1
|
Florek E, Witkowska M, Szukalska M, Richter M, Trzeciak T, Miechowicz I, Marszałek A, Piekoszewski W, Wyrwa Z, Giersig M. Oxidative Stress in Long-Term Exposure to Multi-Walled Carbon Nanotubes in Male Rats. Antioxidants (Basel) 2023; 12:464. [PMID: 36830022 PMCID: PMC9952213 DOI: 10.3390/antiox12020464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Multi-walled carbon nanotubes (MWCNTs) serve as nanoparticles due to their size, and for that reason, when in contact with the biological system, they can have toxic effects. One of the main mechanisms responsible for nanotoxicity is oxidative stress resulting from the production of intracellular reactive oxygen species (ROS). Therefore, oxidative stress biomarkers are important tools for assessing MWCNTs toxicity. The aim of this study was to evaluate the oxidative stress of multi-walled carbon nanotubes in male rats. Our animal model studies of MWCNTs (diameter ~15-30 nm, length ~15-20 μm) include measurement of oxidative stress parameters in the body fluid and tissues of animals after long-term exposure. Rattus Norvegicus/Wistar male rats were administrated a single injection to the knee joint at three concentrations: 0.03 mg/mL, 0.25 mg/mL, and 0.5 mg/mL. The rats were euthanized 12 and 18 months post-exposure by drawing blood from the heart, and their liver and kidney tissues were removed. To evaluate toxicity, the enzymatic activity of total protein (TP), reduced glutathione (GSH), glutathione S-transferase (GST), thiobarbituric acid reactive substances (TBARS), Trolox equivalent antioxidant capacity (TEAC), nitric oxide (NO), and catalase (CAT) was measured and histopathological examination was conducted. Results in rat livers showed that TEAC level was decreased in rats receiving nanotubes at higher concentrations. Results in kidneys report that the level of NO showed higher concentration after long exposure, and results in animal serums showed lower levels of GSH in rats exposed to nanotubes at higher concentrations. The 18-month exposure also resulted in a statistically significant increase in GST activity in the group of rats exposed to nanotubes at higher concentrations compared to animals receiving MWCNTs at lower concentrations and compared to the control group. Therefore, an analysis of oxidative stress parameters can be a key indicator of the toxic potential of multi-walled carbon nanotubes.
Collapse
Affiliation(s)
- Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Marta Witkowska
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Marta Szukalska
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Magdalena Richter
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Izabela Miechowicz
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Andrzej Marszałek
- Oncologic Pathology and Prophylaxis, Greater Poland Cancer Centre, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Zuzanna Wyrwa
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Michael Giersig
- Centre for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
- Department of Theory of Continuous Media and Nanostructures, Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Klein JP, Mery L, Boudard D, Ravel C, Cottier M, Bitounis D. Impact of Nanoparticles on Male Fertility: What Do We Really Know? A Systematic Review. Int J Mol Sci 2022; 24:576. [PMID: 36614018 PMCID: PMC9820737 DOI: 10.3390/ijms24010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The real impact of nanoparticles on male fertility is evaluated after a careful analysis of the available literature. The first part reviews animal models to understand the testicular biodistribution and biopersistence of nanoparticles, while the second part evaluates their in vitro and in vivo biotoxicity. Our main findings suggest that nanoparticles are generally able to reach the testicle in small quantities where they persist for several months, regardless of the route of exposure. However, there is not enough evidence that they can cross the blood-testis barrier. Of note, the majority of nanoparticles have low direct toxicity to the testis, but there are indications that some might act as endocrine disruptors. Overall, the impact on spermatogenesis in adults is generally weak and reversible, but exceptions exist and merit increased attention. Finally, we comment on several methodological or analytical biases which have led some studies to exaggerate the reprotoxicity of nanoparticles. In the future, rigorous clinical studies in tandem with mechanistic studies are needed to elucidate the real risk posed by nanoparticles on male fertility.
Collapse
Affiliation(s)
- Jean-Philippe Klein
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Lionel Mery
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Delphine Boudard
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Célia Ravel
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35000 Rennes, France
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Michèle Cottier
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Dimitrios Bitounis
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
| |
Collapse
|
3
|
Ye X, Zhou T, Qin Y, He S, Zhang H, Ding S. Reproductive toxicity of dibutyl phthalate adsorbed on carbon nanotubes in male Balb/C mice. Reprod Toxicol 2022; 110:180-187. [PMID: 35487397 DOI: 10.1016/j.reprotox.2022.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
Dibutyl phthalate (DBP) is an environmental hormone disrupter. This study was designed to investigate whether DBP adsorbed in multi-walled carbon nanotubes (MWCNTs) can easily cross the blood-testis barrier and slow down the degradation of DBP in male mice, thereby prolonging the interference effect of DBP. The results showed that: in male Balb/C mice, the sperm density of the MWCNTs group and the DBP plus MWCNTs group decreased significantly (p < 0.05); and the sperm deformity rate increased significantly (p < 0.05). Testicular tissue sections from the combined exposure group showed that most of the seminiferous tubules were atrophied, there were more large gaps between the cells in the tubules, and the number of mature-sperm decreased. The reactive oxygen species (ROS) levels increased significantly in the combined exposure group (p < 0.01). Proteomics results showed that there were 231 differentially expressed proteins in the combined exposure group compared with the MWCNTs only group, and 69 differentially expressed proteins compared with the DBP group. GO enrichment analysis showed that the differentially expressed proteins mainly include: 60s acid ribosomal protein P1; nuclear autoantigen sperm protein; centromere protein V; and other proteins related to cell division. These results indicate that MWCNTs with adsorbed DBP can increase oxidative damage in the testis of male mice, interfere with DNA replication and cell division in testicular tissue cells, induce cell apoptosis, and destroy the normal spermatogenic function of the testis.
Collapse
Affiliation(s)
- Xin Ye
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, China
| | - Tingting Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China
| | - Yujie Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China
| | - Suli He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China
| | - Hongmao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China.
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Hubei, China.
| |
Collapse
|
4
|
Turhan EA, Pazarçeviren AE, Evis Z, Tezcaner A. Properties and applications of boron nitride nanotubes. NANOTECHNOLOGY 2022; 33:242001. [PMID: 35203072 DOI: 10.1088/1361-6528/ac5839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Nanomaterials have received increasing attention due to their controllable physical and chemical properties and their improved performance over their bulk structures during the last years. Carbon nanostructures are one of the most widely searched materials for use in different applications ranging from electronic to biomedical because of their exceptional physical and chemical properties. However, BN nanostructures surpassed the attention of the carbon-based nanostructure because of their enhanced thermal and chemical stabilities in addition to structural similarity with the carbon nanomaterials. Among these nanostructures, one dimensional-BN nanostructures are on the verge of development as new materials to fulfill some necessities for different application areas based on their excellent and unique properties including their tunable surface and bandgap, electronic, optical, mechanical, thermal, and chemical stability. Synthesis of high-quality boron nitride nanotubes (BNNTs) in large quantities with novel techniques provided greater access, and increased their potential use in nanocomposites, biomedical fields, and nanodevices as well as hydrogen uptake applications. In this review, properties and applications of one-dimensional BN (1D) nanotubes, nanofibers, and nanorods in hydrogen uptake, biomedical field, and nanodevices are discussed in depth. Additionally, research on native and modified forms of BNNTs and also their composites with different materials to further improve electronic, optical, structural, mechanical, chemical, and biological properties are also reviewed. BNNTs find many applications in different areas, however, they still need to be further studied for improving the synthesis methods and finding new possible future applications.
Collapse
Affiliation(s)
- Emine Ayşe Turhan
- Department of Material Science and Engineering, Koç University, İstanbul, Turkey
| | | | - Zafer Evis
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| |
Collapse
|
5
|
Zhou T, He Y, Qin Y, Wang B, Zhang H, Ding S. Exposure to a combination of MWCNTs and DBP causes splenic toxicity in mice. Toxicology 2022; 465:153057. [PMID: 34864091 DOI: 10.1016/j.tox.2021.153057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
The large conjugated π bond in the molecular structure of carbon nanotubes (CNTs) interacts with the benzene ring structure in di (n-butyl) phthalates (DBP) through a π - π bond. Compounds of CNTs and DBP form easily, becoming another environmental pollutant of concern. We explore whether CNTs entering animals slow down the degradation of the DBP adsorbed in the CNT cavity, thereby prolonging the "hormonal activity" of DBP. In our study, male BALb/c mice were used as experimental subjects divided into four groups: the control group; the multi-walled carbon nanotubes (MWCNTs) exposure group (10mg/kg/d); the DBP exposure group (2.15 mg/kg/d); and the compound exposure group (MWCNTs + DBP). After 30 days of exposure, the mice were sacrificed and their spleens used for immunotoxicology study. The results showed that the exposure groups exhibited splenomegaly and suffered severe oxidative damage to the spleen. In the compound exposure group: levels of IgA and IgG in the serum of the mice changed, and were significantly different from levels in both the MWCNTs and DBP exposure groups (p <0.05); the pathological sections of the spleen showed that the boundary between the white pulp area (WP) and the red pulp area (RP) was blurred, that the cell arrangement was loose, and that more red blood cells were retained in the spleen. Proteomics mass spectrometry analysis showed that compared with the control group, 70 proteins were up-regulated and 27 proteins were down-regulated in the MWCNTs group, 36 proteins were up-regulated and 23 proteins were down-regulated in the DBP group, 87 proteins were up-regulated and 21 proteins were down-regulated in the compound exposure group. The results of GO enrichment analysis and KEGG enrichment analysis of the differentially expressed proteins showed that the compound exposure harmed the spleen antigen recognition, processing, and presentation, inhibited the activation and proliferation of B cells and T cells, and hindered the adaptive immune responses. Our results showed that MWCNTs and DBP compounds can damage the spleen, and impair the innate and adaptive immune functions of the body.
Collapse
Affiliation(s)
- Tingting Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Yueyan He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Yujie Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Bing Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Hongmao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
6
|
Gajski G, Ravlić S, Godschalk R, Collins A, Dusinska M, Brunborg G. Application of the comet assay for the evaluation of DNA damage in mature sperm. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108398. [PMID: 34893163 DOI: 10.1016/j.mrrev.2021.108398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
DNA integrity is considered an important parameter of semen quality and is of significant value as a predictor of male fertility. Currently, there are several methods that can assess sperm DNA integrity. One such assay is the comet assay, or single-cell gel electrophoresis, which is a simple, sensitive, reliable, quick and low-cost technique that is used for measuring DNA strand breaks and repair at the level of individual cells. Although the comet assay is usually performed with somatic cells from different organs, the assay has the ability to detect genotoxicity in germ cells at different stages of spermatogenesis. Since the ability of sperm to remove DNA damage differs between the stages, interpretation of the results is dependent on the cells used. In this paper we give an overview on the use and applications of the comet assay on mature sperm and its ability to detect sperm DNA damage in both animals and humans. Overall, it can be concluded that the presence in sperm of significantly damaged DNA, assessed by the comet assay, is related to male infertility and seems to reduce live births. Although there is some evidence that sperm DNA damage also has a long-term impact on offspring's health, this aspect of DNA damage in sperm is understudied and deserves further attention. In summary, the comet assay can be applied as a useful tool to study effects of genotoxic exposures on sperm DNA integrity in animals and humans.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia.
| | - Sanda Ravlić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Roger Godschalk
- Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology & Toxicology, Maastricht, the Netherlands
| | - Andrew Collins
- University of Oslo, Institute of Basic Medical Sciences, Department of Nutrition, Oslo, Norway
| | - Maria Dusinska
- Norwegian Institute for Air Research (NILU), Department of Environmental Chemistry, Health Effects Laboratory, Kjeller, Norway
| | - Gunnar Brunborg
- Norwegian Institute of Public Health (NIPH), Section of Molecular Toxicology, Department of Environmental Health, Oslo, Norway
| |
Collapse
|
7
|
|
8
|
Farshad O, Heidari R, Zamiri MJ, Retana-Márquez S, Khalili M, Ebrahimi M, Jamshidzadeh A, Ommati MM. Spermatotoxic Effects of Single-Walled and Multi-Walled Carbon Nanotubes on Male Mice. Front Vet Sci 2020; 7:591558. [PMID: 33392285 PMCID: PMC7775657 DOI: 10.3389/fvets.2020.591558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
Carbon-based nanomaterials possess a remarkably high potential for biomedical applications due to their physical properties; however, their detrimental effects on reproduction are also concerned. Several reports indicate the toxicity of carbon nanotubes (CNT); nevertheless, their impact on intracellular organelles in the male reproductive organs has not been fully elucidated. Herein, we report on the reprotoxicity of single-walled (SWCNT) and multi-walled carbon nanotubes (MWCN) on several intracellular events and histological criteria in pubertal male BALB/c mice orally treated with 0, 10, and 50 mg/kg/day doses for 5 weeks. Biomarkers of oxidative stress and mitochondrial functionality, histopathological alterations, and epididymal sperm characteristics were determined. Oral administration of CNTs at 10 and 50 mg/kg evoked a significant decrement in weight coefficient, sperm viability and motility, hypo-osmotic swelling (HOS) test, sperm count, mitochondrial dehydrogenase activity, ATP content, total antioxidant capacity, and GSH/GSSH ratio in the testis and epididymal spermatozoa. On the other hand, percent abnormal sperm, testicular and sperm TBARS contents, protein carbonylation, ROS formation, oxidized glutathione level, and sperm mitochondrial depolarization were considerably increased. Significant histopathological and stereological alterations in the testis occurred in the groups challenged with CNTs. The current findings indicated that oxidative stress and mitochondrial impairment might substantially impact CNTs-induced reproductive system injury and sperm toxicity. The results can also be used to establish environmental standards for CNT consumption by mammals, produce new chemicals for controlling the rodent populations, and develop therapeutic approaches against CNTs-associated reproductive anomalies in the males exposed daily to these nanoparticles.
Collapse
Affiliation(s)
- Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico, Mexico
| | - Meghdad Khalili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Melika Ebrahimi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
9
|
Wang W, Zhao X, Ren X, Duan X. Antagonistic effects of multi-walled carbon nanotubes and BDE-47 in zebrafish (Danio rerio): Oxidative stress, apoptosis and DNA damage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105546. [PMID: 32574930 DOI: 10.1016/j.aquatox.2020.105546] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In natural environments, organisms are often exposed to several environmental pollutants at any one time, and the potential effects of such co-exposures on human and environmental health are of considerable concern. It is thought that multi-walled carbon nanotubes (MWCNTs) may interact with other pollutants in aquatic systems and induce considerably different effects compared with exposure to a single contaminant. The objective of this study was to evaluate the potential acute combined effects of mixtures of MWCNTs and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on embryonic development stages, oxidative stress, apoptosis and DNA damage in developing zebrafish (Danio rerio). The embryos were treated with BDE-47 (5, 10, and 50 μg/L) and MWCNTs (50 mg/L), either combined or individually, for 96 h. Following exposure, BDE-47 induced significant acute toxicity, while the MWCNTs exhibited slight toxicity. When compared with BDE-47-only exposure, the inhibited growth induced by BDE-47 was weakened in the presence of MWCNTs. Similarly, the levels of oxidative stress biomarkers (reactive oxygen species, superoxide dismutase, catalase activities and malondialdehyde), apoptosis (apoptosis rate, caspase-3 and caspase-9 activities) and DNA damage (comet assay and comet olive tails) decreased in the presence of MWCNTs compared to those exposed to BDE-47 alone. These results demonstrate that MWCNTs can weaken the developmental inhibition, oxidative stress, apoptosis and DNA damage induced by BDE-47 in the early stages of zebrafish development.
Collapse
Affiliation(s)
- Weitong Wang
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China.
| | - Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street 1301, Tiexi Dist, Siping, 136000, China.
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China
| |
Collapse
|
10
|
Lei JH, Yan W, Luo CH, Guo YM, Zhang YY, Wang XH, Su XJ. Cytotoxicity of nonylphenol on spermatogonial stem cells via phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway. World J Stem Cells 2020; 12:500-513. [PMID: 32742567 PMCID: PMC7360990 DOI: 10.4252/wjsc.v12.i6.500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND With continuous advancement of industrial society, environmental pollution has become more and more serious. There has been an increase in infertility caused by environmental factors. Nonylphenol (NP) is a stable degradation product widely used in daily life and production and has been proven to affect male fertility. However, the underlying mechanisms therein are unclear. Thus, it is necessary to study the effect and mechanism of NP on spermatogonial stem cells (SSCs).
AIM To investigate the cytotoxic effect of NP on SSCs via the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway.
METHODS SSCs were treated with NP at 0, 10, 20 or 30 µmol. MTT assay was performed to evaluate the effect of NP on the proliferation of SSCs. Flow cytometry was conducted to measure SSC apoptosis. The expression of Bad, Bcl-2, cytochrome-c, pro-Caspase 9, SOX-2, OCT-4, Nanog, Nanos3, Stra8, Scp3, GFRα1, CD90, VASA, Nanos2, KIT, PLZF and PI3K/AKT/mTOR-related proteins was observed by western blot, and the mRNA expression of SOX-2, OCT-4 and Nanog was detected by quantitative reverse transcription polymerase chain reaction.
RESULTS Compared with untreated cells (0 μmol NP), SSCs treated with NP at all concentrations showed a decrease in cell proliferation and expression of Bcl-2, Nanog, OCT-4, SOX-2, Nanos3, Stra8, Scp3, GFRα1, CD90, VASA, Nanos2, KIT, and PLZF (P < 0.05), whereas the expression of Bad, cytochrome-c, and pro-Caspase 9 increased significantly (P < 0.05). We further examined the PI3K/AKT/mTOR pathway and found that the phosphorylation of PI3K, AKT, mTORC1, and S6K was significantly decreased by NP at all concentrations compared to that in untreated SSCs (P < 0.05). NP exerted the greatest effect at 30 μmol among all NP concentrations.
CONCLUSION NP attenuated the proliferation, differentiation and stemness maintenance of SSCs while promoting apoptosis and oxidative stress. The associated mechanism may be related to the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jun-Hao Lei
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Wen Yan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Chun-Hua Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yu-Ming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yang-Yang Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
- Center for Evidence-based and Translational Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xin-Jun Su
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|