1
|
Zhang J, Meng S, Wang H, Zhang C, Sun Z, Huang L, Miao Z. Comparison of Growth Performance, Carcass Properties, Fatty Acid Profile, and Genes Involved in Fat Metabolism in Nanyang and Landrace Pigs. Genes (Basel) 2024; 15:186. [PMID: 38397176 PMCID: PMC10888446 DOI: 10.3390/genes15020186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
This study compared the growth, carcass properties, fatty acid profile, lipid-producing enzyme activity, and expression pattern of genes involved in fat metabolism in Nanyang and Landrace pigs. In the study, 32 Nanyang (22.16 ± 0.59 kg) and 32 Landrace barrows (21.37 ± 0.57 kg) were selected and divided into two groups, each with eight pens and four pigs per pen. The trial period lasted 90 days. The findings showed that the Nanyang pigs had lower average daily weight gain and lean percentage and higher average backfat thickness and lipogenic enzyme activities, including for acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, malic enzyme, and fatty acid synthase, than the Landrace pigs. A total of 14 long-chain fatty acids were detected using HPLC-MS, in which it was found that the levels of C14:0, C18:1n-9, C20:1n-9, C20:4n-6, and MUFA were up-regulated and C18:2n-6, C18:3n-3, PUFA n6, n3/n6, and total PUFA were down-regulated in the Nanyang pigs. Moreover, the mRNA levels for genes involved in fat metabolism, ME1, FAS, and LPL, were higher and the expression of SREBP1 mRNA was lower in the Nanyang pigs. Our results suggest genetic differences between the pig breeds in terms of growth, carcass traits, lipogenic enzyme activities, fatty acid profile, and the mRNA expression of genes involved in fat metabolism in subcutaneous fat tissue, which may provide a basis for high-quality pork production. Further studies are needed to investigate the regulation of lipid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China; (J.Z.); (S.M.); (H.W.); (C.Z.); (Z.S.); (L.H.)
| |
Collapse
|
2
|
Wang C, Lei B, Liu Y. An Analysis of a Transposable Element Expression Atlas during 27 Developmental Stages in Porcine Skeletal Muscle: Unveiling Molecular Insights into Pork Production Traits. Animals (Basel) 2023; 13:3581. [PMID: 38003198 PMCID: PMC10668843 DOI: 10.3390/ani13223581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The development and growth of porcine skeletal muscle determine pork quality and yield. While genetic regulation of porcine skeletal muscle development has been extensively studied using various omics data, the role of transposable elements (TEs) in this context has been less explored. To bridge this gap, we constructed a comprehensive atlas of TE expression throughout the developmental stages of porcine skeletal muscle. This was achieved by integrating porcine TE genomic coordinates with whole-transcriptome RNA-Seq data from 27 developmental stages. We discovered that in pig skeletal muscle, active Tes are closely associated with active epigenomic marks, including low levels of DNA methylation, high levels of chromatin accessibility, and active histone modifications. Moreover, these TEs include 6074 self-expressed TEs that are significantly enriched in terms of muscle cell development and myofibril assembly. Using the TE expression data, we conducted a weighted gene co-expression network analysis (WGCNA) and identified a module that is significantly associated with muscle tissue development as well as genome-wide association studies (GWAS) of the signals of pig meat and carcass traits. Within this module, we constructed a TE-mediated gene regulatory network by adopting a unique multi-omics integration approach. This network highlighted several established candidate genes associated with muscle-relevant traits, including HES6, CHRNG, ACTC1, CHRND, MAMSTR, and PER2, as well as novel genes like ENSSSCG00000005518, ENSSSCG00000033601, and PIEZO2. These novel genes hold promise for regulating muscle-related traits in pigs. In summary, our research not only enhances the TE-centered dissection of the genetic basis underlying pork production traits, but also offers a general approach for constructing TE-mediated regulatory networks to study complex traits or diseases.
Collapse
Affiliation(s)
- Chao Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (B.L.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Bowen Lei
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (B.L.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (B.L.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| |
Collapse
|
3
|
Panda S, Kumar A, Gaur GK, Ahmad SF, Chauhan A, Mehrotra A, Dutt T. Genome wide copy number variations using Porcine 60K SNP Beadchip in Landlly pigs. Anim Biotechnol 2023; 34:1891-1899. [PMID: 35369845 DOI: 10.1080/10495398.2022.2056047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/01/2022]
Abstract
In the present study, Porcine 60K SNP genotype data from 69 Landlly pigs were used to explore Copy Number Variations (CNVs) across the autosomes. A total of 386 CNVs were identified using Hidden Markov Model (HMM) in PennCNV software, which were subsequently aggregated to 115 CNV regions (CNVRs). Among the total detected CNVRs, 58 gain, 49 were loss type while remaining 8 events were both gain and loss types. Identified CNVRs covered 12.5 Mb (0.55%) of Sus scrofa reference 11.1 genome. Comparison of our results with previous investigations on pigs revealed that approximately 75% CNVRs were novel, which may be due to differences in genetic background, environment and implementation of artificial selection in Landlly pigs. Functional annotation and pathway analysis showed the significant enrichment of 267 well-annotated Sus scrofa genes in CNVRs. These genes were involved in different biological functions like sensory perception, meat quality traits, back fat thickness and immunity. Additionally, KIT and FUT1 were two major genes detected on CNVR in our population. This investigation provided a comprehensive overview of CNV distribution in the Indian porcine genome for the first time, which may be useful for further investigating the association of important quantitative traits in Landlly pigs.Highlights115 CNVRs were identified in 69 Landlly pig population.Approximately 75% detected CNVRs were novel for Landlly population.Significant enrichment of 267 well-annotated Sus scrofa genes observed in these CNVRs.These genes were involved in different biological functions like sensory perception, meat quality traits, back fat thickness and immunity.Comprehensive CNV map in the Indian porcine genome developed for the first time.
Collapse
Affiliation(s)
- Snehasmita Panda
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Anuj Chauhan
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Arnav Mehrotra
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
- Animal Genomics, ETH Zürich, Zürich, Switzerland
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| |
Collapse
|
4
|
Expression and Genetic Effects of GLI Pathogenesis-Related 1 Gene on Backfat Thickness in Pigs. Genes (Basel) 2022; 13:genes13081448. [PMID: 36011359 PMCID: PMC9407767 DOI: 10.3390/genes13081448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Backfat thickness (BFT) is an important carcass composition trait and regarded as a breeding focus. Our initial transcriptome analysis of pig BFT identified GLI pathogenesis-related 1 (GLIPR1) as one of the promising candidate genes. This study was conducted to identify the expression profiles, polymorphisms, and genetic effects of the GLIPR1 gene on BFT in pigs. The expression of the GLIPR1 gene existed in every detected tissue, and there was a significantly higher expression in spleen and adipose tissue than others (p < 0.05). At the different ages of pig, the expression of the GLIPR1 gene was low at an early age, increased with growth, and reached the highest level at 180 days. Genetic polymorphism analysis was detected in 553 individuals of the Large White × Minzhu F2 population. Four SNPs in the promoter significantly associated with 6−7 rib BFT (p < 0.05) were predicted to alter the transcription factor binding sites (TFBS), and the mutations of g.38758089 T>G and g.38758114 G>C were predicted to change the TFs associated with the regulation of adipogenesis. Haplotypes were formed by the detected SNPs, and one block showed a strong association with BFT (p < 0.05). In summary, our results indicate that the expression profiles and genetic variants of GLIPR1 affected the BFT of pigs. To our knowledge, this study is the first to demonstrate the biological function and genetic effects of the GLIPR1 gene on the BFT of pig and provide genetic markers to optimize breeding for BFT in pigs.
Collapse
|
5
|
Palombo V, D’Andrea M, Licastro D, Dal Monego S, Sgorlon S, Sandri M, Stefanon B. Single-Step Genome Wide Association Study Identifies QTL Signals for Untrimmed and Trimmed Thigh Weight in Italian Crossbred Pigs for Dry-Cured Ham Production. Animals (Basel) 2021; 11:ani11061612. [PMID: 34072469 PMCID: PMC8227816 DOI: 10.3390/ani11061612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Along with the traditional traits, swine breeding programs for Italian dry-cured ham production have recently aimed to include novel phenotypes. The identification of the genomic regions underlying such new traits helps to untangle their genetic architecture and may provide useful information to be integrated in genetic selection. With this aim, we estimated genetic parameters and conducted a single step genome wide association studies (GWAS) on untrimmed and trimmed thigh weight considering two pig crossbred lines approved for Italian Protected Designation of Origin ham production. Quantitative trait loci (QTLs) were characterized based on the variance of 10-SNP sliding windows genomic estimated breeding values. In particular, we identified interesting QTL signals on several chromosomes, notably on chromosome 4, 6, 7 and 15. A high heritability and genetic correlation were observed for the two traits under investigation and although independent studies including other pig populations are required to disentangle the possible effects of specific linkage disequilibrium in our population, our findings suggest that such QTL could be investigated in future pig breeding programs to improve the reliability of genomic estimated breeding values for the dry-cured ham production. Abstract Protected Designation of Origin (PDO) dry-cured ham is the most important product in the Italian pig breeding industry, mainly oriented to produce heavy pig carcasses to obtain hams of the right weight and maturity. Recently, along with the traditional traits swine breeding programs have aimed to include novel carcass traits. The identification at the genome level of quantitative trait loci (QTLs) affecting such new traits helps to reveal their genetic determinism and may provide information to be integrated in prediction models in order to improve prediction accuracy as well as to identify candidate genes underlying such traits. This study aimed to estimate genetic parameters and perform a single step genome wide association studies (ssGWAS) on novel carcass traits such as untrimmed (UTW) and trimmed thigh weight (TTW) in two pig crossbred lines approved for the ham production of the Italian PDO. With this purpose, phenotypes were collected from ~1800 animals and 240 pigs were genotyped with Illumina PorcineSNP60 Beadchip. The single-step genomic BLUP procedure was used for the heritability estimation and to implement the ssGWAS. QTL were characterized based on the variance of 10-SNP sliding window genomic estimated breeding values. Moderate heritabilities were detected and QTL signals were identified on chromosome 1, 4, 6, 7, 11 and 15 for both traits. As expected, the genetic correlation among the two traits was very high (~0.99). The QTL regions encompassed a total of 249 unique candidate genes, some of which were already reported in association with growth, carcass or ham weight traits in pigs. Although independent studies are required to further verify our findings and disentangle the possible effects of specific linkage disequilibrium in our population, our results support the potential use of such new QTL information in future breeding programs to improve the reliability of genomic prediction.
Collapse
Affiliation(s)
- Valentino Palombo
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via de Sanctis Snc, 86100 Campobasso, Italy;
| | - Mariasilvia D’Andrea
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via de Sanctis Snc, 86100 Campobasso, Italy;
- Correspondence: ; Tel.: +39-0874-404671
| | - Danilo Licastro
- ARGO Open Lab Platform for Genome Sequencing, AREA Science Park, Padriciano, 99, 34149 Trieste, Italy; (D.L.); (S.D.M.)
| | - Simeone Dal Monego
- ARGO Open Lab Platform for Genome Sequencing, AREA Science Park, Padriciano, 99, 34149 Trieste, Italy; (D.L.); (S.D.M.)
| | - Sandy Sgorlon
- Dipartimento di Scienze Agroambientali, Alimentari e Animali, Università di Udine, Via Delle Scienze, 208, 33100 Udine, Italy; (S.S.); (M.S.); (B.S.)
| | - Misa Sandri
- Dipartimento di Scienze Agroambientali, Alimentari e Animali, Università di Udine, Via Delle Scienze, 208, 33100 Udine, Italy; (S.S.); (M.S.); (B.S.)
| | - Bruno Stefanon
- Dipartimento di Scienze Agroambientali, Alimentari e Animali, Università di Udine, Via Delle Scienze, 208, 33100 Udine, Italy; (S.S.); (M.S.); (B.S.)
| |
Collapse
|
6
|
A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome. Nat Commun 2021; 12:2217. [PMID: 33850120 PMCID: PMC8044108 DOI: 10.1038/s41467-021-22448-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Although major advances in genomics have initiated an exciting new era of research, a lack of information regarding cis-regulatory elements has limited the genetic improvement or manipulation of pigs as a meat source and biomedical model. Here, we systematically characterize cis-regulatory elements and their functions in 12 diverse tissues from four pig breeds by adopting similar strategies as the ENCODE and Roadmap Epigenomics projects, which include RNA-seq, ATAC-seq, and ChIP-seq. In total, we generate 199 datasets and identify more than 220,000 cis-regulatory elements in the pig genome. Surprisingly, we find higher conservation of cis-regulatory elements between human and pig genomes than those between human and mouse genomes. Furthermore, the differences of topologically associating domains between the pig and human genomes are associated with morphological evolution of the head and face. Beyond generating a major new benchmark resource for pig epigenetics, our study provides basic comparative epigenetic data relevant to using pigs as models in human biomedical research.
Collapse
|
7
|
Liu H, Wei W, Lin W, Yu W, Luo W, Niu Y, Zhang L, Chen J. miR-32-5p Regulates Lipid Accumulation in Intramuscular Fat of Erhualian Pigs by Suppressing KLF3. Lipids 2020; 56:279-287. [PMID: 33305404 DOI: 10.1002/lipd.12294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/20/2023]
Abstract
Intramuscular fat (IMF) and subcutaneous fat (SCF) are important traits affecting the economics of the pork industry, in which less SCF and more IMF content is desirable. However, the mechanisms that regulate IMF and SCF content are not clear yet. In this study, we demonstrate that KLF3 (Krüppel-like factor 3) was negatively correlated with IMF content in the longissimus dorsi muscle of Erhualian pigs. In addition, the expression level of KLF3 was significantly higher in IMF than SCF. Overexpression and knockdown experiments revealed that KLF3 could suppress adipocyte differentiation in vitro by downregulating adipogenic markers, including PPARG, C/EBPA, and FABP4. Luciferase activity analysis proved that miR-32-5p was able to suppress KLF3. Notably, miR-32-5p level was negatively correlated to KLF3 mRNA level in both IMF and SCF tissues. The same relationship was proved in samples with different IMF content. Further studies showed that miR-32-5p could promote adipocyte differentiation via inhibiting KLF3. Our results suggest that the miR-32-5p-KLF3 pathway is involved in the regulation of differential fat deposition of IMF and SCF tissues.
Collapse
Affiliation(s)
- Hongcheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Weimin Lin
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Wensai Yu
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Wu Luo
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Yingfang Niu
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang, Nanjing, 210095, China
| |
Collapse
|
8
|
Malila Y, Uengwetwanit T, Arayamethakorn S, Srimarut Y, Thanatsang KV, Soglia F, Strasburg GM, Rungrassamee W, Visessanguan W. Transcriptional Profiles of Skeletal Muscle Associated With Increasing Severity of White Striping in Commercial Broilers. Front Physiol 2020; 11:580. [PMID: 32612536 PMCID: PMC7308426 DOI: 10.3389/fphys.2020.00580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2019] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
Development of the white striping (WS) abnormality adversely impacts overall quality of broiler breast meat. Its etiology remains unclear. This study aimed at exploring transcriptional profiles of broiler skeletal muscles exhibiting different WS severity to elucidate molecular mechanisms underlying the development and progression of WS. Total RNA was isolated from pectoralis major of male 7-week-old Ross 308 broilers. The samples were classified as mild (n = 6), moderate (n = 6), or severe (n = 4), based on number and thickness of the white striations on the meat surface. The transcriptome was profiled using a chicken gene expression microarray with one-color hybridization technique. Gene expression patterns of each WS severity level were compared against each other; hence, there were three comparisons: moderate vs. mild (C1), severe vs. moderate (C2), and severe vs. mild (C3). Differentially expressed genes (DEGs) were identified using the combined criteria of false discovery rate ≤ 0.05 and absolute fold change ≥1.2. Differential expression of 91, 136, and 294 transcripts were identified in C1, C2, and C3, respectively. There were no DEGs in common among the three comparisons. Based on pathway analysis, the enriched pathways of C1 were related with impaired homeostasis of macronutrients and small biochemical molecules with disrupted Ca2+-related pathways. Decreased abundance of the period circadian regulator suggested the shifted circadian phase when moderate WS developed. The enriched pathways uniquely obtained in C2 were RNA degradation, Ras signaling, cellular senescence, axon guidance, and salivary secretion. The DEGs identified in those pathways might play crucial roles in regulating cellular ion balances and cell-cycle arrest. In C3, the pathways responsible for phosphatidylinositol 3-kinase-Akt signaling, p53 activation, apoptosis, and hypoxia-induced processes were modified. Additionally, pathways associated with a variety of diseases with the DEGs involved in regulation of [Ca2+], collagen formation, microtubule-based motor, and immune response were identified. Eight pathways were common to all three comparisons (i.e., calcium signaling, Ras-associated protein 1 signaling, ubiquitin-mediated proteolysis, vascular smooth muscle contraction, oxytocin signaling, and pathway in cancer). The current findings support the role of intracellular ion imbalance, particularly Ca2+, oxidative stress, and impaired programmed cell death on WS progression.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Tanaporn Uengwetwanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Sopacha Arayamethakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Krittaporn V Thanatsang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| |
Collapse
|
9
|
Skugor A, Kjos NP, Sundaram AYM, Mydland LT, Ånestad R, Tauson AH, Øverland M. Effects of long-term feeding of rapeseed meal on skeletal muscle transcriptome, production efficiency and meat quality traits in Norwegian Landrace growing-finishing pigs. PLoS One 2019; 14:e0220441. [PMID: 31390356 PMCID: PMC6685631 DOI: 10.1371/journal.pone.0220441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
Abstract
This study was performed to investigate the effects of dietary inclusion of 20% rapeseed meal (RSM) as an alternative to soybean meal (SBM) in a three-month feeding experiment with growing finishing pigs. Dietary alteration affected growth performance, several carcass traits and transcriptional responses in the skeletal muscle, but did not affect measured meat quality traits. In general, pigs fed the RSM test diet exhibited reduced growth performance compared to pigs on SBM control diet. Significant transcriptional changes in the skeletal muscle of growing pigs fed RSM diet were likely the consequence of an increased amount of fiber and higher polyunsaturated fatty acids, and presence of bioactive phytochemicals, such as glucosinolates. RNAseq pipeline using Tophat2-Cuffdiff identified 57 upregulated and 63 downregulated genes in RSM compared to SBM pigs. Significantly enriched among downregulated pathways was p53-mediated signalling involved in cellular proliferation, while activation of negative growth regulators (IER5, KLF10, BTG2, KLF11, RETREG1, PRUNE2) in RSM fed pigs provided further evidence for reduced proliferation and increased cellular death, in accordance with the observed reduction in performance traits. Upregulation of well-known metabolic controllers (PDK4, UCP3, ESRRG and ESRRB), involved in energy homeostasis (glucose and lipid metabolism, and mitochondrial function), suggested less available energy and nutrients in RSM pigs. Furthermore, several genes supported more pronounced proteolysis (ABTB1, OTUD1, PADI2, SPP1) and reduced protein synthesis (THBS1, HSF4, AP1S2) in RSM muscle tissue. In parallel, higher levels of NR4A3, PDK4 and FGF21, and a drop in adropin, ELOVL6 and CIDEC/FSP27 indicated increased lipolysis and fatty acid oxidation, reflective of lower dressing percentage. Finally, pigs exposed to RSM showed greater expression level of genes responsive to oxidative stress, indicated by upregulation of GPX1, GPX2, and TXNIP.
Collapse
Affiliation(s)
- Adrijana Skugor
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Nils Petter Kjos
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | | | - Liv Torunn Mydland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Ragnhild Ånestad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Anne-Helene Tauson
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
10
|
Nakajima I, Kojima M, Oe M, Ojima K, Muroya S, Chikuni K. Comparing pig breeds with genetically low and high backfat thickness: differences in expression of adiponectin, its receptor, and blood metabolites. Domest Anim Endocrinol 2019; 68:54-63. [PMID: 30851697 DOI: 10.1016/j.domaniend.2019.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/22/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/25/2022]
Abstract
Here we characterized gene expressions in subcutaneous adipose tissue and blood metabolites of pigs with genetically low backfat (Landrace) and high backfat (Meishan). As pigs aged from 1 wk-to 3-mo old, mRNA levels of adipose-specific genes increased, although their gene expressions coding for major enzymes involved in lipid metabolism (lipoprotein lipase, fatty acid synthase, and hormone-sensitive lipase) did not differ between lean and fat pigs. Instead, there were significant effects for adiponectin and its receptor AdipoR1 mRNA levels between the two breeds of which respective expressions were lower and higher in Meishan by 3 mo of age. Contrary to changes in gene expressions, the concentrations of blood glucose, triglyceride (TG), and NEFA in both breeds decreased during growth, and 3-mo-old Meishan evidenced lower glucose with higher TG than the Landrace. The homeostasis model assessment insulin resistance (HOMA-IR) index was also calculated from the measurements of fasting glucose and insulin concentration, and Meishan showed a higher value than the Landrace. We next examined these differences in Landrace and Meishan crossbreds, which were phenotypically distinguishable by the backfat thickness as the former lean type and the latter fat type. As with the purebreds, high backfat Meishan crosses showed the characteristics of lower glucose and higher TG in circulating levels and also lower adiponectin transcripts in subcutaneous adipose tissue. Collectively, our results demonstrate that levels of adiponectin and its receptor gene expressions, blood glucose, blood lipids, and HOMA-IR in pigs vary between lean and fat. These observations strongly suggest the possibility that overall metabolic differences rather than adipocyte ability itself contribute to the fatness of genetically high backfat pigs.
Collapse
Affiliation(s)
- I Nakajima
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba 305-0901, Japan.
| | - M Kojima
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba 305-0901, Japan
| | - M Oe
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba 305-0901, Japan
| | - K Ojima
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba 305-0901, Japan
| | - S Muroya
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba 305-0901, Japan
| | - K Chikuni
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba 305-0901, Japan
| |
Collapse
|