1
|
Rao J, Wang Z, Yu F, Li J, Li W, Xuan Z, Chi Y, Zhang F, Tang L, Cheng F. XBP1 Facilitating NF-κB-p65 Nuclear Translocation Promotes Macrophage-Originated Sterile Inflammation Via Regulating MT2 Transcription in the Ischemia/Reperfusion Liver. Cell Mol Gastroenterol Hepatol 2024; 18:101402. [PMID: 39271015 PMCID: PMC11546936 DOI: 10.1016/j.jcmgh.2024.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND & AIMS XBP1, most conserved transcription factor of endoplasmic reticulum stress, plays important roles in physiological and pathologic settings and has profound effects on disease progression and prognosis, so it is necessary to investigate XBP1 in macrophage-originated sterile inflammation during liver ischemia/reperfusion injury (IRI). Macrophage XBP1 expression and liver injury are analyzed in patients undergoing ischemia-related hepatectomy. METHODS A myeloid-specific male XBP1-knockout (XBP1M-KO) strain is created for function and mechanism of XBP1 on macrophage-derived sterile inflammation in murine liver IRI with in vitro parallel research. Macrophages cocultured with hypoxia-treated hepatocytes are applied to investigate impact of XBP1 in vitro, with analysis of RNA sequencing and databases. RESULTS Clinically, macrophage XBP1 expression significantly increases in ischemic liver tissues and positively correlates with liver injury after hepatectomy. Less hepatocellular damage is presented in XBP1M-KO mice than in XBP1-proficient (XBP1FL/FL) control animals. In vitro, XBP1 deficiency inhibits sterile inflammation and migration in macrophages cocultured with hypoxia-treated hepatocytes. Analysis of RNA sequencing and databases determines Metallothionein 2 (MT2) as XBP1 target gene, negatively regulated by binding with its promoter. XBP1 deficiency increases MT2 and IKBα expression, but inhibits nuclear factor-κB-p65 phosphorylation, markedly neutralizing XBP1M-KO-related benefits by promoting sterile inflammation during liver IRI. CONCLUSIONS XBP1 promotes macrophage-originated sterile inflammation, increases liver IRI by binding to MT2 promoter, and regulates MT2/nuclear factor-κB pathway, potentially therapeutic for clinical liver IRI.
Collapse
Affiliation(s)
- Jianhua Rao
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Zeng Wang
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Center of Gastrointestinal Disease, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Fei Yu
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Junda Li
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wenzhu Li
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhengfeng Xuan
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yongquan Chi
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Feng Zhang
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Liming Tang
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Feng Cheng
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
2
|
Goossens C, Tambay V, Raymond VA, Rousseau L, Turcotte S, Bilodeau M. Impact of the delay in cryopreservation timing during biobanking procedures on human liver tissue metabolomics. PLoS One 2024; 19:e0304405. [PMID: 38857235 PMCID: PMC11164386 DOI: 10.1371/journal.pone.0304405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/10/2024] [Indexed: 06/12/2024] Open
Abstract
The liver is a highly specialized organ involved in regulating systemic metabolism. Understanding metabolic reprogramming of liver disease is key in discovering clinical biomarkers, which relies on robust tissue biobanks. However, sample collection and storage procedures pose a threat to obtaining reliable results, as metabolic alterations may occur during sample handling. This study aimed to elucidate the impact of pre-analytical delay during liver resection surgery on liver tissue metabolomics. Patients were enrolled for liver resection during which normal tissue was collected and snap-frozen at three timepoints: before transection, after transection, and after analysis in Pathology. Metabolomics analyses were performed using 1H Nuclear Magnetic Resonance (NMR) and Liquid Chromatography-Mass Spectrometry (LC-MS). Time at cryopreservation was the principal variable contributing to differences between liver specimen metabolomes, which superseded even interindividual variability. NMR revealed global changes in the abundance of an array of metabolites, namely a decrease in most metabolites and an increase in β-glucose and lactate. LC-MS revealed that succinate, alanine, glutamine, arginine, leucine, glycerol-3-phosphate, lactate, AMP, glutathione, and NADP were enhanced during cryopreservation delay (all p<0.05), whereas aspartate, iso(citrate), ADP, and ATP, decreased (all p<0.05). Cryopreservation delays occurring during liver tissue biobanking significantly alter an array of metabolites. Indeed, such alterations compromise the integrity of metabolomic data from liver specimens, underlining the importance of standardized protocols for tissue biobanking in hepatology.
Collapse
Affiliation(s)
- Corentine Goossens
- Laboratoire d’Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Vincent Tambay
- Laboratoire d’Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Valérie-Ann Raymond
- Laboratoire d’Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Louise Rousseau
- Biobanque et Base de Données Hépatopancréatobiliaire, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
| | - Simon Turcotte
- Biobanque et Base de Données Hépatopancréatobiliaire, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
- Département de Chirurgie, Service de Transplantation Hépatique et de Chirurgie Hépatopancréatobiliaire, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
| | - Marc Bilodeau
- Laboratoire d’Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Kulik U, Moesta C, Spanel R, Borlak J. Dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of primary nonfunction of fatty liver allografts. Transl Res 2024; 264:33-65. [PMID: 37722450 DOI: 10.1016/j.trsl.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Orthotopic liver transplantation (OLT) is a lifesaving procedure. However, grafts may fail due to primary nonfunction (PNF). In the past, we demonstrated PNFs to be mainly associated with fatty allografts, and given its unpredictable nature, the development of a disease model is urgently needed. In an effort to investigate mechanism of fatty allograft-associated PNFs, we induced fatty liver disease in donor animals by feeding rats a diet deficient in methionine and choline (MCD). We performed OLT with allografts of different grades of hepatic steatosis and compared the results to healthy ones. We assessed liver function by considering serum biochemistries, and investigated genome wide responses following OLT of healthy and fatty allograft-associated PNFs. Furthermore, we performed immunohistochemistry to evaluate markers of oxidative stress and reperfusion injury, inflammation, glycolysis and gluconeogenesis, lactate transport, and its utilization as part of the Cori cycle. Strikingly, PNFs are strictly lipid content dependent. Nonetheless, a fat content of ≤17% and an increase in the size of hepatocytes of ≤11% (ballooning) greatly improved outcome of OLTs and the hepatic microcirculation. Mechanistically, PNFs arise from a dysfunctional Cori cycle with complete ablation of the lactate transporter SLC16A1. Thus, lipid-laden hepatocytes fail to perform gluconeogenesis via lactate reutilization, and the resultant hyperlactatemia and lactic acidosis causes cardiac arrhythmogenicity and death. Furthermore, the genomic and immunohistochemistry investigations underscore a dysfunctional Krebs cycle with impaired energy metabolism in lipid-burdened mitochondria. Together, we show fatty allografts to be highly vulnerable towards ischemia/reperfusion-injury, and stabilizing the Cori cycle is of critical importance to avert PNFs.
Collapse
Affiliation(s)
- Ulf Kulik
- Department of General, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Caroline Moesta
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Chullo G, Panisello-Rosello A, Marquez N, Colmenero J, Brunet M, Pera M, Rosello-Catafau J, Bataller R, García-Valdecasas JC, Fundora Y. Focusing on Ischemic Reperfusion Injury in the New Era of Dynamic Machine Perfusion in Liver Transplantation. Int J Mol Sci 2024; 25:1117. [PMID: 38256190 PMCID: PMC10816079 DOI: 10.3390/ijms25021117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Liver transplantation is the most effective treatment for end-stage liver disease. Transplant indications have been progressively increasing, with a huge discrepancy between the supply and demand of optimal organs. In this context, the use of extended criteria donor grafts has gained importance, even though these grafts are more susceptible to ischemic reperfusion injury (IRI). Hepatic IRI is an inherent and inevitable consequence of all liver transplants; it involves ischemia-mediated cellular damage exacerbated upon reperfusion and its severity directly affects graft function and post-transplant complications. Strategies for organ preservation have been constantly improving since they first emerged. The current gold standard for preservation is perfusion solutions and static cold storage. However, novel approaches that allow extended preservation times, organ evaluation, and their treatment, which could increase the number of viable organs for transplantation, are currently under investigation. This review discusses the mechanisms associated with IRI, describes existing strategies for liver preservation, and emphasizes novel developments and challenges for effective organ preservation and optimization.
Collapse
Affiliation(s)
- Gabriela Chullo
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Arnau Panisello-Rosello
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Noel Marquez
- Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain;
| | - Jordi Colmenero
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Liver Transplant Unit, Service of Hepatology, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
| | - Merce Brunet
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Miguel Pera
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Joan Rosello-Catafau
- Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IBB-CSIC), 08036 Barcelona, Spain;
| | - Ramon Bataller
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Liver Transplant Unit, Service of Hepatology, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
| | - Juan Carlos García-Valdecasas
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Yiliam Fundora
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| |
Collapse
|
5
|
Tokarska-Schlattner M, Zeaiter N, Cunin V, Attia S, Meunier C, Kay L, Achouri A, Hiriart-Bryant E, Couturier K, Tellier C, El Harras A, Elena-Herrmann B, Khochbin S, Le Gouellec A, Schlattner U. Multi-Method Quantification of Acetyl-Coenzyme A and Further Acyl-Coenzyme A Species in Normal and Ischemic Rat Liver. Int J Mol Sci 2023; 24:14957. [PMID: 37834405 PMCID: PMC10573920 DOI: 10.3390/ijms241914957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Thioesters of coenzyme A (CoA) carrying different acyl chains (acyl-CoAs) are central intermediates of many metabolic pathways and donor molecules for protein lysine acylation. Acyl-CoA species largely differ in terms of cellular concentrations and physico-chemical properties, rendering their analysis challenging. Here, we compare several approaches to quantify cellular acyl-CoA concentrations in normal and ischemic rat liver, using HPLC and LC-MS/MS for multi-acyl-CoA analysis, as well as NMR, fluorimetric and spectrophotometric techniques for the quantification of acetyl-CoAs. In particular, we describe a simple LC-MS/MS protocol that is suitable for the relative quantification of short and medium-chain acyl-CoA species. We show that ischemia induces specific changes in the short-chain acyl-CoA relative concentrations, while mild ischemia (1-2 min), although reducing succinyl-CoA, has little effects on acetyl-CoA, and even increases some acyl-CoA species upstream of the tricarboxylic acid cycle. In contrast, advanced ischemia (5-6 min) also reduces acetyl-CoA levels. Our approach provides the keys to accessing the acyl-CoA metabolome for a more in-depth analysis of metabolism, protein acylation and epigenetics.
Collapse
Affiliation(s)
- Malgorzata Tokarska-Schlattner
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Nour Zeaiter
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Valérie Cunin
- University Grenoble Alpes, CNRS UMR 5525, Laboratory TIMC—Translational Microbiology, Evolution, Engineering (TREE), Service de Biochimie, Biologie Moléculaire et Toxicologie Environnementale, CHU Grenoble-Alpes, 38058 Grenoble, France; (V.C.); (C.M.); (A.L.G.)
| | - Stéphane Attia
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Cécile Meunier
- University Grenoble Alpes, CNRS UMR 5525, Laboratory TIMC—Translational Microbiology, Evolution, Engineering (TREE), Service de Biochimie, Biologie Moléculaire et Toxicologie Environnementale, CHU Grenoble-Alpes, 38058 Grenoble, France; (V.C.); (C.M.); (A.L.G.)
| | - Laurence Kay
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Amel Achouri
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Edwige Hiriart-Bryant
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Karine Couturier
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Cindy Tellier
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Abderrafek El Harras
- University Grenoble Alpes, Inserm U1209 and CNRS UMR5309, Institute for Advanced Biosciences (IAB), 38058 Grenoble, France; (A.E.H.); (B.E.-H.); (S.K.)
| | - Bénédicte Elena-Herrmann
- University Grenoble Alpes, Inserm U1209 and CNRS UMR5309, Institute for Advanced Biosciences (IAB), 38058 Grenoble, France; (A.E.H.); (B.E.-H.); (S.K.)
| | - Saadi Khochbin
- University Grenoble Alpes, Inserm U1209 and CNRS UMR5309, Institute for Advanced Biosciences (IAB), 38058 Grenoble, France; (A.E.H.); (B.E.-H.); (S.K.)
| | - Audrey Le Gouellec
- University Grenoble Alpes, CNRS UMR 5525, Laboratory TIMC—Translational Microbiology, Evolution, Engineering (TREE), Service de Biochimie, Biologie Moléculaire et Toxicologie Environnementale, CHU Grenoble-Alpes, 38058 Grenoble, France; (V.C.); (C.M.); (A.L.G.)
| | - Uwe Schlattner
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
6
|
Rodimova S, Mozherov A, Elagin V, Karabut M, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Bobrov N, Zagainov V, Zagaynova E, Kuznetsova D. Effect of Hepatic Pathology on Liver Regeneration: The Main Metabolic Mechanisms Causing Impaired Hepatic Regeneration. Int J Mol Sci 2023; 24:ijms24119112. [PMID: 37298064 DOI: 10.3390/ijms24119112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Liver regeneration has been studied for many decades, and the mechanisms underlying regeneration of normal liver following resection are well described. However, no less relevant is the study of mechanisms that disrupt the process of liver regeneration. First of all, a violation of liver regeneration can occur in the presence of concomitant hepatic pathology, which is a key factor reducing the liver's regenerative potential. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or to directly stimulate liver regeneration. This review describes the known mechanisms of normal liver regeneration and factors that reduce its regenerative potential, primarily at the level of hepatocyte metabolism, in the presence of concomitant hepatic pathology. We also briefly discuss promising strategies for stimulating liver regeneration and those concerning methods for assessing the regenerative potential of the liver, especially intraoperatively.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Artem Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Ilya Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Kozlov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Krylov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Nikolai Bobrov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Vladimir Zagainov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Oncologic Dispensary, Delovaya St., 11/1, 603126 Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Mao B, Yuan W, Wu F, Yan Y, Wang B. Autophagy in hepatic ischemia-reperfusion injury. Cell Death Discov 2023; 9:115. [PMID: 37019879 PMCID: PMC10076300 DOI: 10.1038/s41420-023-01387-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver resection or liver transplantation that can seriously affect patient's prognosis. There is currently no definitive and effective treatment strategy for HIRI. Autophagy is an intracellular self-digestion pathway initiated to remove damaged organelles and proteins, which maintains cell survival, differentiation, and homeostasis. Recent studies have shown that autophagy is involved in the regulation of HIRI. Numerous drugs and treatments can change the outcome of HIRI by controlling the pathways of autophagy. This review mainly discusses the occurrence and development of autophagy, the selection of experimental models for HIRI, and the specific regulatory pathways of autophagy in HIRI. Autophagy has considerable potential in the treatment of HIRI.
Collapse
Affiliation(s)
- Benliang Mao
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Wei Yuan
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China
| | - Fan Wu
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China
| | - Yong Yan
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China
| | - Bailin Wang
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China.
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Shirbandi K, Rikhtegar R, Khalafi M, Mirza Aghazadeh Attari M, Rahmani F, Javanmardi P, Iraji S, Babaei Aghdam Z, Rezaei Rashnoudi AM. Functional Magnetic Resonance Spectroscopy of Lactate in Alzheimer Disease: A Comprehensive Review of Alzheimer Disease Pathology and the Role of Lactate. Top Magn Reson Imaging 2023; 32:15-26. [PMID: 37093700 PMCID: PMC10121369 DOI: 10.1097/rmr.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 04/13/2023]
Abstract
ABSTRACT Functional 1H magnetic resonance spectroscopy (fMRS) is a derivative of dynamic MRS imaging. This modality links physiologic metabolic responses with available activity and measures absolute or relative concentrations of various metabolites. According to clinical evidence, the mitochondrial glycolysis pathway is disrupted in many nervous system disorders, especially Alzheimer disease, resulting in the activation of anaerobic glycolysis and an increased rate of lactate production. Our study evaluates fMRS with J-editing as a cutting-edge technique to detect lactate in Alzheimer disease. In this modality, functional activation is highlighted by signal subtractions of lipids and macromolecules, which yields a much higher signal-to-noise ratio and enables better detection of trace levels of lactate compared with other modalities. However, until now, clinical evidence is not conclusive regarding the widespread use of this diagnostic method. The complex machinery of cellular and noncellular modulators in lactate metabolism has obscured the potential roles fMRS imaging can have in dementia diagnosis. Recent developments in MRI imaging such as the advent of 7 Tesla machines and new image reconstruction methods, coupled with a renewed interest in the molecular and cellular basis of Alzheimer disease, have reinvigorated the drive to establish new clinical options for the early detection of Alzheimer disease. Based on the latter, lactate has the potential to be investigated as a novel diagnostic and prognostic marker for Alzheimer disease.
Collapse
Affiliation(s)
- Kiarash Shirbandi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rikhtegar
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | - Mohammad Khalafi
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farzaneh Rahmani
- Department of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Pouya Javanmardi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajjad Iraji
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Babaei Aghdam
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
9
|
Ferrigno A, Cagna M, Bosco O, Trucchi M, Berardo C, Nicoletti F, Vairetti M, Di Pasqua LG. MPEP Attenuates Intrahepatic Fat Accumulation in Obese Mice. Int J Mol Sci 2023; 24:ijms24076076. [PMID: 37047048 PMCID: PMC10094379 DOI: 10.3390/ijms24076076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The blockade of metabotropic glutamate receptor type 5 (mGluR5) was previously found to reduce fat accumulation in HEPG2 cells. Here, we evaluated the effects of mGluR5 blockade in a mouse model of steatosis. Male ob/ob mice fed a high-fat diet were treated with MPEP or vehicle. After 7 weeks, liver biopsies were collected, and nuclei were isolated from fresh tissue. Lipid droplet area and collagen deposition were evaluated on tissue slices; total lipids, lipid peroxidation, and ROS were evaluated on tissue homogenates; PPARα, SREBP-1, mTOR, and NF-κB were assayed on isolated nuclei by Western Blot. Target genes of the above-mentioned factors were assayed by RT-PCR. Reduced steatosis and hepatocyte ballooning were observed in the MPEP group with respect to the vehicle group. Concomitantly, increased nuclear PPARα and reduced nuclear SREBP-1 levels were observed in the MPEP group. Similar trends were obtained in target genes of PPARα and SREBP-1, Acox1 and Acc1, respectively. MPEP administration also reduced oxidative stress and NF-κB activation, probably via NF-κB inhibition. Levels of common markers of inflammation (Il-6, Il1β and Tnf-α) and oxidative stress (Nrf2) were significantly reduced. mTOR, as well as collagen deposition, were unchanged. Concluding, MPEP, a selective mGluR5 negative allosteric modulator, reduces both fat accumulation and oxidative stress in a 7-week murine model of steatosis. Although underlying mechanisms need to be further investigated, this is the first in vivo study showing the beneficial effects of MPEP in a murine model of steatosis.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Marta Cagna
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Oriana Bosco
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Michelangelo Trucchi
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Clarissa Berardo
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Laura G Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Pelizzo P, Stebel M, Medic N, Sist P, Vanzo A, Anesi A, Vrhovsek U, Tramer F, Passamonti S. Cyanidin 3-glucoside targets a hepatic bilirubin transporter in rats. Biomed Pharmacother 2023; 157:114044. [PMID: 36463829 DOI: 10.1016/j.biopha.2022.114044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
One of the organ-specific functions of the liver is the excretion of bilirubin into the bile. Membrane transport of bilirubin from the blood to the liver is not only an orphan function, because there is no link to the protein/gene units that perform this function, but also a poorly characterised function. The aim of this study was to investigate the pharmacology of bilirubin uptake in the liver of the female Wistar rat to improve basic knowledge in this neglected area of liver physiology. We treated isolated perfused livers of female rats with repeated single-pass, albumin-free bilirubin boli. We monitored both bilirubin and bilirubin glucuronide in perfusion effluent with a bio-fluorometric assay. We tested the ability of nine molecules known as substrates or inhibitors of sinusoidal membrane transporters to inhibit hepatic uptake of bilirubin. We found that cyanidin 3-glucoside and malvidin 3-glucoside were the only molecules that inhibited bilirubin uptake. These dietary anthocyanins resemble bromosulfophthalein (BSP), a substrate of several sinusoidal membrane transporters. The SLCO-specific substrates estradiol-17 beta-glucuronide, pravastatin, and taurocholate inhibited only bilirubin glucuronide uptake. Cyanidin 3-glucoside and taurocholate acted at physiological concentrations. The SLC22-specific substrates indomethacin and ketoprofen were inactive. We demonstrated the existence of a bilirubin-glucuronide transporter inhibited by bilirubin, a fact reported only once in the literature. The data suggest that bilirubin and bilirubin glucuronide are transported to the liver via pharmacologically distinct membrane transport pathways. Some dietary anthocyanins may physiologically modulate the uptake of bilirubin into the liver.
Collapse
Affiliation(s)
- Paola Pelizzo
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Marco Stebel
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Nevenka Medic
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Paola Sist
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Andreja Vanzo
- Department of Fruit Growing, Viticulture and Oenology, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Andrea Anesi
- Food Quality and Nutrition, Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Food Quality and Nutrition, Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
11
|
Zhang S, Xu H, Chen J, Zhang Y, Sun Z, Luo L, Wang X, Jiang X, Jiang C, Deng K, Zhang C. Higher baseline alanine aminotransferase level is associated with lower live birth rate after freeze-thawed embryo transfer. Gynecol Endocrinol 2022; 38:949-953. [PMID: 36097348 DOI: 10.1080/09513590.2022.2122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE The aim of this retrospective analysis was to explore whether an elevated ALT level before pregnancy is associated with a reduction in live birth rate after IVF-FET. DESIGN Retrospective observational study. SETTING Shiyan People's Hospital, China between January 2019 and December 2019. PATIENTS Women aged ≤ 40 years. INTERVENTION(S) Freeze-thawed embryo transfer (FET). MAIN OUTCOME MEASURE(S) The live birth rate, which was defined as the delivery of a live baby after 24 weeks of gestation. RESULTS The analysis included 365 FET cycles. There was a significant difference between groups in the live birth rate (p < .05), which was highest for the low ALT tertile and lowest for the high ALT tertile. Multiple regression analysis with adjustment for multiple potential confounders revealed that the odds of live birth were decreased for each one standard deviation increase in ALT (OR = 0.56, 95%CI = 0.42-0.75, p < .0001) and lower for the high ALT tertile than for the low ALT tertile (OR = 0.38, 95%CI = 0.19-0.75, p = .0055). Smooth curve fitting showed an inverse relationship between ALT and live birth rate. CONCLUSION Our findings indicate that relatively small elevations in baseline serum ALT level can have a clinically relevant impact on the success of FET.
Collapse
Affiliation(s)
- Shuping Zhang
- Reproductive Medicine Center, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, P. R. China
- Hubei University of Medicine Biomedical Engineering College, Shiyan, Hubei, P. R. China
| | - Hongyi Xu
- Reproductive Medicine Center, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, P. R. China
- Hubei University of Medicine Biomedical Engineering College, Shiyan, Hubei, P. R. China
| | - Juan Chen
- Reproductive Medicine Center, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, P. R. China
- Hubei University of Medicine Biomedical Engineering College, Shiyan, Hubei, P. R. China
| | - Ying Zhang
- Reproductive Medicine Center, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, P. R. China
- Hubei University of Medicine Biomedical Engineering College, Shiyan, Hubei, P. R. China
| | - Zhifeng Sun
- Reproductive Medicine Center, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, P. R. China
- Hubei University of Medicine Biomedical Engineering College, Shiyan, Hubei, P. R. China
| | - Lijuan Luo
- Reproductive Medicine Center, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, P. R. China
- Hubei University of Medicine Biomedical Engineering College, Shiyan, Hubei, P. R. China
| | - Xiaoning Wang
- Reproductive Medicine Center, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, P. R. China
- Hubei University of Medicine Biomedical Engineering College, Shiyan, Hubei, P. R. China
| | - Xing Jiang
- Reproductive Medicine Center, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, P. R. China
- Hubei University of Medicine Biomedical Engineering College, Shiyan, Hubei, P. R. China
| | - Chenglong Jiang
- Reproductive Medicine Center, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, P. R. China
- Hubei University of Medicine Biomedical Engineering College, Shiyan, Hubei, P. R. China
| | - Kai Deng
- Reproductive Medicine Center, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, P. R. China
- Hubei University of Medicine Biomedical Engineering College, Shiyan, Hubei, P. R. China
| | - Changjun Zhang
- Reproductive Medicine Center, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, P. R. China
- Hubei University of Medicine Biomedical Engineering College, Shiyan, Hubei, P. R. China
| |
Collapse
|
12
|
Tong W, Hannou SA, Wang Y, Astapova I, Sargsyan A, Monn R, Thiriveedi V, Li D, McCann JR, Rawls JF, Roper J, Zhang GF, Herman MA. The intestine is a major contributor to circulating succinate in mice. FASEB J 2022; 36:e22546. [PMID: 36106538 PMCID: PMC9523828 DOI: 10.1096/fj.202200135rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 10/03/2023]
Abstract
The tricarboxylic acid (TCA) cycle is the epicenter of cellular aerobic metabolism. TCA cycle intermediates facilitate energy production and provide anabolic precursors, but also function as intra- and extracellular metabolic signals regulating pleiotropic biological processes. Despite the importance of circulating TCA cycle metabolites as signaling molecules, the source of circulating TCA cycle intermediates remains uncertain. We observe that in mice, the concentration of TCA cycle intermediates in the portal blood exceeds that in tail blood indicating that the gut is a major contributor to circulating TCA cycle metabolites. With a focus on succinate as a representative of a TCA cycle intermediate with signaling activities and using a combination of gut microbiota depletion mouse models and isotopomer tracing, we demonstrate that intestinal microbiota is not a major contributor to circulating succinate. Moreover, we demonstrate that endogenous succinate production is markedly higher than intestinal succinate absorption in normal physiological conditions. Altogether, these results indicate that endogenous succinate production within the intestinal tissue is a major physiological source of circulating succinate. These results provide a foundation for an investigation into the role of the intestine in regulating circulating TCA cycle metabolites and their potential signaling effects on health and disease.
Collapse
Affiliation(s)
- Wenxin Tong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Sarah A. Hannou
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - You Wang
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Inna Astapova
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
| | - Ashot Sargsyan
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Ruby Monn
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | | | - Diana Li
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Jessica R. McCann
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - Jatin Roper
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Guo-fang Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Mark A. Herman
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
| |
Collapse
|
13
|
Wang Z, Yang R, Zhang Y, Hui X, Yan L, Zhang R, Li X, Abliz Z. Ratiometric Mass Spectrometry Imaging for Stain-Free Delineation of Ischemic Tissue and Spatial Profiling of Ischemia-Related Molecular Signatures. Front Chem 2022; 9:807868. [PMID: 34993178 PMCID: PMC8724055 DOI: 10.3389/fchem.2021.807868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mass spectrometry imaging (MSI) serves as an emerging tool for spatial profiling of metabolic dysfunction in ischemic tissue. Prior to MSI data analysis, commonly used staining methods, e.g., triphenyltetrazole chloride (TTC) staining, need to be implemented on the adjacent tissue for delineating lesion area and evaluating infarction, resulting in extra consumption of the tissue sample as well as morphological mismatch. Here, we propose an in situ ratiometric MSI method for simultaneous demarcation of lesion border and spatial annotation of metabolic and enzymatic signatures in ischemic tissue on identical tissue sections. In this method, the ion abundance ratio of a reactant pair in the TCA cycle, e.g., fumarate to malate, is extracted pixel-by-pixel from an ambient MSI dataset of ischemic tissue and used as a surrogate indicator for metabolic activity of mitochondria to delineate lesion area as if the tissue has been chemically stained. This method is shown to be precise and robust in identifying lesions in brain tissues and tissue samples from different ischemic models including heart, liver, and kidney. Furthermore, the proposed method allows screening and predicting metabolic and enzymatic alterations which are related to mitochondrial dysfunction. Being capable of concurrent lesion identification, in situ metabolomics analysis, and screening of enzymatic alterations, the ratiometric MSI method bears great potential to explore ischemic damages at both metabolic and enzymatic levels in biological research.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaxin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Hui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liuyan Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for Imaging and Systems Biology, Minzu University of China, Beijing, China
| |
Collapse
|
14
|
Rodimova S, Elagin V, Karabut M, Koryakina I, Timin A, Zagainov V, Zyuzin M, Zagaynova E, Kuznetsova D. Toxicological Analysis of Hepatocytes Using FLIM Technique: In Vitro versus Ex Vivo Models. Cells 2021; 10:2894. [PMID: 34831114 PMCID: PMC8616382 DOI: 10.3390/cells10112894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/03/2022] Open
Abstract
The search for new criteria indicating acute or chronic pathological processes resulting from exposure to toxic agents, testing of drugs for potential hepatotoxicity, and fundamental study of the mechanisms of hepatotoxicity at a molecular level still represents a challenging issue that requires the selection of adequate research models and tools. Microfluidic chips (MFCs) offer a promising in vitro model for express analysis and are easy to implement. However, to obtain comprehensive information, more complex models are needed. A fundamentally new label-free approach for studying liver pathology is fluorescence-lifetime imaging microscopy (FLIM). We obtained FLIM data on both the free and bound forms of NAD(P)H, which is associated with different metabolic pathways. In clinical cases, liver pathology resulting from overdoses is most often as a result of acetaminophen (APAP) or alcohol (ethanol). Therefore, we have studied and compared the metabolic state of hepatocytes in various experimental models of APAP and ethanol hepatotoxicity. We have determined the potential diagnostic criteria including the pathologically altered metabolism of the hepatocytes in the early stages of toxic damage, including pronounced changes in the contribution from the bound form of NAD(P)H. In contrast to the MFCs, the changes in the metabolic state of hepatocytes in the ex vivo models are, to a greater extent, associated with compensatory processes. Thus, MFCs in combination with FLIM can be applied as an effective tool set for the express modeling and diagnosis of hepatotoxicity in clinics.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
- Department of Biophysics, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
| | - Irina Koryakina
- School of Physics and Engineering, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia; (I.K.); (M.Z.)
| | - Alexander Timin
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634034 Tomsk, Russia;
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya St., 194064 St. Petersburg, Russia
| | - Vladimir Zagainov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Mikhail Zyuzin
- School of Physics and Engineering, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia; (I.K.); (M.Z.)
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
- Department of Biophysics, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia; (V.E.); (M.K.); (V.Z.); (E.Z.); (D.K.)
- Department of Biophysics, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
15
|
Luczak MW, Krawic C, Zhitkovich A. NAD + metabolism controls growth inhibition by HIF1 in normoxia and determines differential sensitivity of normal and cancer cells. Cell Cycle 2021; 20:1812-1827. [PMID: 34382917 DOI: 10.1080/15384101.2021.1959988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hypoxia-induced transcription factor HIF1 inhibits cell growth in normoxia through poorly understood mechanisms. A constitutive upregulation of hypoxia response is associated with increased malignancy, indicating a loss of antiproliferative effects of HIF1 in cancer cells. To understand these differences, we examined a control of cell cycle in primary human cells with activated hypoxia response in normoxia. Activated HIF1 caused a global slowdown of cell cycle progression through G1, S and G2 phases leading to the loss of mitotic cells. Cell cycle inhibition required a prolonged HIF1 activation and was not associated with upregulation of p53 or the CDK inhibitors p16, p21 or p27. Growth inhibition by HIF1 was independent of its Asn803 hydroxylation or the presence of HIF2. Antiproliferative effects of hypoxia response were alleviated by inhibition of lactate dehydrogenase and more effectively, by boosting cellular production of NAD+, which was decreased by HIF1 activation. In comparison to normal cells, various cancer lines showed several fold-higher expression of NAMPT which is a rate-limiting enzyme in the main biosynthetic pathway for NAD+. Inhibition of NAMPT activity in overexpressor cancer cells sensitized them to antigrowth effects of HIF1. Thus, metabolic changes in cancer cells, such as enhanced NAD+ production, create resistance to growth-inhibitory activity of HIF1 permitting manifestation of its tumor-promoting properties.AbbreviationsDMOG: dimethyloxalylglycine, DM-NOFD: dimethyl N-oxalyl-D-phenylalanine, NMN: β-nicotinamide mononucleotide.
Collapse
Affiliation(s)
- Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
16
|
Xu L, Song H, Qiu Q, Jiang T, Ge P, Su Z, Ma W, Zhang R, Huang C, Li S, Lin D, Zhang J. Different Expressions of HIF-1α and Metabolism in Brain and Major Visceral Organs of Acute Hypoxic Mice. Int J Mol Sci 2021; 22:6705. [PMID: 34201416 PMCID: PMC8268807 DOI: 10.3390/ijms22136705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is associated with clinical diseases. Extreme hypoxia leads to multiple organs failure. However, the different effects of hypoxia on brain and visceral organs still need to be clarified, and moreover, characteristics in vulnerable organs suffering from hypoxia remain elusive. In the present study, we first aimed to figure out the hypoxic sensitivity of organs. Adult male mice were exposed to 6% O2 or 8% O2 for 6 h. Control mice were raised under normoxic conditions. In vivo and in vitro imaging of anti-HIF-1α-NMs-cy5.5 nanocomposites showed that the expression level of hypoxia-inducible factor (HIF-1α) was the highest in the liver, followed by kidney and brain. HIF-1α was detected in the hepatocytes of liver, distal convoluted tubules of kidney and neurons of cerebral cortex. The liver, kidney and brain showed distinct metabolic profiles but an identical change in glutamate. Compared with kidney and brain, the liver had more characteristic metabolites and more disturbed metabolic pathways related to glutaminolysis and glycolysis. The level of O-phosphocholine, GTP, NAD and aspartate were upregulated in hypoxic mice brain, which displayed significant positive correlations with the locomotor activity in control mice, but not in hypoxic mice with impaired locomotor activities. Taken together, the liver, kidney and brain are the three main organs of the body that are strongly respond to acute hypoxia, and the liver exhibited the highest hypoxic sensitivity. The metabolic disorders appear to underlie the physiological function changes.
Collapse
Affiliation(s)
- Lu Xu
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen 361102, China; (L.X.); (Q.Q.); (W.M.); (R.Z.)
| | - Hua Song
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (H.S.); (P.G.); (Z.S.)
| | - Qi Qiu
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen 361102, China; (L.X.); (Q.Q.); (W.M.); (R.Z.)
| | - Ting Jiang
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
| | - Pingyun Ge
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (H.S.); (P.G.); (Z.S.)
| | - Zaiji Su
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (H.S.); (P.G.); (Z.S.)
| | - Wenhui Ma
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen 361102, China; (L.X.); (Q.Q.); (W.M.); (R.Z.)
| | - Ran Zhang
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen 361102, China; (L.X.); (Q.Q.); (W.M.); (R.Z.)
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361024, China;
| | - Shanhua Li
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen 361102, China; (L.X.); (Q.Q.); (W.M.); (R.Z.)
| | - Donghai Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (H.S.); (P.G.); (Z.S.)
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen 361102, China; (L.X.); (Q.Q.); (W.M.); (R.Z.)
| |
Collapse
|
17
|
Mesenchymal Stem Cell Transplantation for Ischemic Diseases: Mechanisms and Challenges. Tissue Eng Regen Med 2021; 18:587-611. [PMID: 33884577 DOI: 10.1007/s13770-021-00334-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic diseases are conditions associated with the restriction or blockage of blood supply to specific tissues. These conditions can cause moderate to severe complications in patients, and can lead to permanent disabilities. Since they are blood vessel-related diseases, ischemic diseases are usually treated with endothelial cells or endothelial progenitor cells that can regenerate new blood vessels. However, in recent years, mesenchymal stem cells (MSCs) have shown potent bioeffects on angiogenesis, thus playing a role in blood regeneration. Indeed, MSCs can trigger angiogenesis at ischemic sites by several mechanisms related to their trans-differentiation potential. These mechanisms include inhibition of apoptosis, stimulation of angiogenesis via angiogenic growth factors, and regulation of immune responses, as well as regulation of scarring to suppress blood vessel regeneration when needed. However, preclinical and clinical trials of MSC transplantation in ischemic diseases have shown some limitations in terms of treatment efficacy. Such studies have emphasized the current challenges of MSC-based therapies. Treatment efficacy could be enhanced if the limitations were better understood and potentially resolved. This review will summarize some of the strategies by which MSCs have been utilized for ischemic disease treatment, and will highlight some challenges of those applications as well as suggesting some strategies to improve treatment efficacy.
Collapse
|
18
|
Shoaib M, Choudhary RC, Choi J, Kim N, Hayashida K, Yagi T, Yin T, Nishikimi M, Stevens JF, Becker LB, Kim J. Plasma metabolomics supports the use of long-duration cardiac arrest rodent model to study human disease by demonstrating similar metabolic alterations. Sci Rep 2020; 10:19707. [PMID: 33184308 PMCID: PMC7665036 DOI: 10.1038/s41598-020-76401-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiac arrest (CA) is a leading cause of death and there is a necessity for animal models that accurately represent human injury severity. We evaluated a rat model of severe CA injury by comparing plasma metabolic alterations to human patients. Plasma was obtained from adult human control and CA patients post-resuscitation, and from male Sprague–Dawley rats at baseline and after 20 min CA followed by 30 min cardiopulmonary bypass resuscitation. An untargeted metabolomics evaluation using UPLC-QTOF-MS/MS was performed for plasma metabolome comparison. Here we show the metabolic commonality between humans and our severe injury rat model, highlighting significant metabolic dysfunction as seen by similar alterations in (1) TCA cycle metabolites, (2) tryptophan and kynurenic acid metabolites, and (3) acylcarnitine, fatty acid, and phospholipid metabolites. With substantial interspecies metabolic similarity in post-resuscitation plasma, our long duration CA rat model metabolically replicates human disease and is a suitable model for translational CA research.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA
| | - Rishabh C Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Nancy Kim
- Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Tsukasa Yagi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA.,Department of Emergency Medicine, Northwell Health, NY, USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA. .,Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA. .,Department of Emergency Medicine, Northwell Health, NY, USA.
| |
Collapse
|
19
|
Ferrigno A, Berardo C, Di Pasqua LG, Cagna M, Siciliano V, Richelmi P, Vairetti M. The selective blockade of metabotropic glutamate receptor-5 attenuates fat accumulation in an <em>in vitro</em> model of benign steatosis. Eur J Histochem 2020; 64. [PMID: 33207858 PMCID: PMC7662107 DOI: 10.4081/ejh.2020.3175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
It has been previously found that the blockade of metabotropic glutamate receptor type 5 (mGluR5) protects against hepatic ischemia/reperfusion injury and acetaminophen toxicity. The role of mGluR5 in NAFLD has not yet been elucidated. Here, we evaluated the effects of mGluR5 blockade in an in vitro model of steatosis. HepG2 cells were pre-incubated for 12 h with an mGluR5 agonist, a negative allosteric modulator (DHPG and MPEP, respectively) or vehicle, then treated with 1.5 mM oleate/palmitate (O/P) for another 12 h. Cell viability was evaluated with the MTT assay; fat accumulation was measured using the fluorescent dye nile red; SREBP-1, PPAR-α, iNOS and Caspase-3 protein expression were evaluated by Western blot; NFkB activity was evaluated as pNFkB/NFkB ratio. mGluR5 modulation did not alter cell viability in O/P-incubated cells; MPEP prevented intracellular lipid accumulation in O/P treated cells; MPEP administration was also associated with a reversion of O/P-induced changes in SREBP-1 and PPAR-α expression, involved in free fatty acid (FFA) metabolism and uptake. No changes were observed in iNOS and Caspase-3 expression, or in NFkB activity. In conclusion, mGluR5 pharmacological blockade reduced fat accumulation in HepG2 cells incubated with O/P, probably by modulating the expression of SREBP-1 and PPAR-α.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| | - Clarissa Berardo
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| | - Laura Giuseppina Di Pasqua
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| | - Marta Cagna
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| | - Veronica Siciliano
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| | - Plinio Richelmi
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| |
Collapse
|
20
|
A unique insight for energy metabolism disorders in depression based on chronic unpredictable mild stress rats using stable isotope-resolved metabolomics. J Pharm Biomed Anal 2020; 191:113588. [DOI: 10.1016/j.jpba.2020.113588] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
|
21
|
Ryan TE, Schmidt CA, Tarpey MD, Amorese AJ, Yamaguchi DJ, Goldberg EJ, Iñigo MM, Karnekar R, O'Rourke A, Ervasti JM, Brophy P, Green TD, Neufer PD, Fisher-Wellman K, Spangenburg EE, McClung JM. PFKFB3-mediated glycolysis rescues myopathic outcomes in the ischemic limb. JCI Insight 2020; 5:139628. [PMID: 32841216 PMCID: PMC7526546 DOI: 10.1172/jci.insight.139628] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Compromised muscle mitochondrial metabolism is a hallmark of peripheral arterial disease, especially in patients with the most severe clinical manifestation - critical limb ischemia (CLI). We asked whether inflexibility in metabolism is critical for the development of myopathy in ischemic limb muscles. Using Polg mtDNA mutator (D257A) mice, we reveal remarkable protection from hind limb ischemia (HLI) due to a unique and beneficial adaptive enhancement of glycolytic metabolism and elevated ischemic muscle PFKFB3. Similar to the relationship between mitochondria from CLI and claudicating patient muscles, BALB/c muscle mitochondria are uniquely dysfunctional after HLI onset as compared with the C57BL/6 (BL6) parental strain. AAV-mediated overexpression of PFKFB3 in BALB/c limb muscles improved muscle contractile function and limb blood flow following HLI. Enrichment analysis of RNA sequencing data on muscle from CLI patients revealed a unique deficit in the glucose metabolism Reactome. Muscles from these patients express lower PFKFB3 protein, and their muscle progenitor cells possess decreased glycolytic flux capacity in vitro. Here, we show supplementary glycolytic flux as sufficient to protect against ischemic myopathy in instances where reduced blood flow-related mitochondrial function is compromised preclinically. Additionally, our data reveal reduced glycolytic flux as a common characteristic of the failing CLI patient limb skeletal muscle.
Collapse
Affiliation(s)
- Terence E Ryan
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Michael D Tarpey
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Adam J Amorese
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Dean J Yamaguchi
- Department of Cardiovascular Science, and.,Division of Surgery, East Carolina University, Brody School of Medicine, Greenville, North Carolina, USA
| | - Emma J Goldberg
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Melissa Mr Iñigo
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Reema Karnekar
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Allison O'Rourke
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | | | - Thomas D Green
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | | | | | - Joseph M McClung
- East Carolina Diabetes and Obesity Institute.,Department of Physiology.,Department of Cardiovascular Science, and
| |
Collapse
|
22
|
Mahmud SA, Qureshi MA, Sapkota M, Pellegrino MW. A pathogen branched-chain amino acid catabolic pathway subverts host survival by impairing energy metabolism and the mitochondrial UPR. PLoS Pathog 2020; 16:e1008918. [PMID: 32997715 PMCID: PMC7549759 DOI: 10.1371/journal.ppat.1008918] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/12/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a stress-activated pathway promoting mitochondrial recovery and defense against infection. In C. elegans, the UPRmt is activated during infection with the pathogen Pseudomonas aeruginosa-but only transiently. As this may reflect a pathogenic strategy to target a pathway required for host survival, we conducted a P. aeruginosa genetic screen to uncover mechanisms associated with this temporary activation. Here, we find that loss of the P. aeruginosa acyl-CoA dehydrogenase FadE2 prolongs UPRmt activity and extends host survival. FadE2 shows substrate preferences for the coenzyme A intermediates produced during the breakdown of the branched-chain amino acids valine and leucine. Our data suggests that during infection, FadE2 restricts the supply of these catabolites to the host hindering host energy metabolism in addition to the UPRmt. Thus, a metabolic pathway in P. aeruginosa contributes to pathogenesis during infection through manipulation of host energy status and mitochondrial stress signaling potential.
Collapse
Affiliation(s)
- Siraje Arif Mahmud
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Mohammed Adnan Qureshi
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Madhab Sapkota
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Mark W. Pellegrino
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| |
Collapse
|
23
|
Smecellato FB, Marsilli LRB, Nakamura JE, Jordani MC, Évora PRB, Castro-e-Silva O. Comparative study between fructose 1-6 bisphosphate and histidine-tryptophan-ketoglutarate in liver preservation in rats submitted to total cold ischemia. Acta Cir Bras 2020; 35:e202000603. [PMID: 32667586 PMCID: PMC7357840 DOI: 10.1590/s0102-865020200060000003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/18/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022] Open
Abstract
Purpose To compare Fructose-1,6-Bisphosphate (FBP) to Histidine-Tryptophan-Ketoglutarate (HTK) in liver preservation at cold ischemia. Methods Male rats (Sprague-Dawley: 280-340g) divided into three groups (n=7): Control; Fructose-1,6-bisphosphate (FBP); Histidine-Tryptophan-Ketoglutarate (HTK). Animals underwent laparotomy-thoracotomy for perfusion of livers with saline. Livers were removed and deposited into solutions. Mitochondria were isolated to determine State 3 (S3), State 4 (S4), Respiratory Control Ratio (RCR) and Swelling (S). Liver enzymes (AST, ALT, LDH) were determined in solution. At tissue, Malondialdehyde (MDA) and Nitrate (NOx) were determined. All parameters were analyzed at 0.6 and 24 hours of hypothermic preservation. Statistics analysis were made by Mann-Whitney test (p<0.05). Results Regarding ALT, there was a difference between FBP-6h/HTK-6h, lower in HTK. Regarding AST, there was a significant difference between FBP-24h/HTK-24h, lower in FBP. Regarding NOx, there was a difference between 0h and 6h, as well as 0h and 24h for both solutions. Regarding S3, there was a significant difference in 24h compared to Control-0h for both solutions, and a significant difference between FBP-6h/FBP-24h. Regarding S4, there was a difference between Control-0h/HTK-24h and FBP-24h/HTK-24h, higher in HTK. There was a difference between Control-0h/FBP-24h for Swelling, higher in FBP. Conclusion Fructose-1,6-Bisphosphate showed better performance at nitrate and aspartate aminotransferase compared to histidine-tryptophan-ketoglutarate.
Collapse
Affiliation(s)
- Fernanda Bombonato Smecellato
- Graduate student, Faculdade de Medicina de Marília (FAMEMA), Brazil. Technical procedures; acquisition, analysis and interpretation of data; manuscript preparation
| | - Lucas Ricardo Benfatti Marsilli
- Graduate student, Faculdade de Medicina de Marília (FAMEMA), Brazil. Technical procedures; acquisition, analysis and interpretation of data; manuscript preparation
| | - Julia Eico Nakamura
- Graduate student, Faculdade de Medicina de Marília (FAMEMA), Brazil. Technical procedures; acquisition, analysis and interpretation of data; manuscript preparation
| | - Maria Cecília Jordani
- Master, Biochemistry, Division of Digestive Surgery, Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirao Preto-SP, Brazil. Acquisition and interpretation of data, statistical analysis
| | - Paulo Roberto Barbosa Évora
- PhD, Full Professor, Division of Thoracic and Cardiovascular Surgery, Department of Surgery and Anatomy, FMRP-USP, Ribeirao Preto-SP, Brazil. Conception and design of the study, manuscript writing, critical revision
| | - Orlando Castro-e-Silva
- PhD, Full Professor, Department of Surgery and Anatomy, FMRP-USP, Ribeirao Preto-SP, Brazil. Conception and design of the study, analysis and interpretation of data, manuscript writing, critical revision
| |
Collapse
|
24
|
Yong HY, Larrouy-Maumus G, Zloh M, Smyth R, Ataya R, Benton CM, Munday MR. Early detection of metabolic changes in drug-induced steatosis using metabolomics approaches. RSC Adv 2020; 10:41047-41057. [PMID: 35519189 PMCID: PMC9057704 DOI: 10.1039/d0ra06577c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022] Open
Abstract
Steatosis is the accumulation of triglycerides in hepatic cells wherein fats exceed 5% of the entire liver weight. Although steatotic liver damage is reversible due to the liver's regenerative capability, protracted damage often and typically leads to irreversible conditions such as cirrhosis and hepatocellular carcinoma (HCC). Therefore, early steatotic detection is critical for preventing progression to advanced liver diseases. This also becomes particularly important given the higher prevalence of drug usage, as drugs are a frequent cause of liver damage. Currently, the recommendation to diagnose steatosis is using liver enzymes and performing a liver biopsy. Liver biopsy remains the gold standard method of detection, but the procedure is invasive and an unreliable diagnostic tool. Non-invasive, specific and sensitive diagnostic solutions such as biomarkers are therefore needed for the early detection of steatosis. Our aim is to identify changes in urinary metabolites in tetracycline-induced hepatic steatotic rats at different stages of the diseases using metabolomic-based techniques. Sprague Dawley male rats are treated by intraperitoneal injection (I.P.) with either 62.5 mg kg−1 or 125 mg kg−1 tetracycline, an antibiotic previously known to induce steatosis. We analyse the metabolic profile of the urinary tetracycline induced hepatic steatotic rats using 1H nuclear magnetic resonance (NMR), 2D 1H–1H TOCSY (total correlation spectroscopy) and electrospray liquid chromatography-mass spectrometry (ESI-LC-MS/MS) based metabolomics. The combined analysis of haematoxylin & eosin (H&E), oil red O (ORO) and direct measurement of triglyceride content in the liver tissues of the control samples against 125 mg kg−1 and 62.5 mg kg−1 treated samples, reveals that 125 mg kg−1 tetracycline exposure potentially induces steatosis. The combination of 1H NMR, 2D 1H–1H TOCSY and ESI-LC-MS/MS alongside multivariate statistical analysis, detected a total of 6 urinary metabolites changes, across 6 metabolic pathways. Furthermore, lysine concentration correlates with liver damage as tetracycline dose concentration increases, whilst both H&E and ORO fail to detect hepatocellular damage at the lowest dose concentration. We conclude that the combination of 1H NMR and ESI-LC-MS/MS suggests that these are suitable platforms for studying the pathogenesis of steatosis development, prior to morphological alterations observed in staining techniques and offer a more detailed description of the severity of the steatotic disease. Urinary metabolic profiling of tetracycline induced hepatic steatotic rats were investigated using 1H nuclear magnetic resonance, 2D 1H–1H total correlation spectroscopy and electrospray liquid chromatography-mass spectrometry based metabolomics.![]()
Collapse
Affiliation(s)
- Helena Y Yong
- Department of Pharmaceutical and Biological Chemistry
- University of London
- UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection
- Department of Life Science
- Faculty of Natural Sciences
- Imperial College London
- UK
| | - Mire Zloh
- Department of Pharmaceutical and Biological Chemistry
- University of London
- UK
| | - Rosemary Smyth
- Department of Pharmaceutical and Biological Chemistry
- University of London
- UK
| | - Rayan Ataya
- Department of Pharmaceutical and Biological Chemistry
- University of London
- UK
| | | | - Michael R. Munday
- Department of Pharmaceutical and Biological Chemistry
- University of London
- UK
| |
Collapse
|
25
|
Lemaire F, Sigrist S, Delpy E, Cherfan J, Peronet C, Zal F, Bouzakri K, Pinget M, Maillard E. Beneficial effects of the novel marine oxygen carrier M101 during cold preservation of rat and human pancreas. J Cell Mol Med 2019; 23:8025-8034. [PMID: 31602751 PMCID: PMC6850937 DOI: 10.1111/jcmm.14666] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Abstract
Ischaemia impairs organ quality during preservation in a time‐dependent manner, due to a lack of oxygen supply. Its impact on pancreas and islet transplantation outcome has been demonstrated by a correlation between cold ischaemia time and poor islet isolation efficiency. Our goal in the present study was to improve pancreas and islet quality using a novel natural oxygen carrier (M101, 2 g/L), which has been proven safe and efficient in other clinical applications, including kidney transplantation, and for several pre‐clinical transplantation models. When M101 was added to the preservation solution of rat pancreas during ischaemia, a decrease in oxidative stress (ROS), necrosis (HMGB1), and cellular stress pathway (p38 MAPK)activity was observed. Freshly isolated islets had improved function when M101 was injected in the pancreas. Additionally, human pancreases exposed to M101 for 3 hours had an increase in complex 1 mitochondrial activity, as well as activation of AKT activity, a cell survival marker. Insulin secretion was also up‐regulated for isolated islets. In summary, these results demonstrate a positive effect of the oxygen carrier M101 on rat and human pancreas during preservation, with an overall improvement in post‐isolation islet quality.
Collapse
Affiliation(s)
- Florent Lemaire
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Séverine Sigrist
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Eric Delpy
- HEMARINA Aéropôle Centre, Biotechnopôle, Morlaix, France
| | - Julien Cherfan
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Claude Peronet
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Franck Zal
- HEMARINA Aéropôle Centre, Biotechnopôle, Morlaix, France
| | - Karim Bouzakri
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Michel Pinget
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Elisa Maillard
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
26
|
Merlen G, Raymond VA, Cassim S, Lapierre P, Bilodeau M. Oxaloacetate Protects Rat Liver From Experimental Warm Ischemia/Reperfusion Injury by Improving Cellular Energy Metabolism. Liver Transpl 2019; 25:627-639. [PMID: 30663275 DOI: 10.1002/lt.25415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/13/2019] [Indexed: 12/13/2022]
Abstract
Liver ischemia/reperfusion injury (IRI) is an important cause of liver damage especially early after liver transplantation, following liver resection, and in other clinical situations. Using rat experimental models, we identified oxaloacetate (OAA) as a key metabolite able to protect hepatocytes from hypoxia and IRI. In vitro screening of metabolic intermediates beneficial for hepatocyte survival under hypoxia was performed by measures of cell death and injury. In vivo, the effect of OAA was evaluated using the left portal vein ligation (LPVL) model of liver ischemia and a model of warm IRI. Liver injury was evaluated in vivo by serum transaminase levels, liver histology, and liver weight (edema). Levels and activity of caspase 3 were also measured. In vitro, the addition of OAA to hepatocytes kept in a hypoxic environment significantly improved cell viability (P < 0.01), decreased cell injury (P < 0.01), and improved energy metabolism (P < 0.01). Administration of OAA significantly reduced the extent of liver injury in the LPVL model with lower levels of alanine aminotransferase (ALT; P < 0.01), aspartate aminotransferase (AST; P < 0.01), and reduced liver necrosis (P < 0.05). When tested in a warm IRI model, OAA significantly decreased ALT (P < 0.001) and AST levels (P < 0.001), prevented liver edema (P < 0.001), significantly decreased caspase 3 expression (P < 0.01), as well as histological signs of cellular vesiculation and vacuolation (P < 0.05). This was associated with higher adenosine triphosphate (P < 0.05) and energy charge levels (P < 0.01). In conclusion, OAA can significantly improve survival of ischemic hepatocytes. The hepatoprotective effect of OAA was associated with increased levels of liver bioenergetics both in vitro and in vivo. These results suggest that it is possible to support mitochondrial activity despite the presence of ischemia and that OAA can effectively reduce ischemia-induced injury in the liver.
Collapse
Affiliation(s)
- Grégory Merlen
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - Valérie-Ann Raymond
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - Shamir Cassim
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - Pascal Lapierre
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Marc Bilodeau
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|