1
|
Wang Z, Kim S, Farrell BD, de Medeiros BAS. Customizable PCR-based target enrichment probes for sequencing fungi-parasitized insects. INSECT SCIENCE 2024. [PMID: 39034422 DOI: 10.1111/1744-7917.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Zhengyang Wang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Sangil Kim
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- Research Institute of Basic Sciences, Seoul National University, Seoul, Republic of Korea
| | - Brian D Farrell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Bruno A S de Medeiros
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- Field Museum of Natural History, Chicago, Illinois, United States
| |
Collapse
|
2
|
Li XL, Zhang JJ, Li DD, Cai XY, Qi YX, Lu YY. Toxicity of Beauveria bassiana to Bactrocera dorsalis and effects on its natural predators. Front Microbiol 2024; 15:1362089. [PMID: 38756732 PMCID: PMC11096544 DOI: 10.3389/fmicb.2024.1362089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Entomopathogenic fungi (EPF) are economical and environmentally friendly, forming an essential part of integrated pest management strategies. We screened six strains of Beauveria bassiana (B1-B6) (Hypocreales: Cordycipitaceae), of which B4 was the most virulent to Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further assessed the biological characteristics of strain B4 and the environmental factors influencing its ability to infect B. dorsalis. We also evaluated the effects of B4 on two of the natural predators of B. dorsalis. We found that strain B4 was the most virulent to 3rd instar larvae, pupae, and adult B. dorsalis, causing mortality rates of 52.67, 61.33, and 90.67%, respectively. B4 was not toxic to B. dorsalis eggs. The optimum B4 effects on B. dorsalis were achieved at a relative humidity of 91-100% and a temperature of 25°C. Among the six insecticides commonly used for B. dorsalis control, 1.8% abamectin emulsifiable concentrate had the strongest inhibitory effect on B4 strain germination. B4 spraying affected both natural enemies (Amblyseius cucumeris and Anastatus japonicus), reducing the number of A. cucumeris and killing A. japonicus adults. We found a valuable strain of EPF (B4) that is virulent against many life stages of B. dorsalis and has great potential for the biological control of B. dorsalis. We also provide an important theoretical and practical base for developing a potential fungicide to control B. dorsalis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong-yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Apirajkamol NB, Hogarty TM, Mainali B, Taylor PW, Walsh TK, Tay WT. Virulence of Beauveria sp. and Metarhizium sp. fungi towards fall armyworm (Spodoptera frugiperda). Arch Microbiol 2023; 205:328. [PMID: 37676308 PMCID: PMC10495518 DOI: 10.1007/s00203-023-03669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
The development of effective pest management strategies for Spodoptera frugiperda is a high priority for crop protection across its invasive ranges. Here, we examined six Beauveria and five Metarhizium fungal isolates against this pest. Two Beauveria isolates (B-0571, B-1311) induced high mortality toward 3rd and 6th instar caterpillars and adults. For B-0571 mortality was 82.81 ± 5.75%, 61.46 ± 6.83%, and 93.75 ± 3.61%, and 73.72 ± 2.51%, 71.88 ± 5.41%, and 97.92 ± 2.08% for B-1311, with deaths in caterpillars largely occurring under 24 h (3rd instar control 0.74 ± 0.33%, B-0571 73.96 ± 7.85% and B-1311 62.08 ± 3.67%; 6th instar control 0%, B-0571 66.67% ± 11.02% and B-1311 62.5% ± 9.55%). Infection from both Beauveria isolates fully prevented reproduction in surviving S. frugiperda females. In contrast, all five Metarhizium isolates tested and the remaining four Beauveria isolates exhibited lower virulence. The discovery of two highly virulent Beauveria fungal isolates to S. frugiperda opens avenues to develop novel biological control tools against this highly invasive pest.
Collapse
Affiliation(s)
- Nonthakorn Beatrice Apirajkamol
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia.
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia.
| | - Timothy Michael Hogarty
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Bishwo Mainali
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Thomas Kieran Walsh
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Wee Tek Tay
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| |
Collapse
|
4
|
Li JX, Fernandez KX, Ritland C, Jancsik S, Engelhardt DB, Coombe L, Warren RL, van Belkum MJ, Carroll AL, Vederas JC, Bohlmann J, Birol I. Genomic virulence features of Beauveria bassiana as a biocontrol agent for the mountain pine beetle population. BMC Genomics 2023; 24:390. [PMID: 37430186 DOI: 10.1186/s12864-023-09473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The mountain pine beetle, Dendroctonus ponderosae, is an irruptive bark beetle that causes extensive mortality to many pine species within the forests of western North America. Driven by climate change and wildfire suppression, a recent mountain pine beetle (MPB) outbreak has spread across more than 18 million hectares, including areas to the east of the Rocky Mountains that comprise populations and species of pines not previously affected. Despite its impacts, there are few tactics available to control MPB populations. Beauveria bassiana is an entomopathogenic fungus used as a biological agent in agriculture and forestry and has potential as a management tactic for the mountain pine beetle population. This work investigates the phenotypic and genomic variation between B. bassiana strains to identify optimal strains against a specific insect. RESULTS Using comparative genome and transcriptome analyses of eight B. bassiana isolates, we have identified the genetic basis of virulence, which includes oosporein production. Genes unique to the more virulent strains included functions in biosynthesis of mycotoxins, membrane transporters, and transcription factors. Significant differential expression of genes related to virulence, transmembrane transport, and stress response was identified between the different strains, as well as up to nine-fold upregulation of genes involved in the biosynthesis of oosporein. Differential correlation analysis revealed transcription factors that may be involved in regulating oosporein production. CONCLUSION This study provides a foundation for the selection and/or engineering of the most effective strain of B. bassiana for the biological control of mountain pine beetle and other insect pests populations.
Collapse
Affiliation(s)
- Janet X Li
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 570 W 7th Ave #100, Vancouver, BC, V5Z 4S6, Canada.
| | - Kleinberg X Fernandez
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB, T6G 2G2, Canada
| | - Carol Ritland
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sharon Jancsik
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Daniel B Engelhardt
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB, T6G 2G2, Canada
| | - Lauren Coombe
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 570 W 7th Ave #100, Vancouver, BC, V5Z 4S6, Canada
| | - René L Warren
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 570 W 7th Ave #100, Vancouver, BC, V5Z 4S6, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB, T6G 2G2, Canada
| | - Allan L Carroll
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB, T6G 2G2, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 570 W 7th Ave #100, Vancouver, BC, V5Z 4S6, Canada
| |
Collapse
|
5
|
Wu S, Wu J, Wang Y, Qu Y, He Y, Wang J, Cheng J, Zhang L, Cheng C. Discovery of entomopathogenic fungi across geographical regions in southern China on pine sawyer beetle Monochamus alternatus and implication for multi-pathogen vectoring potential of this beetle. FRONTIERS IN PLANT SCIENCE 2022; 13:1061520. [PMID: 36643293 PMCID: PMC9832029 DOI: 10.3389/fpls.2022.1061520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Entomopathogen-based biocontrol is crucial for blocking the transmission of vector-borne diseases; however, few cross-latitudinal investigations of entomopathogens have been reported for vectors transmitting woody plant diseases in forest ecosystems. The pine sawyer beetle Monochamus alternatus is an important wood borer and a major vector transmitting pine wilt disease, facilitating invasion of the pinewood nematode Bursaphelenchus xylophilus (PWN) in China. Due to the limited geographical breadth of sampling regions, species diversity of fungal associates (especially entomopathogenic fungi) on M. alternatus adults and their potential ecological functions have been markedly underestimated. In this study, through traditional fungal isolation with morphological and molecular identification, 640 fungal strains (affiliated with 15 genera and 39 species) were isolated from 81 beetle cadavers covered by mycelia or those symptomatically alive across five regional populations of this pest in southern China. Multivariate analyses revealed significant differences in the fungal community composition among geographical populations of M. alternatus, presenting regionalized characteristics, whereas no significant differences were found in fungal composition between beetle genders or among body positions. Four region-representative fungi, namely, Lecanicillium attenuatum (Zhejiang), Aspergillus austwickii (Sichuan), Scopulariopsis alboflavescens (Fujian), and A. ruber (Guangxi), as well as the three fungal species Beauveria bassiana, Penicillium citrinum, and Trichoderma dorotheae, showed significantly stronger entomopathogenic activities than other fungi. Additionally, insect-parasitic entomopathogenic fungi (A. austwickii, B. bassiana, L. attenuatum, and S. alboflavescens) exhibited less to no obvious phytopathogenic activities on the host pine Pinus massoniana, whereas P. citrinum, Purpureocillium lilacinum, and certain species of Fusarium spp.-isolated from M. alternatus body surfaces-exhibited remarkably higher phytopathogenicity. Our results provide a broader view of the entomopathogenic fungal community on the vector beetle M. alternatus, some of which are reported for the first time on Monochamus spp. in China. Moreover, this beetle might be more highly-risk in pine forests than previously considered, as a potential multi-pathogen vector of both PWN and phytopathogenic fungi.
Collapse
Affiliation(s)
- Shengxin Wu
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, China
| | - Jia Wu
- Station of Forest Pest Control, Anji Forestry Bureau, Huzhou, Zhejiang, China
| | - Yun Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, China
| | - Yifei Qu
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, China
| | - Yao He
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, China
| | - Jingyan Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, China
| | - Jianhui Cheng
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, China
| | - Liqin Zhang
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, China
| | - Chihang Cheng
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
6
|
Ramírez-Ordorica A, Contreras-Cornejo HA, Orduño-Cruz N, Luna-Cruz A, Winkler R, Macías-Rodríguez L. Volatiles released by Beauveria bassiana induce oviposition behavior in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). FEMS Microbiol Ecol 2022; 98:6724240. [PMID: 36166365 DOI: 10.1093/femsec/fiac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022] Open
Abstract
Microbial volatile organic compounds may act as semiochemicals, inciting different behavioral responses in insects. Beauveria bassiana is an entomopathogenic fungus, and physiological and environmental factors are positively related to fungal virulence. In this study, we examined the volatile profiles produced by eight B. bassiana strains, isolated from soil plots and mycosed insect cadavers, with different speeds of kill and determined if these compounds induce oviposition behavior in Spodoptera frugiperda. Fungal volatilome analysis revealed differences between the isolates. Isolates from mycosed insects showed higher virulence, larger egg mass area and length, and a higher number of eggs by mass, than those obtained from soil. Furthermore, a dilution of the fungal odoriferous compounds increased the insect response, suggesting that S. frugiperda is highly susceptible to the fungal compound's fingerprint. Otherwise, the insect response to the natural blend of volatiles released by the fungus was different from that obtained with 3-methylbutanol, which was the most abundant compound in all isolates. The ability of an entomopathogen to produce volatiles that can induce olfactory stimulation of egg-laying behavior could represent an ecological adaptive advantage in which the entomopathogen stimulates the insect population growth.
Collapse
Affiliation(s)
- Arturo Ramírez-Ordorica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, 58030, México
| | - Hexon Angel Contreras-Cornejo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, 58030, México
| | - Nuvia Orduño-Cruz
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, 31350, México
| | - Alfonso Luna-Cruz
- CONACYT-Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, 58030, México
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, CINVESTAV-Irapuato, Instituto Politécnico Nacional, Irapuato, Guanajuato, 36824, México
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, 58030, México
| |
Collapse
|
7
|
Delivery and effectiveness of entomopathogenic fungi for mosquito and tick control: current knowledge and research challenges. Acta Trop 2022; 234:106627. [DOI: 10.1016/j.actatropica.2022.106627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
|
8
|
Kobmoo N, Khonsanit A, Luangsa-ard JJ. Reconstruction of ancestral host association showed host expansion and specialization in local Beauveria species. Mycol Prog 2022. [DOI: 10.1007/s11557-021-01761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Aynalem B, Muleta D, Venegas J, Assefa F. Molecular phylogeny and pathogenicity of indigenous Beauveria bassiana against the tomato leafminer, Tuta absoluta Meyrick 1917 (Lepidoptera: Gelechiidae), in Ethiopia. J Genet Eng Biotechnol 2021; 19:127. [PMID: 34436715 PMCID: PMC8390704 DOI: 10.1186/s43141-021-00227-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022]
Abstract
BACKGROUND Tuta absoluta Meyrick 1917 (Lepidoptera: Gelechiidae) is an invasive, pesticide resistant, and a major treat of tomato production in the world. It needs effective management options that naturally infect the insect without causing any identified side effects. Entomopathogenic fungi (EPF) are the most important options. However, geographic origin and climatic condition apparently creates genetic variation among EPF strains that influence on their pathogenicity. Thus, screening of effective EPF strains from the local source is vital to develop environmental friendly pest control tactic for T. absoluta. RESULTS In this study, 27 indigenous Beauveria were isolated from the various types of soil and 12 of the isolates were screened based on their biological efficiency index (BEI). These isolates scored 65.7-95.7% and 68.3-95% of mortality against second and third instar larvae of T. absoluta at concentration of 1 × 107spores·ml-1 in 7 days post inoculation, respectively. Out of these, five (18.5%) isolates scored above 90% mortality on both instar larvae with LT50 value of 3.33 to 5.33 days at the lowest (104 spores·ml-1) and 1.93 to 3.17 days at highest (108 spores·ml-1) spore concentrations and has LC50 value of 1.5 × 103 to 1.1× 105 spores·ml-1. Moreover, isolates exhibited the promising mortality better (1.5 × 106 to 3.5 × 107 spores·ml-1), sporulated over the larval cadavers, well grown at optimal temperature, and produced chitinolytic enzymes. Molecular analysis showed that isolates have nearly monophyletic characters and grouped under species of Beauveria bassiana. CONCLUSION Different types of soil in Ethiopia are an important source of B. bassiana, and these isolates showed promising pathogenicity against T. absoluta, which is crucial for ecofriendly biopesticide development. Although isolates were nearly monophyletic in phylogenetic study, five of them were highly effective in the laboratory bioassays against T. absoluta; however, further field evaluation is required for mass production.
Collapse
Affiliation(s)
- Birhan Aynalem
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Diriba Muleta
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Juan Venegas
- Cellular and Molecular Biology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Fassil Assefa
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
10
|
Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb Pathog 2021; 159:105122. [PMID: 34352375 DOI: 10.1016/j.micpath.2021.105122] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Global food security is threatened by insect pests of economically important crops. Chemical pesticides have been used frequently for the last few decades to manage insect pests throughout the world. However, these chemicals are hazardous for human health as well as the ecosystem. In addition, several pests have evolved resistance to many chemicals. Finding environment friendly alternatives lead the researchers to introduce biocontrol agents such as entomopathogenic fungi (EPF). These fungi include various genera that can infect and kill insects efficiently. Moreover, EPFs have considerable host specificity with a mild effect on non-target organisms and can be produced in bulk quantity quickly. However, insights into the biology of EPF and mechanism of action are of prime significance for their efficient utilization as a biocontrol agent. This review focuses on EPF-mediated insect management by explaining particular EPF strains and their general mode of action. We have comprehensively discussed which criteria should be used for the selection of pertinent EPF, and which aspects can impact the EPF efficiency. Finally, we have outlined various advantages of EPF and their limitations. The article summarizes the prospects related to EPF utilization as biocontrol agents. We hope that future strategies for the management of insects will be safer for our planet.
Collapse
|
11
|
St Leger RJ. Insects and their pathogens in a changing climate. J Invertebr Pathol 2021; 184:107644. [PMID: 34237297 DOI: 10.1016/j.jip.2021.107644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 01/02/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022]
Abstract
The complex nature of climate change-mediated multitrophic interaction is an underexplored area, but has the potential to dramatically shift transmission and distribution of many insects and their pathogens, placing some populations closer to the brink of extinction. However, for individual insect-pathogen interactions climate change will have complicated hard-to-anticipate impacts. Thus, both pathogen virulence and insect host immunity are intrinsically linked with generalized stress responses, and in both pathogen and host have extensive trade-offs with nutrition (e.g., host plant quality), growth and reproduction. Potentially alleviating or exasperating these impacts, some pathogens and hosts respond genetically and rapidly to environmental shifts. This review identifies many areas for future research including a particular need to identify how altered global warming interacts with other environmental changes and stressors, and how consistent these impacts are across pathogens and hosts. With that achieved we would be closer to producing an overarching framework to integrate knowledge on all environmental interplay and infectious disease events.
Collapse
Affiliation(s)
- Raymond J St Leger
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
12
|
Castro-Vásquez RM, Molina-Bravo R, Hernández-Villalobos S, Vargas-Martínez A, González-Herrera A, Montero-Astúa M. Identification and phylogenetic analysis of a collection of Beauveria spp. Isolates from Central America and Puerto Rico. J Invertebr Pathol 2021; 184:107642. [PMID: 34216626 DOI: 10.1016/j.jip.2021.107642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
The genus Beauveria comprises economically important entomopathogenic fungi, widely used for biological control in agriculture. Interest in these organisms in Costa Rica prompted surveys and establishment of collections in the past two decades. However, there was neither a formal identification nor a characterization of the isolates. With that purpose, the morphology and genetic variation by microsatellites and partial sequencing of Bloc, TEF-1α and RPB2 regions were studied for 32 isolates of Beauveria, which included 26 from Costa Rica, five from Puerto Rico and one from Honduras. The isolates were identified as B. bassiana (29) and B. caledonica (3). Ninety-three percent of B. bassiana isolates belonged to a monophyletic group of African and Neotropical isolates. A total of 105 alleles were recorded with 11 SSR markers, and the results suggested high diversity within the collection. Mantel tests showed low association between geographic origin and the variation among isolates.
Collapse
Affiliation(s)
- Ruth M Castro-Vásquez
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José 11501-2060, Costa Rica; Escuela de Ciencias Agrarias, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Ramón Molina-Bravo
- Escuela de Ciencias Agrarias, Universidad Nacional, Heredia 86-3000, Costa Rica
| | | | | | | | - Mauricio Montero-Astúa
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José 11501-2060, Costa Rica; Escuela de Agronomía, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| |
Collapse
|
13
|
Genome editing for resistance against plant pests and pathogens. Transgenic Res 2021; 30:427-459. [PMID: 34143358 DOI: 10.1007/s11248-021-00262-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
The conventional breeding of crops struggles to keep up with increasing food needs and ever-adapting pests and pathogens. Global climate changes have imposed another layer of complexity to biological systems, increasing the challenge to obtain improved crop cultivars. These dictate the development and application of novel technologies, like genome editing (GE), that assist targeted and fast breeding programs in crops, with enhanced resistance to pests and pathogens. GE does not require crossings, hence avoiding the introduction of undesirable traits through linkage in elite varieties, speeding up the whole breeding process. Additionally, GE technologies can improve plant protection by directly targeting plant susceptibility (S) genes or virulence factors of pests and pathogens, either through the direct edition of the pest genome or by adding the GE machinery to the plant genome or to microorganisms functioning as biocontrol agents (BCAs). Over the years, GE technology has been continuously evolving and more so with the development of CRISPR/Cas. Here we review the latest advancements of GE to improve plant protection, focusing on CRISPR/Cas-based genome edition of crops and pests and pathogens. We discuss how other technologies, such as host-induced gene silencing (HIGS) and the use of BCAs could benefit from CRISPR/Cas to accelerate the development of green strategies to promote a sustainable agriculture in the future.
Collapse
|
14
|
Rosana ARR, Pokorny S, Klutsch JG, Ibarra-Romero C, Sanichar R, Engelhardt D, van Belkum MJ, Erbilgin N, Bohlmann J, Carroll AL, Vederas JC. Selection of entomopathogenic fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for the biocontrol of Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae) in Western Canada. Appl Microbiol Biotechnol 2021. [PMID: 33590267 DOI: 10.1007/s00253-021-11172-7/published] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The mountain pine beetle, Dendroctonus ponderosae, has infested over ~16 Mha of pine forests in British Columbia killing >50% of mature lodgepole pine, Pinus contorta, trees in affected stands. At present, it is functionally an invasive species in Alberta, killing and reproducing in evolutionarily naïve populations of lodgepole pine (P. contorta), novel jack pine (P. banksiana), and their hybrids. The entomopathogenic fungus Beauveria bassiana has shown some potential as a biocontrol agent of several bark beetle species. In this study, nine isolates of B. bassiana were examined for insect virulence characteristics, including conidiation rate, pigmentation, and infection rate in laboratory-reared D. ponderosae, to assess for their potential as biocontrol agents. The strains were categorized into three phenotypic groups based on pigmentation, conidial density, and myceliation rate. Virulence screening utilizing insect-based agar medium (D. ponderosae and European honeybee Apis mellifera carcasses) revealed no difference in selection of fungal growth. However, infection studies on D. ponderosae and A. mellifera showed contrasting results. In vivo A. mellifera infection model revealed ~5% mortality, representing the natural death rate of the hive population, whereas laboratory-reared D. ponderosae showed 100% mortality and mycosis. The LT50 (median lethal time 50) ranges from 2 to 5 ± 0.33 days, and LT100 ranges from 4 to 6 ± 0.5 days. We discuss the selective advantages of the three phenotypic groups in terms of virulence, pigmentation, conidial abundance, and tolerance to abiotic factors like UV and host tree monoterpenes. These results can further provide insights into the development of several phenotypically diverse B. bassiana strains in controlling the spread of the invasive D. ponderosae in Western Canada. KEY POINTS: • Three B. bassiana morphotype groups have been demonstrated to kill D. ponderosae. • A range of effective lethal times (LT50 and LT100) was established against D. ponderosae. • Variable tolerance to UV light and pine monoterpenes were observed in B. bassiana.
Collapse
Affiliation(s)
| | - Stanley Pokorny
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | | | - Randy Sanichar
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Daniel Engelhardt
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Allan L Carroll
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
15
|
Selection of entomopathogenic fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for the biocontrol of Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae) in Western Canada. Appl Microbiol Biotechnol 2021; 105:2541-2557. [PMID: 33590267 DOI: 10.1007/s00253-021-11172-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
The mountain pine beetle, Dendroctonus ponderosae, has infested over ~16 Mha of pine forests in British Columbia killing >50% of mature lodgepole pine, Pinus contorta, trees in affected stands. At present, it is functionally an invasive species in Alberta, killing and reproducing in evolutionarily naïve populations of lodgepole pine (P. contorta), novel jack pine (P. banksiana), and their hybrids. The entomopathogenic fungus Beauveria bassiana has shown some potential as a biocontrol agent of several bark beetle species. In this study, nine isolates of B. bassiana were examined for insect virulence characteristics, including conidiation rate, pigmentation, and infection rate in laboratory-reared D. ponderosae, to assess for their potential as biocontrol agents. The strains were categorized into three phenotypic groups based on pigmentation, conidial density, and myceliation rate. Virulence screening utilizing insect-based agar medium (D. ponderosae and European honeybee Apis mellifera carcasses) revealed no difference in selection of fungal growth. However, infection studies on D. ponderosae and A. mellifera showed contrasting results. In vivo A. mellifera infection model revealed ~5% mortality, representing the natural death rate of the hive population, whereas laboratory-reared D. ponderosae showed 100% mortality and mycosis. The LT50 (median lethal time 50) ranges from 2 to 5 ± 0.33 days, and LT100 ranges from 4 to 6 ± 0.5 days. We discuss the selective advantages of the three phenotypic groups in terms of virulence, pigmentation, conidial abundance, and tolerance to abiotic factors like UV and host tree monoterpenes. These results can further provide insights into the development of several phenotypically diverse B. bassiana strains in controlling the spread of the invasive D. ponderosae in Western Canada. KEY POINTS: • Three B. bassiana morphotype groups have been demonstrated to kill D. ponderosae. • A range of effective lethal times (LT50 and LT100) was established against D. ponderosae. • Variable tolerance to UV light and pine monoterpenes were observed in B. bassiana.
Collapse
|