1
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Fàbrega C, Aviñó A, Navarro N, Jorge AF, Grijalvo S, Eritja R. Lipid and Peptide-Oligonucleotide Conjugates for Therapeutic Purposes: From Simple Hybrids to Complex Multifunctional Assemblies. Pharmaceutics 2023; 15:320. [PMID: 36839642 PMCID: PMC9959333 DOI: 10.3390/pharmaceutics15020320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Antisense and small interfering RNA (siRNA) oligonucleotides have been recognized as powerful therapeutic compounds for targeting mRNAs and inducing their degradation. However, a major obstacle is that unmodified oligonucleotides are not readily taken up into tissues and are susceptible to degradation by nucleases. For these reasons, the design and preparation of modified DNA/RNA derivatives with better stability and an ability to be produced at large scale with enhanced uptake properties is of vital importance to improve current limitations. In the present study, we review the conjugation of oligonucleotides with lipids and peptides in order to produce oligonucleotide conjugates for therapeutics aiming to develop novel compounds with favorable pharmacokinetics.
Collapse
Affiliation(s)
- Carme Fàbrega
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Anna Aviñó
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Natalia Navarro
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Andreia F. Jorge
- Department of Chemistry, Coimbra Chemistry Centre (CQC), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Santiago Grijalvo
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Colloidal and Interfacial Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ramon Eritja
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| |
Collapse
|
3
|
Gushchina LV, Vetter TA, Frair EC, Bradley AJ, Grounds KM, Lay JW, Huang N, Suhaiba A, Schnell FJ, Hanson G, Simmons TR, Wein N, Flanigan KM. Systemic PPMO-mediated dystrophin expression in the Dup2 mouse model of Duchenne muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:479-492. [PMID: 36420217 PMCID: PMC9678653 DOI: 10.1016/j.omtn.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle-wasting disease that arises due to the loss of dystrophin expression, leading to progressive loss of motor and cardiorespiratory function. Four exon-skipping approaches using antisense phosphorodiamidate morpholino oligomers (PMOs) have been approved by the FDA to restore a DMD open reading frame, resulting in expression of a functional but internally deleted dystrophin protein, but in patients with single-exon duplications, exon skipping has the potential to restore full-length dystrophin expression. Cell-penetrating peptide-conjugated PMOs (PPMOs) have demonstrated enhanced cellular uptake and more efficient dystrophin restoration than unconjugated PMOs. In the present study, we demonstrate widespread PPMO-mediated dystrophin restoration in the Dup2 mouse model of exon 2 duplication, representing the most common single-exon duplication among patients with DMD. In this proof-of-concept study, a single intravenous injection of PPMO targeting the exon 2 splice acceptor site induced 45% to 68% exon 2-skipped Dmd transcripts in Dup2 skeletal muscles 15 days post-injection. Muscle dystrophin restoration peaked at 77% to 87% average dystrophin-positive fibers and 41% to 51% of normal signal intensity by immunofluorescence, and 15.7% to 56.8% of normal by western blotting 15 to 30 days after treatment. These findings indicate that PPMO-mediated exon skipping is a promising therapeutic strategy for muscle dystrophin restoration in the context of exon 2 duplications.
Collapse
Affiliation(s)
- Liubov V. Gushchina
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Tatyana A. Vetter
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Emma C. Frair
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Adrienne J. Bradley
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kelly M. Grounds
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jacob W. Lay
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Nianyuan Huang
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Aisha Suhaiba
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | - Tabatha R. Simmons
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Nicolas Wein
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Kevin M. Flanigan
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Schultz TI, Raucci FJ, Salloum FN. Cardiovascular Disease in Duchenne Muscular Dystrophy. JACC Basic Transl Sci 2022; 7:608-625. [PMID: 35818510 PMCID: PMC9270569 DOI: 10.1016/j.jacbts.2021.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Cardiomyopathy is the leading cause of death in patients with DMD. DMD has no cure, and there is no current consensus for treatment of DMD cardiomyopathy. This review discusses therapeutic strategies to potentially reduce or prevent cardiac dysfunction in DMD patients. Additional studies are needed to firmly establish optimal treatment modalities for DMD cardiomyopathy.
Duchenne muscular dystrophy (DMD) is a devastating disease affecting approximately 1 in every 3,500 male births worldwide. Multiple mutations in the dystrophin gene have been implicated as underlying causes of DMD. However, there remains no cure for patients with DMD, and cardiomyopathy has become the most common cause of death in the affected population. Extensive research is under way investigating molecular mechanisms that highlight potential therapeutic targets for the development of pharmacotherapy for DMD cardiomyopathy. In this paper, the authors perform a literature review reporting on recent ongoing efforts to identify novel therapeutic strategies to reduce, prevent, or reverse progression of cardiac dysfunction in DMD.
Collapse
|
5
|
Chung Liang L, Sulaiman N, Yazid MD. A Decade of Progress in Gene Targeted Therapeutic Strategies in Duchenne Muscular Dystrophy: A Systematic Review. Front Bioeng Biotechnol 2022; 10:833833. [PMID: 35402409 PMCID: PMC8984139 DOI: 10.3389/fbioe.2022.833833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
As one of the most severe forms of muscle dystrophy, Duchenne muscular dystrophy (DMD) results in progressive muscle wasting, ultimately resulting in premature death due to cardiomyopathy. In the many years of research, the solution to DMD remains palliative. Although numerous studies including clinical trials have provided promising results, approved drugs, even, the therapeutic window is still minimal with many shortcomings to be addressed. Logically, to combat DMD that arose from a single genetic mutation with gene therapy made sense. However, gene-based strategies as a treatment option are no stranger to drawbacks and limitations such as the size of the dystrophin gene and possibilities of vectors to elicit immune responses. In this systematic review, we aim to provide a comprehensive compilation on gene-based therapeutic strategies and critically evaluate the approaches relative to its efficacy and feasibility while addressing their current limitations. With the keywords “DMD AND Gene OR Genetic AND Therapy OR Treatment,” we reviewed papers published in Science Direct, PubMed, and ProQuest over the past decade (2012–2021).
Collapse
Affiliation(s)
- Lam Chung Liang
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Overby SJ, Cerro-Herreros E, González-Martínez I, Varela MA, Seoane-Miraz D, Jad Y, Raz R, Møller T, Pérez-Alonso M, Wood MJ, Llamusí B, Artero R. Proof of concept of peptide-linked blockmiR-induced MBNL functional rescue in myotonic dystrophy type 1 mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1146-1155. [PMID: 35282418 PMCID: PMC8888893 DOI: 10.1016/j.omtn.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/06/2022] [Indexed: 01/25/2023]
Abstract
Myotonic dystrophy type 1 is a debilitating neuromuscular disease causing muscle weakness, myotonia, and cardiac dysfunction. The phenotypes are caused by muscleblind-like (MBNL) protein sequestration by toxic RNA in the DM1 protein kinase (DMPK) gene. DM1 patients exhibit a pathogenic number of repetitions in DMPK, which leads to downstream symptoms. Another disease characteristic is altered microRNA (miRNA) expression. It was previously shown that miR-23b regulates the translation of MBNL1 into protein. Antisense oligonucleotide (AON) treatment targeting this miRNA can improve disease symptoms. Here, we present a refinement of this strategy targeting a miR-23b binding site on the MBNL1 3' UTR in DM1 model cells and mice by using AONs called blockmiRs. BlockmiRs linked to novel cell-penetrating peptide chemistry showed an increase in MBNL1 protein in DM1 model cells and HSALR mice. They also showed an increase in muscle strength and significant rescue of downstream splicing and histological phenotypes in mice without disturbing the endogenous levels of other miR-23b target transcripts.
Collapse
Affiliation(s)
- Sarah J Overby
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Estefanía Cerro-Herreros
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Irene González-Martínez
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Miguel A Varela
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - David Seoane-Miraz
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yahya Jad
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Richard Raz
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | | | - Manuel Pérez-Alonso
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Matthew J Wood
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Beatriz Llamusí
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Rubén Artero
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
7
|
Quemener AM, Centomo ML, Sax SL, Panella R. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development. Molecules 2022; 27:536. [PMID: 35056851 PMCID: PMC8781596 DOI: 10.3390/molecules27020536] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 01/27/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are an increasingly represented class of drugs. These small sequences of nucleotides are designed to precisely target other oligonucleotides, usually RNA species, and are modified to protect them from degradation by nucleases. Their specificity is due to their sequence, so it is possible to target any RNA sequence that is already known. These molecules are very versatile and adaptable given that their sequence and chemistry can be custom manufactured. Based on the chemistry being used, their activity may significantly change and their effects on cell function and phenotypes can differ dramatically. While some will cause the target RNA to decay, others will only bind to the target and act as a steric blocker. Their incredible versatility is the key to manipulating several aspects of nucleic acid function as well as their process, and alter the transcriptome profile of a specific cell type or tissue. For example, they can be used to modify splicing or mask specific sites on a target. The entire design rather than just the sequence is essential to ensuring the specificity of the ASO to its target. Thus, it is vitally important to ensure that the complete process of drug design and testing is taken into account. ASOs' adaptability is a considerable advantage, and over the past decades has allowed multiple new drugs to be approved. This, in turn, has had a significant and positive impact on patient lives. Given current challenges presented by the COVID-19 pandemic, it is necessary to find new therapeutic strategies that would complement the vaccination efforts being used across the globe. ASOs may be a very powerful tool that can be used to target the virus RNA and provide a therapeutic paradigm. The proof of the efficacy of ASOs as an anti-viral agent is long-standing, yet no molecule currently has FDA approval. The emergence and widespread use of RNA vaccines during this health crisis might provide an ideal opportunity to develop the first anti-viral ASOs on the market. In this review, we describe the story of ASOs, the different characteristics of their chemistry, and how their characteristics translate into research and as a clinical tool.
Collapse
Affiliation(s)
- Anais M. Quemener
- University Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes)-UMR 6290, F-35000 Rennes, France;
| | - Maria Laura Centomo
- Department of Oncology, University of Turin, 10124 Turin, Italy;
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Scott L. Sax
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Riccardo Panella
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| |
Collapse
|
8
|
Sheikh O, Yokota T. Pharmacology and toxicology of eteplirsen and SRP-5051 for DMD exon 51 skipping: an update. Arch Toxicol 2021; 96:1-9. [PMID: 34797383 DOI: 10.1007/s00204-021-03184-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/25/2021] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) afflicts 1 in 5000 newborn males, leading to progressive muscle weakening and the loss of ambulation between the ages of 8 and 12. Typically, DMD patients pass away from heart failure or respiratory failure. Currently, there is no cure, though exon-skipping therapy including eteplirsen (brand name Exondys 51), a synthetic antisense oligonucleotide designed to skip exon 51 of the dystrophin gene, is considered especially promising. Applicable to approximately 14% of DMD patients, a phosphorodiamidate morpholino oligomer (PMO) antisense oligonucleotide eteplirsen received accelerated approval by the US Food and Drug Administration (FDA) in 2016. Throughout clinical trials, eteplirsen has been well tolerated by patients with no serious drug-related adverse events. The most common events observed are balance disorder, vomiting, and skin rash. Despite its safety and promise of functional benefits, eteplirsen remains controversial due to its low production of dystrophin. In addition, unmodified PMOs have limited efficacy in the heart. To address these concerns of efficacy, eteplirsen has been conjugated to a proprietary cell-penetrating peptide; the conjugate is called SRP-5051. Compared to eteplirsen, SRP-5051 aims to better prompt exon-skipping and dystrophin production but may have greater toxicity concerns. This paper reviews and discusses the available information on the efficacy, safety, and tolerability data of eteplirsen and SRP-5051 from preclinical and clinical trials. Issues faced by eteplirsen and SRP-5051, including efficacy and safety, are identified. Lastly, the current state of eteplirsen and exon-skipping therapy in general as a strategy for the treatment of DMD are discussed.
Collapse
Affiliation(s)
- Omar Sheikh
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, T6G 2R3, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, T6G 2R3, Canada.
| |
Collapse
|
9
|
Serum Antibodies to N-Glycolylneuraminic Acid Are Elevated in Duchenne Muscular Dystrophy and Correlate with Increased Disease Pathology in Cmah -/-mdx Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1474-1486. [PMID: 34294193 DOI: 10.1016/j.ajpath.2021.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 10/20/2022]
Abstract
Humans cannot synthesize the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) because of an inactivating deletion in the cytidine-5'-monophospho-(CMP)-N-acetylneuraminic acid hydroxylase (CMAH) gene responsible for its synthesis. Human Neu5Gc deficiency can lead to development of anti-Neu5Gc serum antibodies, the levels of which can be affected by Neu5Gc-containing diets and by disease. Metabolic incorporation of dietary Neu5Gc into human tissues in the face of circulating antibodies against Neu5Gc-bearing glycans is thought to exacerbate inflammation-driven diseases like cancer and atherosclerosis. Probing of sera with sialoglycan arrays indicated that patients with Duchenne muscular dystrophy (DMD) had a threefold increase in overall anti-Neu5Gc antibody titer compared with age-matched controls. These antibodies recognized a broad spectrum of Neu5Gc-containing glycans. Human-like inactivation of the Cmah gene in mice is known to modulate severity in a variety of mouse models of human disease, including the X chromosome-linked muscular dystrophy (mdx) model for DMD. Cmah-/-mdx mice can be induced to develop anti-Neu5Gc-glycan antibodies as humans do. The presence of anti-Neu5Gc antibodies, in concert with induced Neu5Gc expression, correlated with increased severity of disease pathology in Cmah-/-mdx mice, including increased muscle fibrosis, expression of inflammatory markers in the heart, and decreased survival. These studies suggest that patients with DMD who harbor anti-Neu5Gc serum antibodies might exacerbate disease severity when they ingest Neu5Gc-rich foods, like red meats.
Collapse
|
10
|
Restoring Protein Expression in Neuromuscular Conditions: A Review Assessing the Current State of Exon Skipping/Inclusion and Gene Therapies for Duchenne Muscular Dystrophy and Spinal Muscular Atrophy. BioDrugs 2021; 35:389-399. [PMID: 34097287 DOI: 10.1007/s40259-021-00486-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The debilitating neuromuscular disorders Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which harm 1 in 5000 newborn males and 1 in 11,000 newborns, respectively, are marked by progressive muscle wasting among other complications. While DMD causes generalized muscle weakness due to the absence of the dystrophin protein, SMA patients generally face motor neuron degeneration because of the lack of the survival motor neuron (SMN) protein. Many of the most promising therapies for both conditions restore the absent proteins dystrophin and SMN. Antisense oligonucleotide-mediated exon skipping and inclusion therapies are advancing clinically with the approved DMD therapies casimersen, eteplirsen, golodirsen, and viltolarsen, and the SMA therapy nusinersen. Existing antisense therapies focus on skeletal muscle for DMD and motor neurons for SMA, respectively. Through innovative techniques, such as peptide conjugation and multi-exon skipping, these therapies could be optimized for efficacy and applicability. By contrast, gene replacement therapy is administered only once to patients during treatment. Currently, only onasemnogene abeparvovec for SMA has been approved. Safety shortcomings remain a major challenge for gene therapy. Nevertheless, gene therapy for DMD has strong potential to restore dystrophin expression in patients. In light of promising functional improvements, antisense and gene therapies stand poised to elevate the lives of patients with DMD and SMA.
Collapse
|
11
|
Gaina G, Popa (Gruianu) A. Muscular dystrophy: Experimental animal models and therapeutic approaches (Review). Exp Ther Med 2021; 21:610. [PMID: 33936267 PMCID: PMC8082581 DOI: 10.3892/etm.2021.10042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
The muscular dystrophies are a heterogeneous group of genetically inherited diseases characterized by muscle weakness and progressive wasting, which can cause premature death in severe forms. Although >30 years have passed since the identification of the first protein involved in a type of muscular dystrophy, there is no effective treatment for these disabling disorders. In the last decade, several novel therapeutic approaches have been developed and investigated as promising therapeutic approaches aimed to ameliorate the dystrophic phenotype either by restoring dystrophin expression or by compensating for dystrophin deficiency. Concurrently, with the development of therapeutic approaches, in addition to naturally occurring animal models, a wide range of genetically engineered animal models has been generated. The use of animals as models of muscular dystrophies has greatly improved the understanding of the pathogenicity of these diseases and has proven useful in gene therapy studies. In this review, we summarize these latest innovative therapeutic approaches to muscular dystrophies and the usefulness of the various most common experimental animal models.
Collapse
Affiliation(s)
- Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alexandra Popa (Gruianu)
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Animal Production and Public Health, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania
| |
Collapse
|
12
|
Sheikh O, Yokota T. Developing DMD therapeutics: a review of the effectiveness of small molecules, stop-codon readthrough, dystrophin gene replacement, and exon-skipping therapies. Expert Opin Investig Drugs 2021; 30:167-176. [PMID: 33393390 DOI: 10.1080/13543784.2021.1868434] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the dystrophin (DMD) gene. Most patients die from respiratory failure or cardiomyopathy. There are significant unmet needs for treatments for DMD as the standard of care is principally limited to symptom relief through treatments including steroids. AREAS COVERED This review summarizes safety and efficacy in promising areas of DMD therapeutics - small molecules, stop codon readthrough, gene replacement, and exon skipping - under clinical examination from 2015-2020 as demonstrated in the NIH Clinical Trials and PubMed search engines. EXPERT OPINION Currently, steroids persist as the most accessible medicine for DMD. Stop-codon readthrough, gene replacement, and exon-skipping therapies all aim to restore dystrophin expression. Of these strategies, gene replacement therapy has recently gained momentum while exon-skipping retains great traction. The FDA approval of three exon-skipping antisense oligonucleotides illustrate this regulatory momentum, though the effectiveness and sequence design of eteplirsen remain controversial. Cell-penetrating peptides promise to more efficaciously treat DMD-related cardiomyopathy.The recent success of antisense therapies, however, poses major regulatory challenges. To fully realize the benefits of exon-skipping, including cocktail oligonucleotide-mediated multiple exon-skipping and oligonucleotide drugs for very rare mutations, regulatory challenges need to be addressed in coordination with scientific advances.
Collapse
Affiliation(s)
- Omar Sheikh
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| |
Collapse
|
13
|
Dzierlega K, Yokota T. Optimization of antisense-mediated exon skipping for Duchenne muscular dystrophy. Gene Ther 2020; 27:407-416. [DOI: 10.1038/s41434-020-0156-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
|
14
|
Quemener AM, Bachelot L, Forestier A, Donnou-Fournet E, Gilot D, Galibert MD. The powerful world of antisense oligonucleotides: From bench to bedside. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1594. [PMID: 32233021 PMCID: PMC9285911 DOI: 10.1002/wrna.1594] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
Antisense oligonucleotides (ASOs) represent a new and highly promising class of drugs for personalized medicine. In the last decade, major chemical developments and improvements of the backbone structure of ASOs have transformed them into true approved and commercialized drugs. ASOs target both DNA and RNA, including pre‐mRNA, mRNA, and ncRDA, based on sequence complementary. They are designed to be specific for each identified molecular and genetic alteration to restore a normal, physiological situation. Thus, the characterization of the underpinning mechanisms and alterations that sustain pathology is critical for accurate ASO‐design. ASOs can be used to cure both rare and common diseases, such as orphan genetic alterations and cancer. Through pioneering examples, this review shows the versatility of the mechanisms of action that provide ASOs with the potential capacity to achieve custom treatment, revolutionizing personalized medicine. This article is categorized under:RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Small Molecule–RNA Interactions
Collapse
Affiliation(s)
- Anaïs M Quemener
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, ARC Foundation Labellized Team, Rennes, France
| | - Laura Bachelot
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, ARC Foundation Labellized Team, Rennes, France
| | - Anne Forestier
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, ARC Foundation Labellized Team, Rennes, France
| | - Emmanuelle Donnou-Fournet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, ARC Foundation Labellized Team, Rennes, France
| | - David Gilot
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, ARC Foundation Labellized Team, Rennes, France
| | - Marie-Dominique Galibert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, ARC Foundation Labellized Team, Rennes, France.,Department of Molecular Genetics and Genomic, CHU Rennes, Hospital-University of Rennes, Rennes, France
| |
Collapse
|
15
|
Benizri S, Gissot A, Martin A, Vialet B, Grinstaff MW, Barthélémy P. Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications. Bioconjug Chem 2019; 30:366-383. [PMID: 30608140 PMCID: PMC6766081 DOI: 10.1021/acs.bioconjchem.8b00761] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this Review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides-antisense DNA (ASO) and RNA interference (RNAi)-followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, α-tocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.
Collapse
Affiliation(s)
- Sebastien Benizri
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Arnaud Gissot
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Andrew Martin
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Brune Vialet
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Philippe Barthélémy
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| |
Collapse
|