1
|
Mrozek-Czajkowska A, Stręk T. Design Optimization of the Mechanics of a Metamaterial-Based Prosthetic Foot. MATERIALS (BASEL, SWITZERLAND) 2024; 18:96. [PMID: 39795741 PMCID: PMC11721499 DOI: 10.3390/ma18010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
This paper is dedicated to the analysis of a foot prosthesis optimization process, with a particular focus on the application of optimization algorithms and unconventional materials, such as auxetic materials. The study aims to enhance prosthesis performance by minimizing the difference between the ground reaction force generated by the prosthetic foot and that of a natural limb. In the initial part of the study, the basic topics concerning the parameterization of the foot prosthesis geometry and the preparation of a finite element model for human gait are discussed. In the subsequent part of the study, the focus is on the optimization process, in which algorithms were applied to adjust the prosthesis structure to the patient's individual needs. The optimization process utilized a finite element method gait model. After validating the FEM, an algorithm generating the prosthesis geometry based on the given parameters was developed. These parameters were optimized using the VOA, comparing FEM gait model data on vertical ground reaction force with experimental results. The results of the foot prosthesis optimization are presented through a comparison of different structural models. The study also demonstrates the application of auxetic materials, which, due to their unique mechanical properties, can enhance foot prosthesis efficiency. Simulations were performed using multi-material topology optimization. The results obtained for different gait phases were compared.
Collapse
Affiliation(s)
| | - Tomasz Stręk
- Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Street, 61-138 Poznan, Poland;
| |
Collapse
|
2
|
Johansson R, Jensen L, Barnett CT, Rusaw DF. Quantitative methods used to evaluate balance, postural control, and the fear of falling in lower limb prosthesis users: A systematic review. Prosthet Orthot Int 2023; 47:586-598. [PMID: 37318276 DOI: 10.1097/pxr.0000000000000250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/23/2023] [Indexed: 06/16/2023]
Abstract
Problems with balance, postural control, and fear of falling are highly prevalent in lower limb prosthesis users, with much research conducted to understand these issues. The variety of tools used to assess these concepts presents a challenge when interpreting research outcomes. This systematic review aimed to provide a synthesis of quantifiable methods used in the evaluation of balance, postural control, and fear of falling in lower limb prosthesis users with an amputation level at or proximal to the ankle joint. A systematic search was conducted in CINAHL, Medline, AMED, Cochrane, AgeLine, Scopus, Web of Science, Proquest, PsycINFO, PsycArticles, and PubPsych databases followed by additional manual searching via reference lists in the reviewed articles databases. Included articles used quantitative measure of balance or postural control as one of the dependent variables, lower limb prosthesis users as a sample group, and were published in a peer-reviewed journal in English. Relevant assessment questions were created by the investigators to rate the assessment methods used in the individual studies. Descriptive and summary statistics are used to synthesize the results. The search yielded (n = 187) articles assessing balance or postural control (n = 5487 persons in total) and (n = 66) articles assessing fear of falling or balance confidence (n = 7325 persons in total). The most used test to measure balance was the Berg Balance Scale and the most used test to measure fear of falling was the Activities-specific Balance Confidence scale. A large number of studies did not present if the chosen methods were valid and reliable for the lower limb prosthesis users. Among study limitations, small sample size was common.
Collapse
Affiliation(s)
- Robin Johansson
- School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Louise Jensen
- School of Health and Welfare, Jönköping University, Jönköping, Sweden
- Southern Älvsborg Hospital, Borås, Sweden
| | - Cleveland T Barnett
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - David F Rusaw
- School of Health and Welfare, Jönköping University, Jönköping, Sweden
| |
Collapse
|
3
|
O'Neill CT, Young HT, Hohimer CJ, Proietti T, Rastgaar M, Artemiadis P, Walsh CJ. Tunable, Textile-Based Joint Impedance Module for Soft Robotic Applications. Soft Robot 2023; 10:937-947. [PMID: 37042697 DOI: 10.1089/soro.2021.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
The design of soft actuators is often focused on achieving target trajectories or delivering specific forces and torques, rather than controlling the impedance of the actuator. This article outlines a new soft, tunable pneumatic impedance module based on an antagonistic actuator setup of textile-based pneumatic actuators intended to deliver bidirectional torques about a joint. Through mechanical programming of the actuators (select tuning of geometric parameters), the baseline torque to angle relationship of the module can be tuned. A high bandwidth fluidic controller that can rapidly modulate the pressure at up to 8 Hz in each antagonistic actuator was also developed to enable tunable impedance modulation. This high bandwidth was achieved through the characterization and modeling of the proportional valves used, derivation of a fluidic model, and derivation of control equations. The resulting impedance module was capable of modulating its stiffness from 0 to 100 Nm/rad, at velocities up to 120°/s and emulating asymmetric and nonlinear stiffness profiles, typical in wearable robotic applications.
Collapse
Affiliation(s)
- Ciarán T O'Neill
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Harrison T Young
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Cameron J Hohimer
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Tommaso Proietti
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Mo Rastgaar
- Polytechnic Institute, Purdue University, West Lafayette, Indiana, USA
| | - Panagiotis Artemiadis
- Department of Mechanical Engineering, College of Engineering, University of Delaware, Newark, Delaware, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Shi QQ, Yick KL, Wu J, Huang X, Tse CY, Chan MK. A Scientometric Analysis and Visualization of Prosthetic Foot Research Work: 2000 to 2022. Bioengineering (Basel) 2023; 10:1138. [PMID: 37892868 PMCID: PMC10604169 DOI: 10.3390/bioengineering10101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to highlight recent research work on topics around prosthetic feet through a scientometric analysis and historical review. The most cited publications from the Clarivate Analytics Web of Science Core Collection database were identified and analyzed from 1 January 2000 to 31 October 2022. Original articles, reviews with full manuscripts, conference proceedings, early access documents, and meeting abstracts were included. A scientometric visualization analysis of the bibliometric information related to the publications, including the countries, institutions, journals, references, and keywords, was conducted. A total of 1827 publications met the search criteria in this study. The related publications grouped by year show an overall trend of increase during the two decades from 2000 to 2022. The United States is ranked first in terms of overall influence in this field (n = 774). The Northwestern University has published the most papers on prosthetic feet (n = 84). Prosthetics and Orthotics International has published the largest number of studies on prosthetic feet (n = 151). During recent years, a number of studies with citation bursts and burst keywords (e.g., diabetes, gait, pain, and sensor) have provided clues on the hotspots of prosthetic feet and prosthetic foot trends. The findings of this study are based on a comprehensive analysis of the literature and highlight the research topics on prosthetic feet that have been primarily explored. The data provide guidance to clinicians and researchers to further studies in this field.
Collapse
Affiliation(s)
- Qiu-Qiong Shi
- Laboratory for Artificial Intelligence in Design, Hong Kong, China;
| | - Kit-Lun Yick
- Laboratory for Artificial Intelligence in Design, Hong Kong, China;
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Jinlong Wu
- College of Physical Education, Southwest University, Chongqing 400715, China;
| | - Xujia Huang
- School of Recreational Sports and Tourism, Beijing Sport University, Beijing 100084, China;
| | - Chi-Yung Tse
- Centre for Orthopaedic Surgery, Hong Kong, China;
| | - Mei-Ki Chan
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China;
| |
Collapse
|
5
|
Influence of insole material density in the stability of patients with prosthetic unilateral transtibial amputation. Sci Rep 2022; 12:7854. [PMID: 35552421 PMCID: PMC9098549 DOI: 10.1038/s41598-022-11564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
People with lower limb amputation present greater displacements of their centre of gravity in a static situation than able-bodied individuals, as they depend on visual information to a greater extent, which implies an altered stability pattern. The efficacy of different hardness of plantar support to help maintain stability has not yet been determined. The aim of the present study is to assess stability in people with unilateral transtibial amputation with prosthesis in a static situation with insoles of different degrees of hardness and visual conditions with respect to the able-bodied population. For this purpose, 25 patients with amputation and 25 able-bodied individuals were included in both groups, postural stability was assessed by stabilometry. This assessment was carried out under normal conditions (on the floor of the dynamometric platform with eyes open), and under altered conditions (with the interposition of different materials such as plantar support: rigid and soft insoles and, eyes shut). Three variables were considered to assess stability: length of movement of the barycenter (mm), lateral velocity (mm/sg) and anterior velocity (mm/sg). All of them were analysed with the patient in static on the dynamometric platform. The results showed statistically significant differences between the two groups, (amputees and controls) with less stability in the amputee group (p < 0.05) when analysing the variables of length of movement of the barycenter, lateral velocity and anterior velocity. Amputee patients with open eyes exhibited greater stability than those with closed eyes. The hard insoles improved the stability data in amputees (length of movement of the barycenter and anterior velocity) with respect to the barefoot condition, and the soft insoles showed less stability than the patients with hard insoles, or than the barefoot patients. From the results obtained in this study, we can conclude that the PP-DWST 4 mm rigid insoles improve static stability in people with amputation. However, soft insoles impair stability and are therefore discouraged.
Collapse
|
6
|
Rusaw DF, Alinder R, Edholm S, Hallstedt KLL, Runesson J, Barnett CT. Development of a theoretical model for upright postural control in lower limb prosthesis users. Sci Rep 2021; 11:8263. [PMID: 33859266 PMCID: PMC8050312 DOI: 10.1038/s41598-021-87657-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
Methods used to assess quiet standing in unilateral prosthesis users often assume validity of an inverted pendulum model despite this being shown as invalid in some instances. The aim of the current study was to evaluate the validity of a proposed unilaterally-constrained pin-controller model in explaining postural control in unilateral prosthesis users. Prosthesis users were contrasted against the theoretical model as were able-bodied controls that stood on a platform which unilaterally constrained movement of the CoP. All participants completed bouts of quiet standing with eyes open, eyes closed and with feedback on inter-limb weight bearing asymmetry. Correlation coefficients were used to infer inverted pendulum behavior in both the anteroposterior and mediolateral directions and were derived from both kinematic (body attached markers) and kinetic (centre of pressure) experimental data. Larger, negative correlation coefficients reflected better model adherence, whilst low or no correlation reflected poorer model adherence. Inverted pendulum behavior derived from kinematic data, indicated coefficients of high magnitude in both mediolateral (all cases range 0.71–0.78) and anteroposterior (0.88–0.91) directions, irrespective of groups. Inverted pendulum behavior derived from kinetic data in the anteroposterior direction indicated validity of the model with large negative coefficients associated with the unconstrained/intact limbs (prosthesis users: − 0.45 to − 0.65, control group: − 0.43 to − 0.72), small coefficients in constrained/prosthetic limbs (prosthesis users: − 0.02 to 0.07, control group: 0.13–0.26) and large negative coefficients in combined conditions (prosthesis users: − 0.36 to − 0.56, control group: − 0.71 to − 0.82). For the mediolateral direction, coefficients were negligible for individual limbs (0.03–0.17) and moderate to large negative correlations, irrespective of group (− 0.31 to − 0.73). Data suggested both prosthesis users’ and able-bodied individuals’ postural control conforms well to that predicted by a unilaterally-constrained pin-controller model, which has implications for the fundamental control of posture in transtibial prosthesis users.
Collapse
Affiliation(s)
- David F Rusaw
- School of Health and Welfare, Jönköping University, Box 1026, 55111, Jönköping, Sweden.
| | - Rasmus Alinder
- School of Health and Welfare, Jönköping University, Box 1026, 55111, Jönköping, Sweden
| | - Sigurd Edholm
- School of Health and Welfare, Jönköping University, Box 1026, 55111, Jönköping, Sweden
| | - Karin L L Hallstedt
- School of Health and Welfare, Jönköping University, Box 1026, 55111, Jönköping, Sweden
| | - Jessika Runesson
- School of Health and Welfare, Jönköping University, Box 1026, 55111, Jönköping, Sweden
| | - Cleveland T Barnett
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|