM-forming abilities of glioma. CONCLUSIONS MiR-588 regulated the behaviors of hypoxic glioma cells by targeting ROBO1. miR-588 can be used as a prognostic marker for glioma and has potential implications in glioma gene therapy.
Collapse
Affiliation(s)
- Rui Yu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Jinan, 250012, Shandong, China
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Jinan, 250012, Shandong, China
| | - Xiaopeng Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, Shandong, China
| | - Zongpu Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Jinan, 250012, Shandong, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Jinan, 250012, Shandong, China
| | - Xiao Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Jinan, 250012, Shandong, China
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu and Weiqi Street, Jinan, 250021, Shandong, China
| | - Zhongzheng Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Jinan, 250012, Shandong, China
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Jinan, 250012, Shandong, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Jinan, 250012, Shandong, China.
| |
Collapse
|
11
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
12
|
Curry RN, Glasgow SM. The Role of Neurodevelopmental Pathways in Brain Tumors. Front Cell Dev Biol 2021; 9:659055. [PMID: 34012965 PMCID: PMC8127784 DOI: 10.3389/fcell.2021.659055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Neuroscience, Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Stacey M. Glasgow
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
13
|
Collagen type VIII alpha 2 chain (COL8A2), an important component of the basement membrane of the corneal endothelium, facilitates the malignant development of glioblastoma cells via inducing EMT. J Bioenerg Biomembr 2021; 53:49-59. [PMID: 33405048 DOI: 10.1007/s10863-020-09865-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Glioblastoma (GBM) is one of the most lethal tumor of all human cancers. Due to its poor response to chemotherapy and radiotherapy as well as its high rate of recurrence after treatment, the treatment is still undesired. The identification of potential related genes and bio-markers in the development of GBM could provide some new targets for the treatment of GBM. Our purpose in this study was to evaluate the mission of COL8A2 in GBM. Combined with TCGA, Oncomine databases, CGGA, GEPIA website and qRT-PCR analyses, we found that COL8A2 was up-regulated both in GBM tissues and cells compared to the controls. Moreover, the high COL8A2 expression was associated with the shorter overall survival of patients with GBM. The expression of COL8A2 was also positively correlated with metastasis-associated genes including vimentin, snail, slug, MMP2 and MMP7 according to GEPIA website. Knockdown of COL8A2 could suppress the cell proliferation, cell migration and invasion, whereas the overexpression of COL8A2 significantly expedited these processes. What's more, the outcome of western blot analysis manifested that COL8A2 could induced the expression of vimentin, snail, slug, MMP2 and MMP7. Taken together, COL8A2 activated cell proliferation, cell migration and invasion via raising the relative expression of EMT-related proteins in GBM. Therefore, our investigation suggests the oncogenic role of COL8A2 in GBM and provides a potential application of COL8A2 for GBM therapy.
Collapse
|
14
|
The HIF1α/JMY pathway promotes glioblastoma stem-like cell invasiveness after irradiation. Sci Rep 2020; 10:18742. [PMID: 33128011 PMCID: PMC7603339 DOI: 10.1038/s41598-020-75300-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 10/13/2020] [Indexed: 01/28/2023] Open
Abstract
Human glioblastoma (GBM) is the most common primary malignant brain tumor. A minor subpopulation of cancer cells, known as glioma stem-like cells (GSCs), are thought to play a major role in tumor relapse due to their stem cell-like properties, their high resistance to conventional treatments and their high invasion capacity. We show that ionizing radiation specifically enhances the motility and invasiveness of human GSCs through the stabilization and nuclear accumulation of the hypoxia-inducible factor 1α (HIF1α), which in turn transcriptionally activates the Junction-mediating and regulatory protein (JMY). Finally, JMY accumulates in the cytoplasm where it stimulates GSC migration via its actin nucleation-promoting activity. Targeting JMY could thus open the way to the development of new therapeutic strategies to improve the efficacy of radiotherapy and prevent glioma recurrence.
Collapse
|
15
|
Epigenetic loss of the transfer RNA-modifying enzyme TYW2 induces ribosome frameshifts in colon cancer. Proc Natl Acad Sci U S A 2020; 117:20785-20793. [PMID: 32778592 PMCID: PMC7456070 DOI: 10.1073/pnas.2003358117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Defects in transfer RNA (tRNA) modifications occur in human pathologies such as cancer; however, how these alterations contribute to the disease is poorly understood. One example is the tumor-specific hypomodification of position 37 of tRNAPhe, which was first described 45 y ago, although its cause and consequences have remained unknown. Here we report that the tRNAPhe hypomodification is due to promoter CpG island hypermethylation-associated transcriptional silencing of TYW2, a key enzyme in the synthesis of wybutosine derivatives. Furthermore, epigenetic loss of TYW2 in transformed cells provokes hypomodified tRNAPhe-mediated ribosome frameshifting, dysregulating mRNA abundance via nonsense-mediated decay. Importantly, TYW2 silencing in cancer cells confers enhanced migration and epithelial-to-mesenchymal features that are associated in early-stage colorectal cancer patients with poor clinical outcome. Transfer RNA (tRNA) activity is tightly regulated to provide a physiological protein translation, and tRNA chemical modifications control its function in a complex with ribosomes and messenger RNAs (mRNAs). In this regard, the correct hypermodification of position G37 of phenylalanine-tRNA, adjacent to the anticodon, is critical to prevent ribosome frameshifting events. Here we report that the tRNA-yW Synthesizing Protein 2 (TYW2) undergoes promoter hypermethylation-associated transcriptional silencing in human cancer, particularly in colorectal tumors. The epigenetic loss of TYW2 induces guanosine hypomodification in phenylalanine-tRNA, an increase in −1 ribosome frameshift events, and down-regulation of transcripts by mRNA decay, such as of the key cancer gene ROBO1. Importantly, TYW2 epigenetic inactivation is linked to poor overall survival in patients with early-stage colorectal cancer, a finding that could be related to the observed acquisition of enhanced migration properties and epithelial-to-mesenchymal features in the colon cancer cells that harbor TYW2 DNA methylation-associated loss. These findings provide an illustrative example of how epigenetic changes can modify the epitranscriptome and further support a role for tRNA modifications in cancer biology.
Collapse
|
16
|
Chen J, Liu X, Zeng Z, Li J, Luo Y, Sun W, Gong Y, Zhang J, Wu Q, Xie C. Immunomodulation of NK Cells by Ionizing Radiation. Front Oncol 2020; 10:874. [PMID: 32612950 PMCID: PMC7308459 DOI: 10.3389/fonc.2020.00874] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells play a critical role in the antitumor immunity. Ionizing radiation (IR) has a pronounced effect on modifying NK cell biology, while the molecular mechanisms remain elusive. In this review, we briefly introduce the anti-tumor activity of NK cells and summarize the impact of IR on NK cells both directly and indirectly. On one hand, low-dose ionizing radiation (LDIR) activates NK functions while high-dose ionizing radiation (HDIR) is likely to partially impair NK functions, which can be reversed by interleukin (IL)-2 pretreatment. On the other hand, NK functions may be adjusted by other immune cells and the alternated malignant cell immunogenicity under the settings of IR. Various immune cells, such as the tumor-associated macrophage (TAM), dendritic cell (DC), regulatory T cell (Treg), myeloid-derived suppressor cell (MDSC), and tumor exhibited ligands, such as the natural killer group 2 member D ligand (NKG2DL), natural cytotoxicity receptors (NCR) ligand, TNF-related apoptosis-inducing ligand-receptor (TRAIL-R), and FAS, have been involved in this process. Better understanding the molecular basis is a promising way in which to augment NK-cell-based antitumor immunity in combination with IR.
Collapse
Affiliation(s)
- Jiarui Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Human Genetics Resource Preservation Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Samiei E, Seyfoori A, Toyota B, Ghavami S, Akbari M. Investigating Programmed Cell Death and Tumor Invasion in a Three-Dimensional (3D) Microfluidic Model of Glioblastoma. Int J Mol Sci 2020; 21:E3162. [PMID: 32365781 PMCID: PMC7246580 DOI: 10.3390/ijms21093162] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a rapidly progressive and deadly form of brain tumor with a median survival rate of ~15 months. GBMs are hard to treat and significantly affect the patient's physical and cognitive abilities and quality of life. Temozolomide (TMZ)-an alkylating agent that causes DNA damage-is the only chemotherapy choice for the treatment of GBM. However, TMZ also induces autophagy and causes tumor cell resistance and thus fails to improve the survival rate among patients. Here, we studied the drug-induced programmed cell death and invasion inhibition capacity of TMZ and a mevalonate cascade inhibitor, simvastatin (Simva), in a three-dimensional (3D) microfluidic model of GBM. We elucidate the role of autophagy in apoptotic cell death by comparing apoptosis in autophagy knockdown cells (Atg7 KD) against their scrambled counterparts. Our results show that the cells were significantly less sensitive to drugs in the 3D model as compared to monolayer culture systems. An immunofluorescence analysis confirmed that apoptosis is the mechanism of cell death in TMZ- and Simva-treated glioma cells. However, the induction of apoptosis in the 3D model is significantly lower than in monolayer cultures. We have also shown that autophagy inhibition (Atg7 KD) did not change TMZ and Simva-induced apoptosis in the 3D microfluidic model. Overall, for the first time in this study we have established the simultaneous detection of drug induced apoptosis and autophagy in a 3D microfluidic model of GBM. Our study presents a potential ex vivo platform for developing novel therapeutic strategies tailored toward disrupting key molecular pathways involved in programmed cell death and tumor invasion in glioblastoma.
Collapse
Affiliation(s)
- Ehsan Samiei
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 2C5, Canada; (E.S.); (A.S.)
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Amir Seyfoori
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 2C5, Canada; (E.S.); (A.S.)
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Brian Toyota
- Department of Surgery, Queens University, Kingston, ON K7L 2V7, Canada;
| | - Saeid Ghavami
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- The Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 2C5, Canada; (E.S.); (A.S.)
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
18
|
Li J, Liu S, Qin Y, Zhang Y, Wang N, Liu H. High-order radiomics features based on T2 FLAIR MRI predict multiple glioma immunohistochemical features: A more precise and personalized gliomas management. PLoS One 2020; 15:e0227703. [PMID: 31968004 PMCID: PMC6975558 DOI: 10.1371/journal.pone.0227703] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Objective To investigate the performance of high-order radiomics features and models based on T2-weighted fluid-attenuated inversion recovery (T2 FLAIR) in predicting the immunohistochemical biomarkers of glioma, in order to execute a non-invasive, more precise and personalized glioma disease management. Methods 51 pathologically confirmed gliomas patients committed in our hospital from March 2015 to June 2018 were retrospective analysis, and Ki-67, vimentin, S-100 and CD34 immunohistochemical data were collected. The volumes of interest (VOIs) were manually sketched and the radiomics features were extracted. Feature reduction was performed by ANOVA+ Mann-Whiney, spearman correlation analysis, least absolute shrinkage and selection operator (LASSO) and Gradient descent algorithm (GBDT). SMOTE technique was used to solve the data bias between two groups. Comprehensive binary logistic regression models were established. Area under the ROC curves (AUC), sensitivity, specificity and accuracy were used to evaluate the predict performance of models. Models reliability were decided according to the standard net benefit of the decision curves. Results Four clusters of significant features were screened out and four predicting models were constructed. AUC of Ki-67, S-100, vimentin and CD34 models were 0.713, 0.923, 0.854 and 0.745, respectively. The sensitivities were 0.692, 0.893, 0.875 and 0.556, respectively. The specificities were: 0.667, 0.905, 0.722, and 0.875, with accuracy of 0.660, 0.898, 0.738, and 0.667, respectively. According to the decision curves, the Ki-67, S-100 and vimentin models had reference values. Conclusion The radiomics features based on T2 FLAIR can potentially predict the Ki-67, S-100, vimentin and CD34 expression. Radiomics model were expected to be a computer-intelligent, non-invasive, accurate and personalized management method for gliomas.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Radiology, Tangshan Women and Children’s Hospital, Tangshan, Hebei, China
| | - Siyun Liu
- Life Science, GE Healthcare, Beijing, China
| | - Ying Qin
- Life Science, GE Healthcare, Beijing, China
| | - Yan Zhang
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ning Wang
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huaijun Liu
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- * E-mail:
| |
Collapse
|
19
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|