1
|
Sloan L, Sen R, Liu C, Doucet M, Blosser L, Katulis L, Kamson DO, Grossman S, Holdhoff M, Redmond KJ, Quon H, Lim M, Eberhart C, Pardoll DM, Hu C, Ganguly S, Kleinberg LR. Radiation immunodynamics in patients with glioblastoma receiving chemoradiation. Front Immunol 2024; 15:1438044. [PMID: 39346903 PMCID: PMC11427284 DOI: 10.3389/fimmu.2024.1438044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction This is a prospective, rigorous inquiry into the systemic immune effects of standard adjuvant chemoradiotherapy, for WHO grade 4, glioblastoma. The purpose is to identify peripheral immunologic effects never yet reported in key immune populations, including myeloid-derived suppressor cells, which are critical to the immune suppressive environment of glioblastoma. We hypothesize that harmful immune-supportive white blood cells, myeloid derived suppressor cells, expand in response to conventionally fractionated radiotherapy with concurrent temozolomide, essentially promoting systemic immunity similar what is seen in chronic diseases like diabetes and heart disease. Methods 16 patients were enrolled in a single-institution, observational, immune surveillance study where peripheral blood was collected and interrogated by flow cytometry and RNAseq. Tumor tissue from baseline assessment was analyzed with spatial proteomics to link peripheral blood findings to baseline tissue characteristics. Results We identified an increase in myeloid-derived suppressor cells during the final week of a six-week treatment of chemoradiotherapy in peripheral blood of patients that were not alive at two years after diagnosis compared to those who were living. This was also associated with a decrease in CD8+ T lymphocytes that produced IFNγ, the potent anti-tumor cytokine. Discussion These data suggest that, as in chronic inflammatory disease, systemic immunity is impaired following delivery of adjuvant chemoradiotherapy. Finally, baseline investigation of myeloid cells within tumor tissue did not differ between survival groups, indicating immune surveillance of peripheral blood during adjuvant therapy may be a critical missing link to educate our understanding of the immune effects of standard of care therapy for glioblastoma.
Collapse
Affiliation(s)
- Lindsey Sloan
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
- University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rupashree Sen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chunnan Liu
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michele Doucet
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lee Blosser
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lisa Katulis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David O. Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Brain Cancer Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stuart Grossman
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Brain Cancer Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Brain Cancer Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harry Quon
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Charles Eberhart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Drew M. Pardoll
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chen Hu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, United States
| | - Sudipto Ganguly
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lawrence R. Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Brain Cancer Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Carlson PM, Mohan M, Patel RB, Birstler J, Nettenstrom L, Sheerar D, Fox K, Rodriguez M, Hoefges A, Hernandez R, Zahm C, Kim K, McNeel DG, Weichert J, Morris ZS, Sondel PM. Optimizing Flow Cytometric Analysis of Immune Cells in Samples Requiring Cryopreservation from Tumor-Bearing Mice. THE JOURNAL OF IMMUNOLOGY 2021; 207:720-734. [PMID: 34261667 DOI: 10.4049/jimmunol.2000656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Most shared resource flow cytometry facilities do not permit analysis of radioactive samples. We are investigating low-dose molecular targeted radionuclide therapy (MTRT) as an immunomodulator in combination with in situ tumor vaccines and need to analyze radioactive samples from MTRT-treated mice using flow cytometry. Further, the sudden shutdown of core facilities in response to the COVID-19 pandemic has created an unprecedented work stoppage. In these and other research settings, a robust and reliable means of cryopreservation of immune samples is required. We evaluated different fixation and cryopreservation protocols of disaggregated tumor cells with the aim of identifying a protocol for subsequent flow cytometry of the thawed sample, which most accurately reflects the flow cytometric analysis of the tumor immune microenvironment of a freshly disaggregated and analyzed sample. Cohorts of C57BL/6 mice bearing B78 melanoma tumors were evaluated using dual lymphoid and myeloid immunophenotyping panels involving fixation and cryopreservation at three distinct points during the workflow. Results demonstrate that freezing samples after all staining and fixation are completed most accurately matches the results from noncryopreserved equivalent samples. We observed that cryopreservation of living, unfixed cells introduces a nonuniform alteration to PD1 expression. We confirm the utility of our cryopreservation protocol by comparing tumors treated with in situ tumor vaccines, analyzing both fresh and cryopreserved tumor samples with similar results. Last, we use this cryopreservation protocol with radioactive specimens to demonstrate potentially beneficial effector cell changes to the tumor immune microenvironment following administration of a novel MTRT in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Peter M Carlson
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI.,Cellular and Molecular Biology Graduate Program, Bock Laboratories, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, Health Sciences Learning Center, University of Wisconsin-Madison, Madison, WI
| | - Manasi Mohan
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Ravi B Patel
- Department of Radiation Oncology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA
| | - Jen Birstler
- Department of Biostatistics and Medical Informatics, Wisconsin Alumni Research Foundation, Madison, WI
| | - Lauren Nettenstrom
- Flow Cytometry Laboratory, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Dagna Sheerar
- Flow Cytometry Laboratory, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Kathryn Fox
- Flow Cytometry Laboratory, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Matthew Rodriguez
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Anna Hoefges
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Reinier Hernandez
- Department of Radiology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Chris Zahm
- Department of Medicine, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, Wisconsin Alumni Research Foundation, Madison, WI
| | - Douglas G McNeel
- Department of Medicine, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Jamey Weichert
- Department of Radiology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI.,Department of Medical Physics, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI; and
| | - Zachary S Morris
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Paul M Sondel
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI; .,Department of Pediatrics, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
3
|
Degen H, Gavvovidis I, Blankenstein T, Uhland K, Ungerer M. Thyrotropin Receptor-Specific Lymphocytes in Adenovirus-TSHR-Immunized Native and Human Leukocyte Antigen-DR3-Transgenic Mice and in Graves' Disease Patient Blood. Thyroid 2021; 31:950-963. [PMID: 33208049 DOI: 10.1089/thy.2020.0338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Antigen-specific lymphocytes are increasingly investigated in autoimmune diseases and immune therapies. We sought to identify thyrotropin receptor (TSHR)-specific lymphocytes in mouse models of Graves' disease, including Graves' patient-specific immunotype human leukocyte antigen (HLA)-DR3, and in frozen and thawed Graves' patient blood samples. Methods and Results: Splenic lymphocytes of adenovirus (Ad)-TSHR-immunized BALB/c mice were stimulated with TSHR-specific peptides C, D, or J. Furthermore, CD154-expressing cells were enriched, expanded in vitro, and analyzed for binding of peptide-major histocompatibility complex (MHC) II multimers ("tetramers," immunotype H2-IAd). Only peptides C and J were able to elicit increased expression/secretion of CD154 and interferon-γ, and tetramers which were loaded with peptide C resulted in antigen-specific signals in splenic lymphocytes from Ad-TSHR-immunized mice. Accordingly, TSHR-specific HLA-DR3-MHC class II tetramers loaded with peptide p10 specifically bound to human HLA-DR3-(allele B1*03:01)-transgenic Bl/6 mouse splenic T lymphocytes. In addition, we fine-tuned a protocol to reliably measure thawed human peripheral blood mononuclear cells (PBMCs), which resulted in reliable recovery after freezing and thawing with regard to vitality and B and T cell subpopulation markers including regulatory T cells (CD3, CD4, CD25, FoxP3, CD25high, CD127low). TSHR-specific HLA-DR3-MHC class II tetramers loaded with peptide p10 identified antigen-specific T cells in HLA-DR3-positive Graves' patients' thawed PBMCs. Moreover, stimulation-dependent release of interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha from thawed PBMCs occurred at the expected levels. Conclusions: Novel MHC II tetramers identified TSHR-specific T lymphocytes in Ad-TSHR-immunized hyperthyroid BALB/c or HLA-DR3-transgenic mice and in thawed human PBMCs from patients with Graves' disease. These assays may contribute to measure both disease severity and effects of novel immune therapies in future animal studies and clinical investigations of Graves' disease.
Collapse
Affiliation(s)
| | - Ioannis Gavvovidis
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
- Department of Immunology, Charite - Universitätsmedizin, Berlin, Germany
| | - Thomas Blankenstein
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
- Department of Immunology, Charite - Universitätsmedizin, Berlin, Germany
| | | | | |
Collapse
|
4
|
Ng MSF, Tan L, Wang Q, Mackay CR, Ng LG. Neutrophils in cancer-unresolved questions. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1829-1841. [PMID: 33661490 DOI: 10.1007/s11427-020-1853-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
There is growing recognition that neutrophils play an important role in cancer initiation, progression and metastasis. Although they are typically characterized as short-lived effector cells, neutrophils have been shown to acquire immunosuppressive and pro-tumorigenic functions that promote tumor progression and escape. As such, inhibition of their function or depletion of neutrophils are being explored as potential cancer therapies. However, growing evidence of neutrophil diversification in cancer and their potential anti-tumor roles raise many unresolved questions. Here, we review recent advances that address the definition, origin and function of neutrophils in cancer, and elaborate on obstacles that make the study of neutrophils challenging. We envision that this review will provide the groundwork for focused design of therapeutics that will specifically target "tumorreprogrammed" neutrophils while sparing normal neutrophils to improve patient outcomes.
Collapse
Affiliation(s)
- Melissa S F Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore.
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore. .,State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
5
|
Innamarato P, Pilon-Thomas S. Reactive myelopoiesis and the onset of myeloid-mediated immune suppression: Implications for adoptive cell therapy. Cell Immunol 2020; 361:104277. [PMID: 33476931 DOI: 10.1016/j.cellimm.2020.104277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
Adoptive T cell therapy (ACT) in combination with lymphodepleting chemotherapy is an effective strategy to induce the eradication of cancer, providing long-term regressions in patients. However, only a minority of patients that receive ACT with tumor-specific T cells exhibit durable benefit. Thus, there is an urgent need to characterize mechanisms of resistance and define strategies to alleviate immunosuppression in the context of ACT in cancer. This article reviews the importance of lymphodepleting regimens in promoting the optimal engraftment and expansion of T cells in hosts after adoptive transfer. In addition, we discuss the role of concomitant immunosuppression and the accumulation of myeloid derived suppressor cells (MDSCs) during immune recovery after lymphodepleting regimens and mobilization regimens.
Collapse
Affiliation(s)
- Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
6
|
Myeloid Cells in Circulation and Tumor Microenvironment of Colorectal Cancer Patients with Early and Advanced Disease Stages. J Immunol Res 2020; 2020:9678168. [PMID: 32626789 PMCID: PMC7306094 DOI: 10.1155/2020/9678168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of cells that have been implicated in the development of an immunosuppressive environment, which promotes tumorigenesis and tumor progression. Numerous studies have reported expansion of MDSCs in circulation and the tumor microenvironment (TME) of cancer patients. However, due to the heterogenic nature of MDSCs and the different approaches for their identification, their detailed characterization and impact on disease progression in cancer patients are warranted. In this study, we investigated the levels of different myeloid cell subsets and antigen-presenting cells (APCs) using flow cytometry in unfractionated whole blood (WB), peripheral blood mononuclear cells (PBMCs), tumor tissue (TT), and adjacent normal tissue (NT) of colorectal cancer (CRC) patients. We found high levels of granulocytic myeloid cells (GMCs) in whole blood, but their levels were significantly lower in PBMCs. Importantly, we found significantly higher levels of GMCs in the TME compared to NT. In addition, monocytic myeloid cells (MMCs) showed significantly higher levels in PBMCs of CRC patients, compared to healthy donors (HDs). Notably, patients with advanced disease stages showed significantly higher levels of GMCs compared to early stages in whole blood, but PBMCs and tumor-infiltrating myeloid cells did not show any significant differences. Lastly, we found that levels of GMCs decreased, while IMCs increased in the TME with tumor budding. Our results highlight the importance of investigating the levels of different myeloid cell subsets in PBMCs versus whole blood of cancer patients and improve current knowledge on the potential prognostic significance of myeloid cells in CRC patients.
Collapse
|
7
|
Bryant AJ, Fu C, Lu Y, Brantly ML, Mehrad B, Moldawer LL, Brusko TM, Brittain EL, West JD, Austin ED, Hamid R. A checkpoint on innate myeloid cells in pulmonary arterial hypertension. Pulm Circ 2018; 9:2045894018823528. [PMID: 30562157 DOI: 10.1177/2045894018823528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Andrew J Bryant
- 1 Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Chunhua Fu
- 1 Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuanquing Lu
- 1 Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark L Brantly
- 1 Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Borna Mehrad
- 1 Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lyle L Moldawer
- 2 Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Todd M Brusko
- 3 Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Evan L Brittain
- 4 Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James D West
- 4 Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric D Austin
- 5 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rizwan Hamid
- 5 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|