1
|
Barrios EL, Rincon JC, Willis M, Polcz VE, Leary JR, Darden DB, Balch JA, Larson SD, Loftus TJ, Mohr AM, Wallet S, Brusko MA, Balzano-Nogueira L, Cai G, Sharma A, Upchurch GR, Kladde MP, Mathews CE, Maile R, Moldawer LL, Bacher R, Efron PA. TRANSCRIPTOMIC DIFFERENCES IN PERIPHERAL MONOCYTE POPULATIONS IN SEPTIC PATIENTS BASED ON OUTCOME. Shock 2024; 62:208-216. [PMID: 38713581 DOI: 10.1097/shk.0000000000002379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
ABSTRACT Postsepsis early mortality is being replaced by survivors who experience either a rapid recovery and favorable hospital discharge or the development of chronic critical illness with suboptimal outcomes. The underlying immunological response that determines these clinical trajectories remains poorly defined at the transcriptomic level. As classical and nonclassical monocytes are key leukocytes in both the innate and adaptive immune systems, we sought to delineate the transcriptomic response of these cell types. Using single-cell RNA sequencing and pathway analyses, we identified gene expression patterns between these two groups that are consistent with differences in TNF-α production based on clinical outcome. This may provide therapeutic targets for those at risk for chronic critical illness in order to improve their phenotype/endotype, morbidity, and long-term mortality.
Collapse
Affiliation(s)
- Evan L Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Jaimar C Rincon
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Micah Willis
- Department of Oral Biology, College of Dentistry, Gainesville, Florida
| | - Valerie E Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Jack R Leary
- Department of Biostatistics, College of Medicine, Gainesville, Florida
| | - Dijoia B Darden
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Jeremy A Balch
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Shawn D Larson
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Tyler J Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Alicia M Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Shannon Wallet
- Department of Oral Biology, College of Dentistry, Gainesville, Florida
| | - Maigan A Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Gainesville, Florida
| | | | - Guoshuai Cai
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Ashish Sharma
- Department of Surgery, College of Medicine, Gainesville, Florida
| | | | - Michael P Kladde
- Department of Biochemistry and Molecular Biology, College of Medicine, Gainesville, Florida
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Gainesville, Florida
| | - Robert Maile
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Rhonda Bacher
- Department of Biostatistics, College of Medicine, Gainesville, Florida
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| |
Collapse
|
2
|
Siegler BH, Thon JN, Altvater M, Schenz J, Larmann J, Weigand MA, Weiterer S. Abdominal surgery induces long-lasting changes in expression and binding of CTCF with impact on Major Histocompatibility Complex II transcription in circulating human monocytes. PLoS One 2023; 18:e0293347. [PMID: 37878653 PMCID: PMC10599505 DOI: 10.1371/journal.pone.0293347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Postoperative immunosuppression has been recognized as an important driver of surgery-related morbidity and mortality. It is characterized by lymphocyte depression and impaired monocyte capability to present foreign antigens to T-cells via Major Histocompatibility Complex, Class II (MHC-II) molecules. In patients with postoperative abdominal sepsis, we previously detected a persisting differential binding of the CCCTC-Binding Factor (CTCF), a superordinate regulator of transcription, inside the MHC-II region with specific impact on human leucocyte antigen (HLA) gene expression. In this prospective exploratory study, we investigated to which extent major surgery affects the MHC-II region of circulating CD14+-monocytes. RESULTS In non-immunocompromised patients undergoing elective major abdominal surgery, a postoperative loss of monocyte HLA-DR surface receptor density was accompanied by a decline in the transcription levels of the classical MHC-II genes HLA-DRA, HLA-DRB1, HLA-DPA1 and HLA-DPB1. The surgical event decreased the expression of the transcriptional MHC-II regulators CIITA and CTCF and led to a lower CTCF enrichment at an intergenic sequence within the HLA-DR subregion. During the observation period, we found a slow and only incomplete restoration of monocyte HLA-DR surface receptor density as well as a partial recovery of CIITA, HLA-DRA and HLA-DRB1 expression. In contrast, transcription of HLA-DPA1, HLA-DPB1, CTCF and binding of CTCF within the MHC-II remained altered. CONCLUSION In circulating monocytes, major surgery does not globally affect MHC-II transcription but rather induces specific changes in the expression of selected HLA genes, followed by differential recovery patterns and accompanied by a prolonged reduction of CTCF expression and binding within the MHC-II region. Our results hint toward a long-lasting impact of a major surgical intervention on monocyte functionality, possibly mediated by epigenetic changes that endure the life span of the individual cell.
Collapse
Affiliation(s)
- Benedikt Hermann Siegler
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Jan Niklas Thon
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Marc Altvater
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Judith Schenz
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Jan Larmann
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Markus Alexander Weigand
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Sebastian Weiterer
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
3
|
Chen L, Hua J, He X. Co-expression network analysis identifies potential candidate hub genes in severe influenza patients needing invasive mechanical ventilation. BMC Genomics 2022; 23:703. [PMID: 36243706 PMCID: PMC9569050 DOI: 10.1186/s12864-022-08915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza is a contagious disease that affects people of all ages and is linked to considerable mortality during epidemics and occasional outbreaks. Moreover, effective immunological biomarkers are needed for elucidating aetiology and preventing and treating severe influenza. Herein, we aimed to evaluate the key genes linked with the disease severity in influenza patients needing invasive mechanical ventilation (IMV). Three gene microarray data sets (GSE101702, GSE21802, and GSE111368) from blood samples of influenza patients were made available by the Gene Expression Omnibus (GEO) database. The GSE101702 and GSE21802 data sets were combined to create the training set. Hub indicators for IMV patients with severe influenza were determined using differential expression analysis and Weighted correlation network analysis (WGCNA) from the training set. The receiver operating characteristic curve (ROC) was also used to evaluate the hub genes from the test set's diagnostic accuracy. Different immune cells' infiltration levels in the expression profile and their correlation with hub gene markers were examined using single-sample gene set enrichment analysis (ssGSEA). RESULTS In the present study, we evaluated a total of 447 differential genes. WGCNA identified eight co-expression modules, with the red module having the strongest correlation with IMV patients. Differential genes were combined to obtain 3 hub genes (HLA-DPA1, HLA-DRB3, and CECR1). The identified genes were investigated as potential indicators for patients with severe influenza who required IMV using the least absolute shrinkage and selection operator (LASSO) approach. The ROC showed the diagnostic value of the three hub genes in determining the severity of influenza. Using ssGSEA, it has been revealed that the expression of key genes was negatively correlated with neutrophil activation and positively associated with adaptive cellular immune response. CONCLUSION We evaluated three novel hub genes that could be linked to the immunopathological mechanism of severe influenza patients who require IMV treatment and could be used as potential biomarkers for severe influenza prevention and treatment.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital With Nanjing Medical University, No.300 Guangzhou Road, Nanjing city, 210029, Jiangsu Province, China.
| |
Collapse
|
4
|
Farina F, Pisapia L, Laezza M, Serena G, Rispo A, Ricciolino S, Gianfrani C, Fasano A, Del Pozzo G. Effect of Gliadin Stimulation on HLA-DQ2.5 Gene Expression in Macrophages from Adult Celiac Disease Patients. Biomedicines 2021; 10:biomedicines10010063. [PMID: 35052743 PMCID: PMC8773327 DOI: 10.3390/biomedicines10010063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Macrophages play an important role in the pathogenesis of celiac disease (CD) because they are involved in both inflammatory reaction and antigen presentation. We analyzed the expression of CD-associated HLA-DQ2.5 risk alleles on macrophages isolated by two cohorts of adult patients, from the U.S. and Italy, at different stages of disease and with different genotypes. After isolating and differentiating macrophages from PBMC, we assessed the HLA genotype and quantified the HLA-DQ2.5 mRNAs by qPCR, before and after gliadin stimulation. The results confirmed the differences in expression between DQA1*05:01 and DQB1*02:01 predisposing alleles and the non-CD associated alleles, as previously shown on other types of APCs. The gliadin challenge confirmed the differentiation of macrophages toward a proinflammatory phenotype, but above all, it triggered an increase of DQA1*05:01 mRNA, as well as a decrease of the DQB1*02:01 transcript. Furthermore, we observed a decrease in the DRB1 genes expression and a downregulation of the CIITA transactivator. In conclusion, our findings provide new evidences on the non-coordinated regulation of celiac disease DQ2.5 risk genes and support the hypothesis that gliadin could interfere in the three-dimensional arrangement of chromatin at the HLA locus.
Collapse
Affiliation(s)
- Federica Farina
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
| | - Laura Pisapia
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
| | - Mariavittoria Laezza
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA; (G.S.); (A.F.)
| | - Antonio Rispo
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine Federico II of Naples, 80131 Naples, Italy; (A.R.); (S.R.)
| | - Simona Ricciolino
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine Federico II of Naples, 80131 Naples, Italy; (A.R.); (S.R.)
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Italian National Council of Research (CNR), 80131 Naples, Italy;
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA; (G.S.); (A.F.)
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Italian National Council of Research (CNR), 80131 Naples, Italy; (F.F.); (L.P.); (M.L.)
- Correspondence:
| |
Collapse
|
5
|
Falcão-Holanda RB, Brunialti MKC, Jasiulionis MG, Salomão R. Epigenetic Regulation in Sepsis, Role in Pathophysiology and Therapeutic Perspective. Front Med (Lausanne) 2021; 8:685333. [PMID: 34322502 PMCID: PMC8312749 DOI: 10.3389/fmed.2021.685333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is characterized by an initial hyperinflammatory response, with intense cell activation and cytokine storm. In parallel, a prolonged compensatory anti-inflammatory response, known as immunological tolerance, can lead to immunosuppression. Clinically, this condition is associated with multiple organ failure, resulting in the patient's death. The mechanisms underlying the pathophysiology of sepsis are not yet fully understood, but evidence is strong showing that epigenetic changes, including DNA methylation and post-translational modifications of histones, modulate the inflammatory response of sepsis. During the onset of infection, host cells undergo epigenetic changes that favor pathogen survival. Besides, epigenetic changes in essential genes also orchestrate the patient's inflammatory response. In this review, we gathered studies on sepsis and epigenetics to show the central role of epigenetic mechanisms in various aspects of the pathogenesis of sepsis and the potential of epigenetic interventions for its treatment.
Collapse
Affiliation(s)
- Renata Brito Falcão-Holanda
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Milena Karina Colo Brunialti
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Reinaldo Salomão
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Postoperative abdominal sepsis induces selective and persistent changes in CTCF binding within the MHC-II region of human monocytes. PLoS One 2021; 16:e0250818. [PMID: 33939725 PMCID: PMC8092803 DOI: 10.1371/journal.pone.0250818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Background Postoperative abdominal infections belong to the most common triggers of sepsis and septic shock in intensive care units worldwide. While monocytes play a central role in mediating the initial host response to infections, sepsis-induced immune dysregulation is characterized by a defective antigen presentation to T-cells via loss of Major Histocompatibility Complex Class II DR (HLA-DR) surface expression. Here, we hypothesized a sepsis-induced differential occupancy of the CCCTC-Binding Factor (CTCF), an architectural protein and superordinate regulator of transcription, inside the Major Histocompatibility Complex Class II (MHC-II) region in patients with postoperative sepsis, contributing to an altered monocytic transcriptional response during critical illness. Results Compared to a matched surgical control cohort, postoperative sepsis was associated with selective and enduring increase in CTCF binding within the MHC-II. In detail, increased CTCF binding was detected at four sites adjacent to classical HLA class II genes coding for proteins expressed on monocyte surface. Gene expression analysis revealed a sepsis-associated decreased transcription of (i) the classical HLA genes HLA-DRA, HLA-DRB1, HLA-DPA1 and HLA-DPB1 and (ii) the gene of the MHC-II master regulator, CIITA (Class II Major Histocompatibility Complex Transactivator). Increased CTCF binding persisted in all sepsis patients, while transcriptional recovery CIITA was exclusively found in long-term survivors. Conclusion Our experiments demonstrate differential and persisting alterations of CTCF occupancy within the MHC-II, accompanied by selective changes in the expression of spatially related HLA class II genes, indicating an important role of CTCF in modulating the transcriptional response of immunocompromised human monocytes during critical illness.
Collapse
|
7
|
Jensen IJ, Jensen SN, Sjaastad FV, Gibson-Corley KN, Dileepan T, Griffith TS, Mangalam AK, Badovinac VP. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. eLife 2020; 9:55800. [PMID: 33191915 PMCID: PMC7721438 DOI: 10.7554/elife.55800] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022] Open
Abstract
Evaluation of sepsis-induced immunoparalysis has highlighted how decreased lymphocyte number/function contribute to worsened infection/cancer. Yet, an interesting contrast exists with autoimmune disease development, wherein diminishing pathogenic effectors may benefit the post-septic host. Within this framework, the impact of cecal ligation and puncture (CLP)-induced sepsis on the development of experimental autoimmune encephalomyelitis (EAE) was explored. Notably, CLP mice have delayed onset and reduced disease severity, relative to sham mice. Reduction in disease severity was associated with reduced number, but not function, of autoantigen (MOG)-specific pathogenic CD4 T cells in the CNS during disease and draining lymph node during priming. Numerical deficits of CD4 T cell effectors are associated with the loss of MOG-specific naive precursors. Critically, transfer of MOG-TCR transgenic (2D2) CD4 T cells after, but not before, CLP led to EAE disease equivalent to sham mice. Thus, broad impairment of antigenic responses, including autoantigens, is a hallmark of sepsis-induced immunoparalysis. Sepsis is a life-threatening condition that can happen when the immune system overreacts to an infection and begins to damage tissues and organs in the body. It causes an extreme immune reaction called a cytokine storm, where the body releases uncontrolled levels of cytokines, proteins that are involved in coordinating the body’s response to infections. This in turn activates more immune cells, resulting in hyperinflammation. People who survive sepsis may have long-lasing impairments in their immune system that may leave them more vulnerable to infections or cancer. But scientists do not know exactly what causes these lasting immune problems or how to treat them. The fact that people are susceptible to cancer and infection after sepsis may offer a clue. It may suggest that the immune system is not able to attack bacteria or cancer cells. One way to explore this clue would be to test the effects of sepsis on autoimmune diseases, which cause the immune system to attack the body’s own cells. For example, in the autoimmune disease multiple sclerosis, the immune system attacks and destroys cells in the nervous system. If autoimmune disease is reduced after sepsis, it would suggest the cell-destroying abilities of the immune system are lessened. Using this approach, Jensen, Jensen et al. show that sepsis reduces the number of certain immune cells, called CD4 T cells, which are are responsible for an autoimmune attack of the central nervous system. In the experiments, mice that survived sepsis were evaluated for their ability to develop a multiple sclerosis-like disease. Mice that survived sepsis developed less severe or no autoimmune disease. After sepsis, these animals also had fewer CD4 T cells. However, when these immune cells were reinstated, the autoimmune disease emerged. The experiments help explain some of the immune system changes that occur after sepsis. Jensen, Jensen et al. suggest that rather than being completely detrimental, these changes may help to block harmful autoimmune responses. The experiments may also hint at new ways to combat autoimmune diseases by trying to replicate some of the immune-suppressing effects of sepsis. Studying the effect of sepsis on other autoimmune diseases in mice might provide more clues.
Collapse
Affiliation(s)
- Isaac J Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, United States
| | - Samantha N Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, United States
| | - Frances V Sjaastad
- Microbiology, Immunology, and Cancer Biology PhD Program, University of Minnesota, Minneapolis, United States
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, United States
| | - Thamothrampillai Dileepan
- Department of Microbiology and Immunology, University of Minnesota, Center for Immunology, Minneapolis, United States
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology PhD Program, Department of Urology, Center for Immunology, Minneapolis VA Health Care System, University of Minnesota, Minneapolis, United States
| | - Ashutosh K Mangalam
- Interdisciplinary Graduate Program in Immunology, Department of Pathology, University of Iowa, Iowa City, United States
| | - Vladimir P Badovinac
- Interdisciplinary Graduate Program in Immunology, Department of Pathology, Department of Microbiology and Immunology, University of Iowa, Iowa City, United States
| |
Collapse
|
8
|
Beltrán-García J, Osca-Verdegal R, Romá-Mateo C, Carbonell N, Ferreres J, Rodríguez M, Mulet S, García-López E, Pallardó FV, García-Giménez JL. Epigenetic biomarkers for human sepsis and septic shock: insights from immunosuppression. Epigenomics 2020; 12:617-646. [PMID: 32396480 DOI: 10.2217/epi-2019-0329] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a life-threatening condition that occurs when the body responds to an infection damaging its own tissues. Sepsis survivors sometimes suffer from immunosuppression increasing the risk of death. To our best knowledge, there is no 'gold standard' for defining immunosuppression except for a composite clinical end point. As the immune system is exposed to epigenetic changes during and after sepsis, research that focuses on identifying new biomarkers to detect septic patients with immunoparalysis could offer new epigenetic-based strategies to predict short- and long-term pathological events related to this life-threatening state. This review describes the most relevant epigenetic mechanisms underlying alterations in the innate and adaptive immune responses described in sepsis and septic shock, and their consequences for immunosuppression states, providing several candidates to become epigenetic biomarkers that could improve sepsis management and help predict immunosuppression in postseptic patients.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - José Ferreres
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - María Rodríguez
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - Sandra Mulet
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - Eva García-López
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| |
Collapse
|