1
|
Hu Y, Wang Y, Hu X, Chao H, Li S, Ni Q, Zhu Y, Hu Y, Zhao Z, Chen M. T4SEpp: A pipeline integrating protein language models to predict bacterial type IV secreted effectors. Comput Struct Biotechnol J 2024; 23:801-812. [PMID: 38328004 PMCID: PMC10847861 DOI: 10.1016/j.csbj.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
Many pathogenic bacteria use type IV secretion systems (T4SSs) to deliver effectors (T4SEs) into the cytoplasm of eukaryotic cells, causing diseases. The identification of effectors is a crucial step in understanding the mechanisms of bacterial pathogenicity, but this remains a major challenge. In this study, we used the full-length embedding features generated by six pre-trained protein language models to train classifiers predicting T4SEs and compared their performance. We integrated three modules into a model called T4SEpp. The first module searched for full-length homologs of known T4SEs, signal sequences, and effector domains; the second module fine-tuned a machine learning model using data for a signal sequence feature; and the third module used the three best-performing pre-trained protein language models. T4SEpp outperformed other state-of-the-art (SOTA) software tools, achieving ∼0.98 accuracy at a high specificity of ∼0.99, based on the assessment of an independent validation dataset. T4SEpp predicted 13 T4SEs from Helicobacter pylori, including the well-known CagA and 12 other potential ones, among which eleven could potentially interact with human proteins. This suggests that these potential T4SEs may be associated with the pathogenicity of H. pylori. Overall, T4SEpp provides a better solution to assist in the identification of bacterial T4SEs and facilitates studies of bacterial pathogenicity. T4SEpp is freely accessible at https://bis.zju.edu.cn/T4SEpp.
Collapse
Affiliation(s)
- Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yejun Wang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen, China
- Department of Cell Biology and Genetics, College of Basic Medicine, Shenzhen University Medical School, Shenzhen, China
| | - Xiaotian Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sida Li
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qinyang Ni
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanyan Zhu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yixue Hu
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen, China
| | - Ziyi Zhao
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Thakur K, Kaur M, Kumar Y. A Comprehensive Analysis of Deep Learning-Based Approaches for Prediction and Prognosis of Infectious Diseases. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:1-21. [PMID: 37359745 PMCID: PMC10249943 DOI: 10.1007/s11831-023-09952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Artificial intelligence is the most powerful and promising tool for the present analytic technologies. It can provide real-time insights into disease spread and predict new pandemic epicenters by processing massive amount of data. The main aim of the paper is to detect and classify multiple infectious diseases using deep learning models. The work is conducted by using 29,252 images of COVID-19, Middle East Respiratory Syndrome Coronavirus, Pneumonia, normal, Severe Acute Respiratory Syndrome, tuberculosis, viral pneumonia, and lung opacity which has been collected from various disease datasets. These datasets are used to train the deep learning models such as EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, NASNetLarge, DenseNet169, ResNet152V2, and InceptionResNetV2. The images have been initially graphically represented using exploratory data analysis to study the pixel intensity and find anomalies by extracting the color channels in an RGB histogram. Later, the dataset has been pre-processed to remove noisy signals using image augmentation and contrast enhancement techniques. Further, feature extraction techniques such as morphological values of contour features and Otsu thresholding have been applied to extract the feature. The models have been evaluated on the basis of various parameters, and it has been discovered that during the testing phase, the InceptionResNetV2 model generated the highest accuracy of 88%, best loss value of 0.399, and root mean square error of 0.63.
Collapse
Affiliation(s)
- Kavita Thakur
- Desh Bhagat University, Mandi Gobindgarh, Punjab India
| | - Manjot Kaur
- Desh Bhagat University, Mandi Gobindgarh, Punjab India
| | - Yogesh Kumar
- Department of CSE, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat India
| |
Collapse
|
3
|
Yang R, Liu J, Zhang L. ECAmyloid: An amyloid predictor based on ensemble learning and comprehensive sequence-derived features. Comput Biol Chem 2023; 104:107853. [PMID: 36990028 DOI: 10.1016/j.compbiolchem.2023.107853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Amyloid fibrils formed by the mis-aggregation of amyloid proteins can lead to neuronal degenerations in the Alzheimer's disease. Predicting amyloid proteins not only contributes to understanding physicochemical properties and formation mechanism of amyloid proteins, but also has significant implications in the amyloid disease treatment and the development of a new purpose for amyloid materials. In this study, an ensemble learning model with sequence-derived features, ECAmyloid, is proposed to identify amyloids. The sequence-derived features including Pseudo Position Specificity Score Matrix (Pse-PSSM), Split Amino Acid Composition (SAAC), Solvent Accessibility (SA), and Secondary Structure Information (SSI) are employed to incorporate sequence composition, evolutionary and structural information. The individual learners of the ensemble learning model are selected by an increment classifier selection strategy. The final prediction results are determined by voting of prediction results of multiple individual learners. In view of the imbalanced benchmark dataset, the Synthetic Minority Over-sampling Technique (SMOTE) is adopted to generate positive samples. To eliminate irrelevant features and redundant features, correlation-based feature subset (CFS) selection combined with a heuristic search strategy is performed to obtain the optimal feature subset. Experimental results indicate that the ensemble classifier achieves an accuracy of 98.29%, a sensitivity of 0.992, a specificity of 0.974 on the training dataset using the 10-fold cross validation, far higher than the results obtained by its individual learners. Compared with the original feature set, the accuracy, sensitivity, specificity, MCC, F1-score, G-Mean of the ensemble method trained by the optimal feature subset are improved by 1.05%, 0.012, 0.01, 0.021, 0.011 and 0.011, respectively. Moreover, the comparison results with existing methods on two same independent test datasets demonstrate that the proposed method is an effective and promising predictor for large-scale determination of amyloid proteins. The data and code used to develop ECAmyloid has been shared to Github, and can be freely downloaded at https://github.com/KOALA-L/ECAmyloid.git.
Collapse
Affiliation(s)
- Runtao Yang
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China
| | - Jiaming Liu
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China
| | - Lina Zhang
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China.
| |
Collapse
|
4
|
Zhang Z, Zhao Y, Wang J, Guo M. DeepRCI: predicting ATP-binding proteins using the residue-residue contact information. IEEE J Biomed Health Inform 2021; 26:2822-2829. [PMID: 34941538 DOI: 10.1109/jbhi.2021.3137840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adenine-5'-triphosphate (ATP) is a direct energy source for various activities of tissues and cells in the body. The release of ATP energies requires the assistance of ATP-binding proteins. Therefore, the identification of ATP-binding proteins is of great significance for the research on organisms. So far, there are several methods for predicting ATP-binding proteins. However, the accuracies of these methods are so low that the predicted proteins are inaccurate. Here, we designed a novel method, called as DeepRCI (based on Deep convolutional neural network and Residue-residue Contact Information), for predicting ATP-binding proteins. DeepRCI achieved an accuracy of 93.61\% on the test set which was a significant improvement over the state-of-the-art methods.
Collapse
|
5
|
Computational prediction of secreted proteins in gram-negative bacteria. Comput Struct Biotechnol J 2021; 19:1806-1828. [PMID: 33897982 PMCID: PMC8047123 DOI: 10.1016/j.csbj.2021.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacteria harness multiple protein secretion systems and secrete a large proportion of the proteome. Proteins can be exported to periplasmic space, integrated into membrane, transported into extracellular milieu, or translocated into cytoplasm of contacting cells. It is important for accurate, genome-wide annotation of the secreted proteins and their secretion pathways. In this review, we systematically classified the secreted proteins according to the types of secretion systems in Gram-negative bacteria, summarized the known features of these proteins, and reviewed the algorithms and tools for their prediction.
Collapse
|
6
|
Wang H, Xi Q, Liang P, Zheng L, Hong Y, Zuo Y. IHEC_RAAC: a online platform for identifying human enzyme classes via reduced amino acid cluster strategy. Amino Acids 2021; 53:239-251. [PMID: 33486591 DOI: 10.1007/s00726-021-02941-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Enzymes have been proven to play considerable roles in disease diagnosis and biological functions. The feature extraction that truly reflects the intrinsic properties of protein is the most critical step for the automatic identification of enzymes. Although lots of feature extraction methods have been proposed, some challenges remain. In this study, we developed a predictor called IHEC_RAAC, which has the capability to identify whether a protein is a human enzyme and distinguish the function of the human enzyme. To improve the feature representation ability, protein sequences were encoded by a new feature-vector called 'reduced amino acid cluster'. We calculated 673 amino acid reduction alphabets to determine the optimal feature representative scheme. The tenfold cross-validation test showed that the accuracy of IHEC_RAAC to identify human enzymes was 74.66% and further discriminate the human enzyme classes with an accuracy of 54.78%, which was 2.06% and 8.68% higher than the state-of-the-art predictors, respectively. Additionally, the results from the independent dataset indicated that IHEC_RAAC can effectively predict human enzymes and human enzyme classes to further provide guidance for protein research. A user-friendly web server, IHEC_RAAC, is freely accessible at http://bioinfor.imu.edu.cn/ihecraac .
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Qilemuge Xi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Pengfei Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yan Hong
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
7
|
Yu L, Liu F, Li Y, Luo J, Jing R. DeepT3_4: A Hybrid Deep Neural Network Model for the Distinction Between Bacterial Type III and IV Secreted Effectors. Front Microbiol 2021; 12:605782. [PMID: 33552038 PMCID: PMC7858263 DOI: 10.3389/fmicb.2021.605782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/04/2021] [Indexed: 01/17/2023] Open
Abstract
Gram-negative bacteria can deliver secreted proteins (also known as secreted effectors) directly into host cells through type III secretion system (T3SS), type IV secretion system (T4SS), and type VI secretion system (T6SS) and cause various diseases. These secreted effectors are heavily involved in the interactions between bacteria and host cells, so their identification is crucial for the discovery and development of novel anti-bacterial drugs. It is currently challenging to accurately distinguish type III secreted effectors (T3SEs) and type IV secreted effectors (T4SEs) because neither T3SEs nor T4SEs contain N-terminal signal peptides, and some of these effectors have similar evolutionary conserved profiles and sequence motifs. To address this challenge, we develop a deep learning (DL) approach called DeepT3_4 to correctly classify T3SEs and T4SEs. We generate amino-acid character dictionary and sequence-based features extracted from effector proteins and subsequently implement these features into a hybrid model that integrates recurrent neural networks (RNNs) and deep neural networks (DNNs). After training the model, the hybrid neural network classifies secreted effectors into two different classes with an accuracy, F-value, and recall of over 80.0%. Our approach stands for the first DL approach for the classification of T3SEs and T4SEs, providing a promising supplementary tool for further secretome studies.
Collapse
Affiliation(s)
- Lezheng Yu
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang, China
| | - Fengjuan Liu
- School of Geography and Resources, Guizhou Education University, Guiyang, China
| | - Yizhou Li
- College of Cybersecurity, Sichuan University, Chengdu, China
| | - Jiesi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Runyu Jing
- College of Cybersecurity, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Chen T, Wang X, Chu Y, Wang Y, Jiang M, Wei DQ, Xiong Y. T4SE-XGB: Interpretable Sequence-Based Prediction of Type IV Secreted Effectors Using eXtreme Gradient Boosting Algorithm. Front Microbiol 2020; 11:580382. [PMID: 33072049 PMCID: PMC7541839 DOI: 10.3389/fmicb.2020.580382] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
Type IV secreted effectors (T4SEs) can be translocated into the cytosol of host cells via type IV secretion system (T4SS) and cause diseases. However, experimental approaches to identify T4SEs are time- and resource-consuming, and the existing computational tools based on machine learning techniques have some obvious limitations such as the lack of interpretability in the prediction models. In this study, we proposed a new model, T4SE-XGB, which uses the eXtreme gradient boosting (XGBoost) algorithm for accurate identification of type IV effectors based on optimal features based on protein sequences. After trying 20 different types of features, the best performance was achieved when all features were fed into XGBoost by the 5-fold cross validation in comparison with other machine learning methods. Then, the ReliefF algorithm was adopted to get the optimal feature set on our dataset, which further improved the model performance. T4SE-XGB exhibited highest predictive performance on the independent test set and outperformed other published prediction tools. Furthermore, the SHAP method was used to interpret the contribution of features to model predictions. The identification of key features can contribute to improved understanding of multifactorial contributors to host-pathogen interactions and bacterial pathogenesis. In addition to type IV effector prediction, we believe that the proposed framework can provide instructive guidance for similar studies to construct prediction methods on related biological problems. The data and source code of this study can be freely accessed at https://github.com/CT001002/T4SE-XGB.
Collapse
Affiliation(s)
- Tianhang Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangeng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yanyi Chu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Peng Cheng Laboratory, Shenzhen, China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Peng Cheng Laboratory, Shenzhen, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Agany DD, Pietri JE, Gnimpieba EZ. Assessment of vector-host-pathogen relationships using data mining and machine learning. Comput Struct Biotechnol J 2020; 18:1704-1721. [PMID: 32670510 PMCID: PMC7340972 DOI: 10.1016/j.csbj.2020.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases, including vector-borne diseases transmitted by arthropods, are a leading cause of morbidity and mortality worldwide. In the era of big data, addressing broad-scale, fundamental questions regarding the complex dynamics of these diseases will increasingly require the integration of diverse datasets to produce new biological knowledge. This review provides a current snapshot of the systematic assessment of the relationships between microbial pathogens, arthropod vectors and mammalian hosts using data mining and machine learning. We employ PRISMA to identify 32 key papers relevant to this topic. Our analysis shows an increasing use of data mining and machine learning tasks and techniques, including prediction, classification, clustering, association rules mining, and deep learning, over the last decade. However, it also reveals a number of critical challenges in applying these to the study of vector-host-pathogen interactions at various systems biology levels. Here, relevant studies, current limitations and future directions are discussed. Furthermore, the quality of data in relevant papers was assessed using the FAIR (Findable, Accessible, Interoperable, Reusable) compliance criteria to evaluate and encourage reproducibility and shareability of research outcomes. Although shortcomings in their application remain, data mining and machine learning have significant potential to break new ground in understanding fundamental aspects of vector-host-pathogen relationships and their application in this field should be encouraged. In particular, while predictive modeling, feature engineering and supervised machine learning are already being used in the field, other data mining and machine learning methods such as deep learning and association rules analysis lag behind and should be implemented in combination with established methods to accelerate hypothesis and knowledge generation in the domain.
Collapse
Affiliation(s)
- Diing D.M. Agany
- University of South Dakota, Biomedical Engineering Program, Sioux Falls, SD, United States
- 2DBEST (2-Dimensional Materials for Biofilm Engineering, Science and Technology), United States
| | - Jose E. Pietri
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, United States
| | - Etienne Z. Gnimpieba
- University of South Dakota, Biomedical Engineering Program, Sioux Falls, SD, United States
- 2DBEST (2-Dimensional Materials for Biofilm Engineering, Science and Technology), United States
| |
Collapse
|
10
|
Esna Ashari Z, Brayton KA, Broschat SL. Prediction of T4SS Effector Proteins for Anaplasma phagocytophilum Using OPT4e, A New Software Tool. Front Microbiol 2019; 10:1391. [PMID: 31293540 PMCID: PMC6598457 DOI: 10.3389/fmicb.2019.01391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023] Open
Abstract
Type IV secretion systems (T4SS) are used by a number of bacterial pathogens to attack the host cell. The complex protein structure of the T4SS is used to directly translocate effector proteins into host cells, often causing fatal diseases in humans and animals. Identification of effector proteins is the first step in understanding how they function to cause virulence and pathogenicity. Accurate prediction of effector proteins via a machine learning approach can assist in the process of their identification. The main goal of this study is to predict a set of candidate effectors for the tick-borne pathogen Anaplasma phagocytophilum, the causative agent of anaplasmosis in humans. To our knowledge, we present the first computational study for effector prediction with a focus on A. phagocytophilum. In a previous study, we systematically selected a set of optimal features from more than 1,000 possible protein characteristics for predicting T4SS effector candidates. This was followed by a study of the features using the proteome of Legionella pneumophila strain Philadelphia deduced from its complete genome. In this manuscript we introduce the OPT4e software package for Optimal-features Predictor for T4SS Effector proteins. An earlier version of OPT4e was verified using cross-validation tests, accuracy tests, and comparison with previous results for L. pneumophila. We use OPT4e to predict candidate effectors from the proteomes of A. phagocytophilum strains HZ and HGE-1 and predict 48 and 46 candidates, respectively, with 16 and 18 deemed most probable as effectors. These latter include the three known validated effectors for A. phagocytophilum.
Collapse
Affiliation(s)
- Zhila Esna Ashari
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States
| | - Kelly A Brayton
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Shira L Broschat
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| |
Collapse
|