1
|
Wu X, Singla S, Liu JJ, Hong L. The role of macrophage ion channels in the progression of atherosclerosis. Front Immunol 2023; 14:1225178. [PMID: 37588590 PMCID: PMC10425548 DOI: 10.3389/fimmu.2023.1225178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis is a complex inflammatory disease that affects the arteries and can lead to severe complications such as heart attack and stroke. Macrophages, a type of immune cell, play a crucial role in atherosclerosis initiation and progression. Emerging studies revealed that ion channels regulate macrophage activation, polarization, phagocytosis, and cytokine secretion. Moreover, macrophage ion channel dysfunction is implicated in macrophage-derived foam cell formation and atherogenesis. In this context, exploring the regulatory role of ion channels in macrophage function and their impacts on the progression of atherosclerosis emerges as a promising avenue for research. Studies in the field will provide insights into novel therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sidhant Singla
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jianhua J. Liu
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Zhao R, Zhou L, Lei G, Wang S, Li Y, Yang X, Xiong G, Hao L. Dietary Acid Load Is Positively Associated With Risk of Gestational Diabetes Mellitus in a Prospective Cohort of Chinese Pregnant Women. Front Nutr 2022; 9:892698. [PMID: 35694169 PMCID: PMC9184257 DOI: 10.3389/fnut.2022.892698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background Growing evidence suggests that dietary acid load plays an important role in the development of type 2 diabetes. However, prospective studies on the relationship between dietary acid load and gestational diabetes mellitus (GDM) are limited in the pregnant population. This study aimed to investigate the effect of dietary acid load during early pregnancy on the risk of GDM in Chinese pregnant women. Methods A total of 1,327 pregnant women were enrolled from an ongoing prospective study of the Tongji Birth cohort (TJBC) in Wuhan, China. Dietary intake was assessed before 20 weeks using a 74-item semiquantitative food frequency questionnaire (FFQ). The dietary acid load was estimated using potential renal acid load (PRAL), net endogenous acid production (NEAP), and animal protein to potassium ratio (A:P ratio). A 75g 2-h oral glucose tolerance test (OGTT) was performed at 24-28 gestational weeks to diagnose GDM. Results The mean (standard deviation) values for PRAL score, NEAP score, and A:P ratio were 0.8 ± 11.3 mEq/day, 45.3 ± 16.5 mEq/day, and 9.8 ± 6.0, respectively. There was a significant positive correlation of dietary acid load with the intake of red meat, poultry, fish, and eggs, and a negative correlation with the intake of vegetables, fruits, nuts, and legumes (all P < 0.05). Compared to the lowest tertile, the highest tertile of dietary acid load, including PRAL score (odds ratio [OR]: 2.26, 95% confidence interval [CI] = 1.38–3.71, P-trend = 0.002), NEAP score (OR: 2.02, 95% CI = 1.25–3.27, P-trend = 0.009), and A:P ratio (2.08, 95% CI = 1.30–3.31, P-trend = 0.005), significantly increased the risk of GDM. In addition, the dietary acid load was also significantly associated with an increase in 1-h and 2-h post-load blood glucose concentrations (all P-trend < 0.05). Conclusion We found a significant positive association between dietary acid load during early pregnancy and the risk of GDM in a Chinese population, suggesting that the reduction of food sources of dietary acid load may be an effective strategy for preventing the risk of GDM.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leilei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Lei
- The Central Hospital of Wuhan, Wuhan, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoping Xiong
- The Central Hospital of Wuhan, Wuhan, China
- *Correspondence: Guoping Xiong,
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Liping Hao,
| |
Collapse
|
3
|
Mapping gene and gene pathways associated with coronary artery disease: a CARDIoGRAM exome and multi-ancestry UK biobank analysis. Sci Rep 2021; 11:16461. [PMID: 34385509 PMCID: PMC8361107 DOI: 10.1038/s41598-021-95637-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Coronary artery disease (CAD) genome-wide association studies typically focus on single nucleotide variants (SNVs), and many potentially associated SNVs fail to reach the GWAS significance threshold. We performed gene and pathway-based association (GBA) tests on publicly available Coronary ARtery DIsease Genome wide Replication and Meta-analysis consortium Exome (n = 120,575) and multi ancestry pan UK Biobank study (n = 442,574) summary data using versatile gene-based association study (VEGAS2) and Multi-marker analysis of genomic annotation (MAGMA) to identify novel genes and pathways associated with CAD. We included only exonic SNVs and excluded regulatory regions. VEGAS2 and MAGMA ranked genes and pathways based on aggregated SNV test statistics. We used Bonferroni corrected gene and pathway significance threshold at 3.0 × 10-6 and 1.0 × 10-5, respectively. We also report the top one percent of ranked genes and pathways. We identified 17 top enriched genes with four genes (PCSK9, FAM177, LPL, ARGEF26), reaching statistical significance (p ≤ 3.0 × 10-6) using both GBA tests in two GWAS studies. In addition, our analyses identified ten genes (DUSP13, KCNJ11, CD300LF/RAB37, SLCO1B1, LRRFIP1, QSER1, UBR2, MOB3C, MST1R, and ABCC8) with previously unreported associations with CAD, although none of the single SNV associations within the genes were genome-wide significant. Among the top 1% non-lipid pathways, we detected pathways regulating coagulation, inflammation, neuronal aging, and wound healing.
Collapse
|
4
|
Wang X, Wei C, Zhang Z, Liu D, Guo Y, Sun G, Wang Y, Li H, Tian Y, Kang X, Han R, Li Z. Association of growth traits with a structural variation downstream of the KCNJ11 gene: a large population-based study in chickens. Br Poult Sci 2020; 61:320-327. [PMID: 32008360 DOI: 10.1080/00071668.2020.1724878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. The potassium voltage-gated channel subfamily J member 11 gene (KCNJ11) is involved in the insulin secretion pathway. Studies have shown that mutation in this gene is associated with muscle weakness. The objective of the present study was to establish the association between KCNJ11 gene polymorphism and chicken growth performance and to analyse its expression pattern. 2. A novel 163-bp insertion/deletion (indel) polymorphism was identified in the region downstream of the KCNJ11 gene in 2330 individuals from ten populations by polymerase chain reaction (PCR). An F2 resource population was used to investigate the genetic effects of the chicken KCNJ11 gene. Association analysis showed that the indel was significantly associated with chicken growth traits and that the phenotypic value of the ins-ins (II) genotype is higher than that of the ins-del (ID) and del-del (DD) genotypes. 3. Gene expression for different genotypes showed that birds carrying the II allele had a higher expression level than the DD genotypes. Analysis of tissue and spatiotemporal expression patterns indicated that the KCNJ11 gene was highly expressed in muscle tissues, with the highest levels in muscle tissue at one week of age, and that a 10% crude protein diet reduced the expression of this gene, average daily gain and muscle fibre diameter. 4. The results suggested that this novel 163-bp indel has the potential to become a new target for marker-assisted selection.
Collapse
Affiliation(s)
- X Wang
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - C Wei
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Z Zhang
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - D Liu
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Y Guo
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - G Sun
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Y Wang
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - H Li
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Y Tian
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - X Kang
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - R Han
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | - Z Li
- Department of Animal Breeding and Genetics, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, No.15 Longzihu University Area, Zhengdong New District, College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| |
Collapse
|