1
|
Shrager JB, Randle R, Lee M, Ahmed SS, Trope W, Lui N, Poultsides G, Liou D, Visser B, Norton JA, Nesbit SM, He H, Kapula N, Wallen B, Fatodu E, Sadeghi CA, Konsker HB, Elliott I, Guenthart B, Backhus L, Cooke R, Berry M, Tang H. JAK inhibition with tofacitinib rapidly increases contractile force in human skeletal muscle. Life Sci Alliance 2024; 7:e202402885. [PMID: 39122555 PMCID: PMC11316201 DOI: 10.26508/lsa.202402885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Reduction in muscle contractile force associated with many clinical conditions incurs serious morbidity and increased mortality. Here, we report the first evidence that JAK inhibition impacts contractile force in normal human muscle. Muscle biopsies were taken from patients who were randomized to receive tofacitinib (n = 16) or placebo (n = 17) for 48 h. Single-fiber contractile force and molecular studies were carried out. The contractile force of individual diaphragm myofibers pooled from the tofacitinib group (n = 248 fibers) was significantly higher than those from the placebo group (n = 238 fibers), with a 15.7% greater mean maximum specific force (P = 0.0016). Tofacitinib treatment similarly increased fiber force in the serratus anterior muscle. The increased force was associated with reduced muscle protein oxidation and FoxO-ubiquitination-proteasome signaling, and increased levels of smooth muscle MYLK. Inhibition of MYLK attenuated the tofacitinib-dependent increase in fiber force. These data demonstrate that tofacitinib increases the contractile force of skeletal muscle and offers several underlying mechanisms. Inhibition of the JAK-STAT pathway is thus a potential new therapy for the muscle dysfunction that occurs in many clinical conditions.
Collapse
Affiliation(s)
- Joseph B Shrager
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Ryan Randle
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Myung Lee
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Syed Saadan Ahmed
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Winston Trope
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Natalie Lui
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - George Poultsides
- https://ror.org/00f54p054 Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Doug Liou
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Brendan Visser
- https://ror.org/00f54p054 Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey A Norton
- https://ror.org/00f54p054 Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Shannon M Nesbit
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hao He
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ntemena Kapula
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bailey Wallen
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Emmanuel Fatodu
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Cheyenne A Sadeghi
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Harrison B Konsker
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Irmina Elliott
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Brandon Guenthart
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Leah Backhus
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Roger Cooke
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Mark Berry
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Huibin Tang
- https://ror.org/00f54p054 Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| |
Collapse
|
2
|
Reid RM, Turkmen S, Cleveland BM, Biga PR. Direct actions of growth hormone in rainbow trout, Oncorhynchus mykiss, skeletal muscle cells in vitro. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111725. [PMID: 39122107 DOI: 10.1016/j.cbpa.2024.111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The growth hormone (GH)-insulin-like growth factor-1 (IGF-1) system regulates skeletal muscle growth and function. GH has a major function of targeting the liver to regulate IGF-1 production and release, and IGF-1 mediates the primary anabolic action of GH on growth. However, skeletal muscle is a target tissue of GH as evidenced by dynamic GH receptor expression, but it is unclear if GH elicits any direct actions on extrahepatic tissues as it is difficult to distinguish the effects of IGF-1 from GH. Fish growth regulation is complex compared to mammals, as genome duplication events have resulted in multiple isoforms of GHs, GHRs, IGFs, and IGFRs expressed in most fish tissues. This study investigated the potential for GH direct actions on fish skeletal muscle using an in vitro system, where rainbow trout myogenic precursor cells (MPCs) were cultured in normal and serum-deprived media, to mimic in vivo fasting conditions. Fasting reduces IGF-1 signaling in the muscle, which is critical for disentangling the roles of GH from IGF-1. The direct effects of GH were analyzed by measuring changes in myogenic proliferation and differentiation genes, as well as genes regulating muscle growth and proteolysis. This study provides the first in-depth analysis of the direct actions of GH on serum-deprived fish muscle cells in vitro. Data suggest that GH induces the expression of markers for proliferation and muscle growth in the presence of serum, but all observed GH action was blocked in serum-deprived conditions. Additionally, serum deprivation alone reduced the expression of several proliferation and differentiation markers, while increasing growth and proteolysis markers. Results also demonstrate dynamic gene expression response in the presence of GH and a JAK inhibitor in serum-provided but not serum-deprived conditions. These data provide a better understanding of GH signaling in relation to serum in trout muscle cells in vitro.
Collapse
Affiliation(s)
- Ross M Reid
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Serhat Turkmen
- Department of Cell Development and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service (ARS-USDA), Kearneysville, WV 25430, USA
| | - Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Farahzadi R, Valipour B, Montazersaheb S, Fathi E. Targeting the stem cell niche micro-environment as therapeutic strategies in aging. Front Cell Dev Biol 2023; 11:1162136. [PMID: 37274742 PMCID: PMC10235764 DOI: 10.3389/fcell.2023.1162136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Adult stem cells (ASCs) reside throughout the body and support various tissue. Owing to their self-renewal capacity and differentiation potential, ASCs have the potential to be used in regenerative medicine. Their survival, quiescence, and activation are influenced by specific signals within their microenvironment or niche. In better words, the stem cell function is significantly influenced by various extrinsic signals derived from the niche. The stem cell niche is a complex and dynamic network surrounding stem cells that plays a crucial role in maintaining stemness. Studies on stem cell niche have suggested that aged niche contributes to the decline in stem cell function. Notably, functional loss of stem cells is highly associated with aging and age-related disorders. The stem cell niche is comprised of complex interactions between multiple cell types. Over the years, essential aspects of the stem cell niche have been revealed, including cell-cell contact, extracellular matrix interaction, soluble signaling factors, and biochemical and biophysical signals. Any alteration in the stem cell niche causes cell damage and affects the regenerative properties of the stem cells. A pristine stem cell niche might be essential for the proper functioning of stem cells and the maintenance of tissue homeostasis. In this regard, niche-targeted interventions may alleviate problems associated with aging in stem cell behavior. The purpose of this perspective is to discuss recent findings in the field of stem cell aging, heterogeneity of stem cell niches, and impact of age-related changes on stem cell behavior. We further focused on how the niche affects stem cells in homeostasis, aging, and the progression of malignant diseases. Finally, we detail the therapeutic strategies for tissue repair, with a particular emphasis on aging.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Bennett JL, Pratt AG, Dodds R, Sayer AA, Isaacs JD. Rheumatoid sarcopenia: loss of skeletal muscle strength and mass in rheumatoid arthritis. Nat Rev Rheumatol 2023; 19:239-251. [PMID: 36801919 DOI: 10.1038/s41584-023-00921-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 02/19/2023]
Abstract
Sarcopenia, a disorder that involves the generalized loss of skeletal muscle strength and mass, was formally recognized as a disease by its inclusion in the International Classification of Diseases in 2016. Sarcopenia typically affects older people, but younger individuals with chronic disease are also at risk. The risk of sarcopenia is high (with a prevalence of ≥25%) in individuals with rheumatoid arthritis (RA), and this rheumatoid sarcopenia is associated with increased likelihood of falls, fractures and physical disability, in addition to the burden of joint inflammation and damage. Chronic inflammation mediated by cytokines such as TNF, IL-6 and IFNγ contributes to aberrant muscle homeostasis (for instance, by exacerbating muscle protein breakdown), and results from transcriptomic studies have identified dysfunction of muscle stem cells and metabolism in RA. Progressive resistance exercise is an effective therapy for rheumatoid sarcopenia but it can be challenging or unsuitable for some individuals. The unmet need for anti-sarcopenia pharmacotherapies is great, both for people with RA and for otherwise healthy older adults.
Collapse
Affiliation(s)
- Joshua L Bennett
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK.
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Arthur G Pratt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Richard Dodds
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Avan A Sayer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13:892749. [PMID: 36035464 PMCID: PMC9411786 DOI: 10.3389/fphys.2022.892749] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia, a disorder characterized by age-related muscle loss and reduced muscle strength, is associated with decreased individual independence and quality of life, as well as a high risk of death. Skeletal muscle houses a normally mitotically quiescent population of adult stem cells called muscle satellite cells (MuSCs) that are responsible for muscle maintenance, growth, repair, and regeneration throughout the life cycle. Patients with sarcopenia are often exhibit dysregulation of MuSCs homeostasis. In this review, we focus on the etiology, assessment, and treatment of sarcopenia. We also discuss phenotypic and regulatory mechanisms of MuSC quiescence, activation, and aging states, as well as the controversy between MuSC depletion and sarcopenia. Finally, we give a multi-dimensional treatment strategy for sarcopenia based on improving MuSC function.
Collapse
Affiliation(s)
- Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Hailiang Liu,
| |
Collapse
|
6
|
Nisimura LM, Coelho LL, de Melo TG, Vieira PDC, Victorino PH, Garzoni LR, Spray DC, Iacobas DA, Iacobas S, Tanowitz HB, Adesse D. Trypanosoma cruzi Promotes Transcriptomic Remodeling of the JAK/STAT Signaling and Cell Cycle Pathways in Myoblasts. Front Cell Infect Microbiol 2020; 10:255. [PMID: 32626662 PMCID: PMC7313395 DOI: 10.3389/fcimb.2020.00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Chagas disease is responsible for more than 10,000 deaths per year and about 6 to 7 million infected people worldwide. In its chronic stage, patients can develop mega-colon, mega-esophagus, and cardiomyopathy. Differences in clinical outcomes may be determined, in part, by the genetic background of the parasite that causes Chagas disease. Trypanosoma cruzi has a high genetic diversity, and each group of strains may elicit specific pathological responses in the host. Conflicting results have been reported in studies using various combinations of mammalian host-T. cruzi strains. We previously profiled the transcriptomic signatures resulting from infection of L6E9 rat myoblasts with four reference strains of T. cruzi (Brazil, CL, Y, and Tulahuen). The four strains induced similar overall gene expression alterations in the myoblasts, although only 21 genes were equally affected by all strains. Cardiotrophin-like cytokine factor 1 (Clcf1) was one of the genes found to be consistently upregulated by the infection with all four strains of T. cruzi. This cytokine is a member of the interleukin-6 family that binds to glycoprotein 130 receptor and activates the JAK/STAT signaling pathway, which may lead to muscle cell hypertrophy. Another commonly upregulated gene was tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta (Ywhaq, 14-3-3 protein Θ), present in the Cell Cycle Pathway. In the present work, we reanalyzed our previous microarray dataset, aiming at understanding in more details the transcriptomic impact that each strain has on JAK/STAT signaling and Cell Cycle pathways. Using Pearson correlation analysis between the expression levels of gene pairs in biological replicas from each pathway, we determined the coordination between such pairs in each experimental condition and the predicted protein interactions between the significantly altered genes by each strain. We found that although these highlighted genes were similarly affected by all four strains, the downstream genes or their interaction partners were not necessarily equally affected, thus reinforcing the idea of the role of parasite background on host cell transcriptome. These new analyses provide further evidence to the mechanistic understanding of how distinct T. cruzi strains lead to diverse remodeling of host cell transcriptome.
Collapse
Affiliation(s)
- Lindice M. Nisimura
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Laura L. Coelho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tatiana G. de Melo
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paloma de Carvalho Vieira
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Pedro H. Victorino
- Laboratório de Neurogênese, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana R. Garzoni
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Dumitru A. Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Prairie View A&M University, Prairie View, TX, United States
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Stem Cell Aging in Skeletal Muscle Regeneration and Disease. Int J Mol Sci 2020; 21:ijms21051830. [PMID: 32155842 PMCID: PMC7084237 DOI: 10.3390/ijms21051830] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle comprises 30-40% of the weight of a healthy human body and is required for voluntary movements in humans. Mature skeletal muscle is formed by multinuclear cells, which are called myofibers. Formation of myofibers depends on the proliferation, differentiation, and fusion of muscle progenitor cells during development and after injury. Muscle progenitor cells are derived from muscle satellite (stem) cells (MuSCs), which reside on the surface of the myofiber but beneath the basement membrane. MuSCs play a central role in postnatal maintenance, growth, repair, and regeneration of skeletal muscle. In sedentary adult muscle, MuSCs are mitotically quiescent, but are promptly activated in response to muscle injury. Physiological and chronological aging induces MuSC aging, leading to an impaired regenerative capability. Importantly, in pathological situations, repetitive muscle injury induces early impairment of MuSCs due to stem cell aging and leads to early impairment of regeneration ability. In this review, we discuss (1) the role of MuSCs in muscle regeneration, (2) stem cell aging under physiological and pathological conditions, and (3) prospects related to clinical applications of controlling MuSCs.
Collapse
|
8
|
Swiderski K, Caldow MK, Naim T, Trieu J, Chee A, Koopman R, Lynch GS. Deletion of suppressor of cytokine signaling 3 (SOCS3) in muscle stem cells does not alter muscle regeneration in mice after injury. PLoS One 2019; 14:e0212880. [PMID: 30811469 PMCID: PMC6392323 DOI: 10.1371/journal.pone.0212880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/11/2019] [Indexed: 11/19/2022] Open
Abstract
Muscles of older animals are more susceptible to injury and regenerate poorly, in part due to a persistent inflammatory response. The janus kinase (Jak)/signal transducer and activator of transcription (Stat) pathway mediates inflammatory signaling and is tightly regulated by the suppressor of cytokine signaling (SOCS) proteins, especially SOCS3. SOCS3 expression is altered in the muscle of aged animals and may contribute to the persistent inflammation and impaired regeneration. To test this hypothesis, we performed myotoxic injuries on mice with a tamoxifen-inducible deletion of SOCS3 specifically within the muscle stem cell compartment. Muscle stem cell-specific SOCS3 deletion reduced muscle mass at 14 days post-injury (-14%, P < 0.01), altered the myogenic transcriptional program, and reduced myogenic fusion based on the number of centrally-located nuclei per muscle fiber. Despite the delay in myogenesis, muscles with a muscle stem cell-specific deletion of SOCS3 were still able to regenerate after a single bout or multiple bouts of myotoxic injury. A reduction in SOCS3 expression in muscle stem cells is unlikely to be responsible for the incomplete muscle repair in aged animals.
Collapse
Affiliation(s)
- Kristy Swiderski
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Marissa K. Caldow
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Annabel Chee
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - René Koopman
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Gordon S. Lynch
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|