1
|
Coppedè F, Bhaduri U, Stoccoro A, Nicolì V, Di Venere E, Merla G. DNA Methylation in the Fields of Prenatal Diagnosis and Early Detection of Cancers. Int J Mol Sci 2023; 24:11715. [PMID: 37511475 PMCID: PMC10380460 DOI: 10.3390/ijms241411715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The central objective of the metamorphosis of discovery science into biomedical applications is to serve the purpose of patients and curtail the global disease burden. The journey from the discovery of DNA methylation (DNAm) as a biological process to its emergence as a diagnostic tool is one of the finest examples of such metamorphosis and has taken nearly a century. Particularly in the last decade, the application of DNA methylation studies in the clinic has been standardized more than ever before, with great potential to diagnose a multitude of diseases that are associated with a burgeoning number of genes with this epigenetic alteration. Fetal DNAm detection is becoming useful for noninvasive prenatal testing, whereas, in very preterm infants, DNAm is also shown to be a potential biological indicator of prenatal risk factors. In the context of cancer, liquid biopsy-based DNA-methylation profiling is offering valuable epigenetic biomarkers for noninvasive early-stage diagnosis. In this review, we focus on the applications of DNA methylation in prenatal diagnosis for delivering timely therapy before or after birth and in detecting early-stage cancers for better clinical outcomes. Furthermore, we also provide an up-to-date commercial landscape of DNAm biomarkers for cancer detection and screening of cancers of unknown origin.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| | - Utsa Bhaduri
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Eleonora Di Venere
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
2
|
Tian M, Feng L, Li J, Zhang R. Focus on the frontier issue: progress in noninvasive prenatal screening for fetal trisomy from clinical perspectives. Crit Rev Clin Lab Sci 2023; 60:248-269. [PMID: 36647189 DOI: 10.1080/10408363.2022.2162843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The discovery of cell-free fetal DNA (cffDNA) in maternal blood and the rapid development of massively parallel sequencing have revolutionized prenatal testing from invasive to noninvasive. Noninvasive prenatal screening (NIPS) based on cffDNA enables the detection of fetal trisomy through sequencing, comparison, and bioassays. Its accuracy is better than that of traditional screening methods, and it is the most advanced clinical application of high-throughput sequencing technologies. However, the existing sequencing methods are limited by high costs and complex sequencing procedures. These limitations restrict the availability of NIPS for pregnant women. Many amplification methods have been developed to overcome the limitations of sequencing methods. The rapid development of non-sequencing methods has not been accompanied by reviews to summarize them. In this review, we initially describe the detection principles for sequencing-based NIPS. We summarize the rapidly evolving amplification technologies, focusing on the need to reduce costs and simplify the procedures. To ensure that the testing systems are feasible and that the testing processes are reliable, we expand our vision to the clinic. We evaluate the clinical validity of NIPS in terms of sensitivity, specificity, and positive predictive value. Finally, we summarize the application guidelines and discuss the corresponding quality control methods for NIPS. In addition to cffDNA, extracellular vesicle DNA, RNA, protein/peptide, and fetal cells can also be detected as biomarkers of NIPS. With the development of prenatal testing, NIPS has become increasingly important. Notably, NIPS is a screening test instead of a diagnostic test. The testing methods and procedures used in the NIPS process require standardization.
Collapse
Affiliation(s)
- Meng Tian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Peking University Fifth School of Clinical Medicine, Beijing, P. R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P. R. China
| | - Lei Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Peking University Fifth School of Clinical Medicine, Beijing, P. R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Peking University Fifth School of Clinical Medicine, Beijing, P. R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
3
|
Qi QG, Tuo Y, Liu LX, Yu CX, Wu AN. Amniocentesis and Next Generation Sequencing (NGS)-Based Noninvasive Prenatal DNA Testing (NIPT) for Prenatal Diagnosis of Fetal Chromosomal Disorders. Int J Gen Med 2021; 14:1811-1817. [PMID: 34025125 PMCID: PMC8132573 DOI: 10.2147/ijgm.s297585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The present study aimed to evaluate and analyze the results of karyotyping by amniocentesis and next generation sequencing (NGS)-based noninvasive prenatal DNA testing (NIPT) for the prenatal diagnosis of fetal chromosomal disorders. Methods A total of 2267 high-risk pregnant females with the indications for prenatal diagnosis who met the enrollment criteria between January 2015 and May 2019 at the Affiliated Hospital of Inner Mongolia Medical University were included and underwent NGS-based NIPT in the present study. Amniocentesis, chromosome karyotyping by cell culture, and follow-up of the pregnancy outcomes were also conducted in the NIPT-positive pregnant females to assess the consistency between NIPT and results of karyotyping by amniocentesis. Results Among the 2267 cases, 29 cases were positive for NIPT, including 10 cases with a high risk of trisomy 21, 2 cases with a high risk of trisomy 18, 2 cases with a high risk of chromosome 13, and 20 cases with sex chromosome abnormalities. All the above NIPT-positive cases underwent amniocentesis, and 20 cases were eventually diagnosed. The sensitivity and specificity of NIPT for the diagnosis of trisomy 21, trisomy 13, and trisomy 18 were 100%, 99.96%, 100%, and 99.96%, 100%, 100%, respectively, and the positive predictive values were 91.67%, 66.67%, and 100%, respectively. Conclusion NGS of the fetal free DNA from the peripheral blood of pregnant females was an important complement to the prenatal diagnosis of chromosomal disorders represented by fetal chromosome aneuploidy with high sensitivity and specificity. In combination with the traditional karyotyping by amniocentesis, it could improve the diagnostic efficacy for fetal chromosomal disorders.
Collapse
Affiliation(s)
- Qi-Ge Qi
- Department of Clinical Laboratory and Pathology, The 969th Hospital of P.L.A., Hohhot, Inner Mongolia, 010051, People's Republic of China
| | - Ya Tuo
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Li-Xue Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Cong-Xiang Yu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Ai-Ning Wu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| |
Collapse
|
4
|
Navarro-Martín L, Martyniuk CJ, Mennigen JA. Comparative epigenetics in animal physiology: An emerging frontier. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100745. [PMID: 33126028 DOI: 10.1016/j.cbd.2020.100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
The unprecedented access to annotated genomes now facilitates the investigation of the molecular basis of epigenetic phenomena in phenotypically diverse animals. In this critical review, we describe the roles of molecular epigenetic mechanisms in regulating mitotically and meiotically stable spatiotemporal gene expression, phenomena that provide the molecular foundation for the intra-, inter-, and trans-generational emergence of physiological phenotypes. By focusing principally on emerging comparative epigenetic roles of DNA-level and transcriptome-level epigenetic mark dynamics in the emergence of phenotypes, we highlight the relationship between evolutionary conservation and innovation of specific epigenetic pathways, and their interplay as a priority for future study. This comparative approach is expected to significantly advance our understanding of epigenetic phenomena, as animals show a diverse array of strategies to epigenetically modify physiological responses. Additionally, we review recent technological advances in the field of molecular epigenetics (single-cell epigenomics and transcriptomics and editing of epigenetic marks) in order to (1) investigate environmental and endogenous factor dependent epigenetic mark dynamics in an integrative manner; (2) functionally test the contribution of specific epigenetic marks for animal phenotypes via genome and transcript-editing tools. Finally, we describe advantages and limitations of emerging animal models, which under the Krogh principle, may be particularly useful in the advancement of comparative epigenomics and its potential translational applications in animal science, ecotoxicology, ecophysiology, climate change science and wild-life conservation, as well as organismal health.
Collapse
Affiliation(s)
- Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
5
|
Shi J, Zhang R, Li J, Zhang R. Novel perspectives in fetal biomarker implementation for the noninvasive prenatal testing. Crit Rev Clin Lab Sci 2019; 56:374-392. [PMID: 31290367 DOI: 10.1080/10408363.2019.1631749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Noninvasive prenatal testing (NIPT) utilizes cell-free fetal DNA (cffDNA) present in maternal peripheral blood to detect chromosomal abnormalities. The detection of 21-trisomy, 18-trisomy, and 13-trisomy in the fetus has become a common screening method during pregnancy and has been widely applied in routine clinical testing because of its analytical and clinical validity. Currently, noninvasive prenatal testing involving copy number variations (CNVs) and other frequent single-gene disorders is being widely studied, and it plays an important and indispensable role in prenatal detection. The multiple approaches that have been reported and validated by various laboratories have different merits and limitations. Their clinical validity, utility, and application vary with different diseases. This review summarizes the principles, methods, advantages, and limitations of noninvasive prenatal testing for the detection of aneuploidy, CNVs and single-gene disorders. Before implementation of NIPT into clinical practice, a list of criteria that the application must meet is crucial. Essential parameters such as clinical sensitivity, clinical specificity, positive predictive value (PPV) and negative predictive value (NPV) are required to properly evaluate the clinical validity and utility of NIPT. We then discuss and analyze these clinical parameters and clinical application guidelines, providing physicians and scientists with feasible strategies and the latest research information.
Collapse
Affiliation(s)
- Jiping Shi
- Peking University Fifth School of Clinical Medicine, National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital , Beijing , China.,National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital , Beijing , China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , China
| | - Runling Zhang
- National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital , Beijing , China.,Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , China
| | - Jinming Li
- National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital , Beijing , China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , China
| | - Rui Zhang
- Peking University Fifth School of Clinical Medicine, National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital , Beijing , China.,National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital , Beijing , China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital , Beijing , China
| |
Collapse
|
6
|
Liu Z, Wang Z, Jia E, Ouyang T, Pan M, Lu J, Ge Q, Bai Y. Analysis of genome-wide in cell free DNA methylation: progress and prospect. Analyst 2019; 144:5912-5922. [DOI: 10.1039/c9an00935c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, we focus on the detection methods of cfDNA methylation based on NGS and the latest progress.
Collapse
Affiliation(s)
- Zhiyu Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Zexin Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Erteng Jia
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Tinglan Ouyang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Min Pan
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Jiafeng Lu
- Center of Reproduction and Genetics
- Affiliated Suzhou Hospital of Nanjing Medical University
- Suzhou Municipal Hospital
- Suzhou 215002
- China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|