1
|
Li X, Dai S, Sun S, Zhao D, Li H, Zhang J, Ma J, Du B, Ding Y. Global Insights into the Lysine Acetylome Reveal the Role of Lysine Acetylation in the Adaptation of Bacillus altitudinis to Salt Stress. J Proteome Res 2025; 24:210-223. [PMID: 39625841 DOI: 10.1021/acs.jproteome.4c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Bacillus altitudinis is a well-known beneficial microorganism in plant rhizosphere, capable of enhancing plant growth and salt tolerance in saline soils. However, the mechanistic changes underlying salt tolerance in B. altitudinis at the level of post-translational modifications remain unclear. Here, diverse lysine modifications including acetylation, succinylation, crotonylation, and malonylation were determined in the B. altitudinis response to salt stress by immunodetection, and the acetylation level greatly increased under salt stress. The in-depth acetylome landscape showed that 1032 proteins in B. altitudinis were differentially acetylated under salt stress. These proteins were involved in many physiological aspects closely related to salt tolerance like energy generation and conversion, amino acid synthesis and transport, cell motility, signal transduction, secretion system, and repair system. Moreover, we also identified the differential acetylation of key enzymes involved in the major osmolyte biosynthesis and conversion and antioxidant defenses. Thiol peroxidase (TPX), a key protective antioxidant enzyme, had 3 upregulated acetylation sites (K7/139/157) under salt stress. Site-specific mutations demonstrated that K7/139/157 acetylation strongly regulated TPX function in scavenging intracellular ROS, thereby impacting bacterial growth under salt stress. To our knowledge, this is the first study showing that bacteria adaptation to salt stress occurs at the level of PTMs.
Collapse
Affiliation(s)
- Xujian Li
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Shanshan Dai
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Shanshan Sun
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Dongying Zhao
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Li
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Junyi Zhang
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Jie Ma
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Binghai Du
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yanqin Ding
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
2
|
Broeckaert N, Longin H, Hendrix H, De Smet J, Franz-Wachtel M, Maček B, van Noort V, Lavigne R. Acetylomics reveals an extensive acetylation diversity within Pseudomonas aeruginosa. MICROLIFE 2024; 5:uqae018. [PMID: 39464744 PMCID: PMC11512479 DOI: 10.1093/femsml/uqae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/25/2024] [Indexed: 10/29/2024]
Abstract
Bacteria employ a myriad of regulatory mechanisms to adapt to the continuously changing environments that they face. They can, for example, use post-translational modifications, such as Nε-lysine acetylation, to alter enzyme activity. Although a lot of progress has been made, the extent and role of lysine acetylation in many bacterial strains remains uncharted. Here, we applied stable isotope labeling by amino acids in cell culture (SILAC) in combination with the immunoprecipitation of acetylated peptides and LC-MS/MS to measure the first Pseudomonas aeruginosa PAO1 acetylome, revealing 1076 unique acetylation sites in 508 proteins. Next, we assessed interstrain acetylome differences within P. aeruginosa by comparing our PAO1 acetylome with two publicly available PA14 acetylomes, and postulate that the overall acetylation patterns are not driven by strain-specific factors. In addition, the comparison of the P. aeruginosa acetylome to 30 other bacterial acetylomes revealed that a high percentage of transcription related proteins are acetylated in the majority of bacterial species. This conservation could help prioritize the characterization of functional consequences of individual acetylation sites.
Collapse
Affiliation(s)
- Nand Broeckaert
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Hannelore Longin
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, Institute of Cell Biology, University of Tübingen, Auf d. Morgenstelle 15, D-72076 Tübingen, Germany
| | - Boris Maček
- Proteome Center Tuebingen, Institute of Cell Biology, University of Tübingen, Auf d. Morgenstelle 15, D-72076 Tübingen, Germany
| | - Vera van Noort
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, the Netherlands
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| |
Collapse
|
3
|
Wang S, Jiang Y, Zhang W, Wei Y, Xiao X, Wei Z, Wen X, Dong Y, Jian J, Wang N, Pang H. The Effect of the Lysine Acetylation Modification of ClpP on the Virulence of Vibrio alginolyticus. Molecules 2024; 29:4278. [PMID: 39275125 PMCID: PMC11396845 DOI: 10.3390/molecules29174278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/16/2024] Open
Abstract
Acetylation modification has become one of the most popular topics in protein post-translational modification (PTM) research and plays an important role in bacterial virulence. A previous study indicated that the virulence-associated caseinolytic protease proteolytic subunit (ClpP) is acetylated at the K165 site in Vibrio alginolyticus strain HY9901, but its regulation regarding the virulence of V. alginolyticus is still unknown. We further confirmed that ClpP undergoes lysine acetylation (Kace) modification by immunoprecipitation and Western blot analysis and constructed the complementation strain (C-clpP) and site-directed mutagenesis strains including K165Q and K165R. The K165R strain significantly increased biofilm formation at 36 h of incubation, and K165Q significantly decreased biofilm formation at 24 h of incubation. However, the acetylation modification of ClpP did not affect the extracellular protease (ECPase) activity. In addition, we found that the virulence of K165Q was significantly reduced in zebrafish by in vivo injection. To further study the effect of lysine acetylation on the pathogenicity of V. alginolyticus, GS cells were infected with four strains, namely HY9901, C-clpP, K165Q and K165R. This indicated that the effect of the K165Q strain on cytotoxicity was significantly reduced compared with the wild-type strain, while K165R showed similar levels to the wild-type strain. In summary, the results of this study indicate that the Kace of ClpP is involved in the regulation of the virulence of V. alginolyticus.
Collapse
Affiliation(s)
- Shi Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Yingying Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Yingzhu Wei
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Xing Xiao
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Zhiqing Wei
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Xiaoxin Wen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Yuhang Dong
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China;
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| |
Collapse
|
4
|
Liu T, Zhang M, Fan Y, Zhao L, Huang D, Zhao L, Tan M, Ye BC, Xu JY. Characterization of diverse lysine acylations in Bacillus thuringiensis: Substrate profiling and functional exploration. Proteomics 2024; 24:e2300350. [PMID: 38491406 DOI: 10.1002/pmic.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Lysine acylation has been extensively investigated due to its regulatory role in a diverse range of biological functions across prokaryotic and eukaryotic species. In-depth acylomic profiles have the potential to enhance comprehension of the biological implications of organisms. However, the extent of research on global acylation profiles in microorganisms is limited. Here, four lysine acylomes were conducted in Bacillus thuringiensis by using the LC-MS/MS based proteomics combined with antibody-enrichment strategies, and a total of 3438 acetylated sites, 5797 propionylated sites, 1705 succinylated sites, and 925 malonylated sites were identified. The motif analysis of these modified proteins revealed a high conservation of glutamate in acetylation and propionylation, whereas such conservation was not observed in succinylation and malonylation modifications. Besides, conservation analysis showed that homologous acylated proteins in Bacillus subtilis and Escherichia coli were connected with ribosome and aminoacyl-tRNA biosynthesis. Further biological experiments showed that lysine acylation lowered the RNA binding ability of CodY and impaired the in vivo protein activity of MetK. In conclusion, our study expanded the current understanding of the global acylation in Bacillus, and the comparative analysis demonstrated that shared acylation proteins could play important roles in regulating both metabolism and RNA transcription progression.
Collapse
Affiliation(s)
- Tianxian Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingya Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yameng Fan
- School of Pharmacy, Henan University, Kaifeng, China
| | - Lei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Dan Huang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liuchang Zhao
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
5
|
Popova L, Carr RA, Carabetta VJ. Recent Contributions of Proteomics to Our Understanding of Reversible N ε-Lysine Acylation in Bacteria. J Proteome Res 2024; 23:2733-2749. [PMID: 38442041 PMCID: PMC11296938 DOI: 10.1021/acs.jproteome.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Post-translational modifications (PTMs) have been extensively studied in both eukaryotes and prokaryotes. Lysine acetylation, originally thought to be a rare occurrence in bacteria, is now recognized as a prevalent and important PTM in more than 50 species. This expansion in interest in bacterial PTMs became possible with the advancement of mass spectrometry technology and improved reagents such as acyl-modification specific antibodies. In this Review, we discuss how mass spectrometry-based proteomic studies of lysine acetylation and other acyl modifications have contributed to our understanding of bacterial physiology, focusing on recently published studies from 2018 to 2023. We begin with a discussion of approaches used to study bacterial PTMs. Next, we discuss newly characterized acylomes, including acetylomes, succinylomes, and malonylomes, in different bacterial species. In addition, we examine proteomic contributions to our understanding of bacterial virulence and biofilm formation. Finally, we discuss the contributions of mass spectrometry to our understanding of the mechanisms of acetylation, both enzymatic and nonenzymatic. We end with a discussion of the current state of the field and possible future research avenues to explore.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Rachel A Carr
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
6
|
Duława-Kobeluszczyk J, Strzałka A, Tracz M, Bartyńska M, Pawlikiewicz K, Łebkowski T, Wróbel S, Szymczak J, Zarek A, Małecki T, Jakimowicz D, Szafran M. The activity of CobB1 protein deacetylase contributes to nucleoid compaction in Streptomyces venezuelae spores by increasing HupS affinity for DNA. Nucleic Acids Res 2024; 52:7112-7128. [PMID: 38783097 PMCID: PMC11229371 DOI: 10.1093/nar/gkae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Streptomyces are soil bacteria with complex life cycle. During sporulation Streptomyces linear chromosomes become highly compacted so that the genetic material fits within limited spore volume. The key players in this process are nucleoid-associated proteins (NAPs). Among them, HU (heat unstable) proteins are the most abundant NAPs in the cell and the most conserved in bacteria. HupS, one of the two HU homologues encoded by the Streptomyces genome, is the best-studied spore-associated NAP. In contrast to other HU homologues, HupS contains a long, C-terminal domain that is extremely rich in lysine repeats (LR domain) similar to eukaryotic histone H2B and mycobacterial HupB protein. Here, we have investigated, whether lysine residues in HupS are posttranslationally modified by reversible lysine acetylation. We have confirmed that Streptomyces venezuelae HupS is acetylated in vivo. We showed that HupS binding to DNA in vitro is controlled by the acetylation. Moreover, we identified that CobB1, one of two Sir2 homologues in Streptomyces, controls HupS acetylation levels in vivo. We demonstrate that the elimination of CobB1 increases HupS mobility, reduces chromosome compaction in spores, and affects spores maturation. Thus, our studies indicate that HupS acetylation affects its function by diminishing DNA binding and disturbing chromosome organization.
Collapse
Affiliation(s)
| | | | - Michał Tracz
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | | | - Tomasz Łebkowski
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Sara Wróbel
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Justyna Szymczak
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Anna Zarek
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Tomasz Małecki
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | - Marcin J Szafran
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| |
Collapse
|
7
|
Alghamdi AK, Parween S, Hirt H, Saad MM. Unraveling the genomic secrets of Tritonibacter mobilis AK171: a plant growth-promoting bacterium isolated from Avicennia marina. BMC Genomics 2024; 25:672. [PMID: 38969999 PMCID: PMC11225332 DOI: 10.1186/s12864-024-10555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
The scarcity of freshwater resources resulting in a significant yield loss presents a pressing challenge in agriculture. To address this issue, utilizing abundantly available saline water could offer a smart solution. In this study, we demonstrate that the genome sequence rhizosphere bacterium Tritonibacter mobilis AK171, a halophilic marine bacterium recognized for its ability to thrive in saline and waterlogged environments, isolated from mangroves, has the remarkable ability to enable plant growth using saline irrigation. AK171 is characterized as rod-shaped cells, displays agile movement in free-living conditions, and adopts a rosette arrangement in static media. Moreover, The qualitative evaluation of PGP traits showed that AK171 could produce siderophores and IAA but could not solubilize phosphate nor produce hydrolytic enzymes it exhibits a remarkable tolerance to high temperatures and salinity. In this study, we conducted a comprehensive genome sequence analysis of T. mobilis AK171 to unravel the genetic mechanisms underlying its plant growth-promoting abilities in such challenging conditions. Our analysis revealed diverse genes and pathways involved in the bacterium's adaptation to salinity and waterlogging stress. Notably, T. mobilis AK171 exhibited a high level of tolerance to salinity and waterlogging through the activation of stress-responsive genes and the production of specific enzymes and metabolites. Additionally, we identified genes associated with biofilm formation, indicating its potential role in establishing symbiotic relationships with host plants. Furthermore, our analysis unveiled the presence of genes responsible for synthesizing antimicrobial compounds, including tropodithietic acid (TDA), which can effectively control phytopathogens. This genomic insight into T. mobilis AK171 provides valuable information for understanding the molecular basis of plant-microbial interactions in saline and waterlogged environments. It offers potential applications for sustainable agriculture in challenging conditions.
Collapse
Affiliation(s)
- Amal Khalaf Alghamdi
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha Parween
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Max Perutz Laboratories, University of Vienna, Vienna, Austria.
| | - Maged M Saad
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
8
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
9
|
Erkelens AM, van Erp B, Meijer WJJ, Dame RT. Rok from B. subtilis: Bridging genome structure and transcription regulation. Mol Microbiol 2024. [PMID: 38511404 DOI: 10.1111/mmi.15250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Bacterial genomes are folded and organized into compact yet dynamic structures, called nucleoids. Nucleoid orchestration involves many factors at multiple length scales, such as nucleoid-associated proteins and liquid-liquid phase separation, and has to be compatible with replication and transcription. Possibly, genome organization plays an intrinsic role in transcription regulation, in addition to classical transcription factors. In this review, we provide arguments supporting this view using the Gram-positive bacterium Bacillus subtilis as a model. Proteins BsSMC, HBsu and Rok all impact the structure of the B. subtilis chromosome. Particularly for Rok, there is compelling evidence that it combines its structural function with a role as global gene regulator. Many studies describe either function of Rok, but rarely both are addressed at the same time. Here, we review both sides of the coin and integrate them into one model. Rok forms unusually stable DNA-DNA bridges and this ability likely underlies its repressive effect on transcription by either preventing RNA polymerase from binding to DNA or trapping it inside DNA loops. Partner proteins are needed to change or relieve Rok-mediated gene repression. Lastly, we investigate which features characterize H-NS-like proteins, a family that, at present, lacks a clear definition.
Collapse
Affiliation(s)
- Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, the Netherlands
| | - Bert van Erp
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, the Netherlands
| | - Wilfried J J Meijer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Madrid, Spain
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
10
|
Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. Influence of N ε-Lysine Acetylation on the Formation of Protein Aggregates and Antibiotic Persistence in E. coli. Molecules 2024; 29:383. [PMID: 38257296 PMCID: PMC10819833 DOI: 10.3390/molecules29020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Numerous studies indicate that reversible Nε-lysine acetylation in bacteria may play a key role in the regulation of metabolic processes, transcription and translation, biofilm formation, virulence, and drug resistance. Using appropriate mutant strains deficient in non-enzymatic acetylation and enzymatic acetylation or deacetylation pathways, we investigated the influence of protein acetylation on cell viability, protein aggregation, and persister formation in Escherichia coli. Lysine acetylation was found to increase protein aggregation and cell viability under the late stationary phase. Moreover, increased lysine acetylation stimulated the formation of persisters. These results suggest that acetylation-dependent aggregation may improve the survival of bacteria under adverse conditions (such as the late stationary phase) and during antibiotic treatment. Further experiments revealed that acetylation-favorable conditions may increase persister formation in Klebsiella pneumoniae clinical isolate. However, the exact mechanisms underlying the relationship between acetylation and persistence in this pathogen remain to be elucidated.
Collapse
Affiliation(s)
| | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.S.-S.); (D.K.-W.)
| |
Collapse
|
11
|
Pool-Yam L, Ramón-Sierra J, Oliva AI, Zamora-Bustillos R, Ortiz-Vázquez E. Effect of conA-unbound proteins from Melipona beecheii honey on the formation of Pseudomonas aeruginosa ATCC 27853 biofilm. Arch Microbiol 2024; 206:54. [PMID: 38180520 DOI: 10.1007/s00203-023-03783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium that can form a biofilm with the ability to colonize different surfaces and for increasing resistance to antibiotics. An alternative to solve this problem may be the use of non-glucose/mannose glycosylated proteins from Melipona beecheii honey, which are capable of inhibiting the growth of this pathogen. In this work, the antibiofilm activity of the conA-unbound protein fraction (F1) from M. beecheii was evaluated. The crude protein extract (CPE) and the F1 fraction inhibited the P. aeruginosa biofilm growth above 80% at 4 and 1.3 µg/mL, respectively. These proteins affected the structure of the biofilm, as well as fleQ and fleR gene expressions involved in the formation and regulation of the P. aeruginosa biofilm. The results demonstrated that the F1 fraction proteins of M. beecheii honey inhibit and affect the formation of the P. aeruginosa biofilm.
Collapse
Affiliation(s)
- Luis Pool-Yam
- División de Estudios de Posgrado E Investigación, Instituto Tecnológico de Conkal, Avenida Tecnológico S/N Conkal, C.P. 97345, Conkal, Yucatán, México
| | - Jesús Ramón-Sierra
- División de Estudios de Posgrado E Investigación, Instituto Tecnológico de Mérida, Av. Tecnológico Km. 4.5 S/N, C.P. 97118, Mérida, Yucatán, México
| | - A I Oliva
- Departamento de Física Aplicada, CINVESTAV-IPN, Unidad Mérida, Carretera Antigua a Progreso Km. 6, Cordemex, C.P. 97310, Mérida, Yucatán, México
| | - Roberto Zamora-Bustillos
- División de Estudios de Posgrado E Investigación, Instituto Tecnológico de Conkal, Avenida Tecnológico S/N Conkal, C.P. 97345, Conkal, Yucatán, México.
| | - Elizabeth Ortiz-Vázquez
- División de Estudios de Posgrado E Investigación, Instituto Tecnológico de Mérida, Av. Tecnológico Km. 4.5 S/N, C.P. 97118, Mérida, Yucatán, México.
| |
Collapse
|
12
|
Zhang M, Liu T, Wang L, Huang Y, Fan R, Ma K, Kan Y, Tan M, Xu JY. Global landscape of lysine acylomes in Bacillus subtilis. J Proteomics 2023; 271:104767. [PMID: 36336260 DOI: 10.1016/j.jprot.2022.104767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Lysine acetylation is a common posttranslational modification that regulates numerous biochemical functions in both eukaryotic and prokaryotic species. In addition, several new non-acetyl acylations are structurally different from lysine acetylation and participate in diverse physiological functions. Here, a comprehensive analysis of several lysine acylomes was performed by combining the high-affinity antibody enrichment with high-resolution LC-MS/MS. In total, we identified 2536 lysine acetylated sites, 4723 propionylated sites, 2150 succinylated sites and 3001 malonylated sites in Bacillus subtilis, respectively. These acylated proteins account for 35.8% of total protein in this bacterium. The four lysine acylomes showed a motif preference for glutamate surrounding the modified lysine residues, and a functional preference for several metabolic pathways, such as carbon metabolism, fatty acid metabolism, and ribosome. In addition, more protein-protein interaction clusters were identified in the propionylated substrates than other three lysine acylomes. In summary, our study presents a global landscape of acylation in the Gram-positive model organism Bacillus and their potential functions in metabolism and physiology.
Collapse
Affiliation(s)
- Mingya Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - TianXian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Le Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rufeng Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ke Ma
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunbo Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Minjia Tan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China.
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
13
|
Fu Y, Zhang L, Song H, Liao J, Lin L, Jiang W, Wu X, Wang G. Acetylome and Succinylome Profiling of Edwardsiella tarda Reveals Key Roles of Both Lysine Acylations in Bacterial Antibiotic Resistance. Antibiotics (Basel) 2022; 11:841. [PMID: 35884095 PMCID: PMC9312108 DOI: 10.3390/antibiotics11070841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
The antibiotic resistance of Edwardsiella tarda is becoming increasingly prevalent, and thus novel antimicrobial strategies are being sought. Lysine acylation has been demonstrated to play an important role in bacterial physiological functions, while its role in bacterial antibiotic resistance remains largely unclear. In this study, we investigated the lysine acetylation and succinylation profiles of E. tarda strain EIB202 using affinity antibody purification combined with LC-MS/MS. A total of 1511 lysine-acetylation sites were identified on 589 proteins, and 2346 lysine-succinylation sites were further identified on 692 proteins of this pathogen. Further bioinformatic analysis showed that both post-translational modifications (PTMs) were enriched in the tricarboxylic acid (TCA) cycle, pyruvate metabolism, biosynthesis, and carbon metabolism. In addition, 948 peptides of 437 proteins had overlapping associations with multiple metabolic pathways. Moreover, both acetylation and succinylation were found in many antimicrobial resistance (AMR) proteins, suggesting their potentially vital roles in antibiotic resistance. In general, our work provides insights into the acetylome and succinylome features responsible for the antibiotic resistance mechanism of E. tarda, and the results may facilitate future investigations into the pathogenesis of this bacterium.
Collapse
Affiliation(s)
- Yuying Fu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China; (Y.F.); (J.L.); (L.L.); (W.J.); (X.W.)
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (H.S.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanhuan Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (H.S.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junyan Liao
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China; (Y.F.); (J.L.); (L.L.); (W.J.); (X.W.)
| | - Li Lin
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China; (Y.F.); (J.L.); (L.L.); (W.J.); (X.W.)
| | - Wenjia Jiang
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China; (Y.F.); (J.L.); (L.L.); (W.J.); (X.W.)
| | - Xiaoyun Wu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China; (Y.F.); (J.L.); (L.L.); (W.J.); (X.W.)
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (H.S.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing 102206, China
| |
Collapse
|
14
|
Nordgaard M, Blake C, Maróti G, Hu G, Wang Y, Strube ML, Kovács ÁT. Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. iScience 2022; 25:104406. [PMID: 35663012 PMCID: PMC9157203 DOI: 10.1016/j.isci.2022.104406] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/22/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Bacillus subtilis is known to promote plant growth and protect plants against disease. B. subtilis rapidly adapts to Arabidopsis thaliana root colonization, as evidenced by improved root colonizers already after 12 consecutive transfers between seedlings in a hydroponic setup. Re-sequencing of single evolved isolates and endpoint populations revealed mutations in genes related to different bacterial traits, in accordance with evolved isolates displaying increased root colonization associated with robust biofilm formation in response to the plant polysaccharide xylan and impaired motility. Interestingly, evolved isolates suffered a fitness disadvantage in a non-selective environment, demonstrating an evolutionary cost of adaptation to the plant root. Finally, increased root colonization by an evolved isolate was also demonstrated in the presence of resident soil microbes. Our findings highlight how a plant growth-promoting rhizobacterium rapidly adapts to an ecologically relevant environment and reveal evolutionary consequences that are fundamental to consider when evolving strains for biocontrol purposes. Bacillus subtilis shows fast adaptation to Arabidopsis thaliana roots in a hydroponic setup Evolved isolates exhibit robust biofilms in response to xylan and impaired motility Adaptation to A. thaliana roots is accompanied by an evolutionary cost An evolved isolate shows higher root colonization in the presence of soil bacteria
Collapse
Affiliation(s)
- Mathilde Nordgaard
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6726 Szeged, Hungary
| | - Guohai Hu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Yue Wang
- China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China.,BGI-Beijing, BGI-Shenzhen, 100101 Beijing, China
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Proteomic Comparison of Ivermectin Sensitive and Resistant Staphylococcus aureus Clinical Isolates Reveals Key Efflux Pumps as Possible Resistance Determinants. Antibiotics (Basel) 2022; 11:antibiotics11060759. [PMID: 35740165 PMCID: PMC9219645 DOI: 10.3390/antibiotics11060759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
Ivermectin (IVM) is a versatile drug used against many microorganisms. Staphylococcus aureus is one of the most devastating microorganisms. IVM sensitive and resistant S. aureus strains were recently reported. However, the underlying molecular mechanisms of resistance are unknown. Clinical isolates of S. aureus were used for determination of the sensitivities against IVM by growth curve analysis and time-kill kinetics. Then, proteomic, and biochemical approaches were applied to investigate the possible mechanisms of resistance. Proteomic results showed a total of 1849 proteins in the dataset for both strains, 425 unique proteins in strain O9 (IVM sensitive), and 354 unique proteins in strain O20 (IVM resistant). Eight proteins with transport functions were differentially expressed in the IVM resistant strain. Among them, three efflux pumps (mepA, emrB, and swrC) were confirmed by qPCR. The IVM resistant S. aureus may overexpress these proteins as a key resistance determinant. Further experiments are required to confirm the exact mechanistic relationship. Nevertheless, the possibility of blocking these transporters to reverse or delay the onset of resistance and reduce selection pressure is potentially appealing.
Collapse
|
16
|
TMT proteomic analysis for molecular mechanism of Staphylococcus aureus in response to freezing stress. Appl Microbiol Biotechnol 2022; 106:3139-3152. [PMID: 35460349 DOI: 10.1007/s00253-022-11927-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/02/2022]
Abstract
The foodborne pathogen Staphylococcus aureus continues to challenge the food industry due to the pathogenicity and tolerance of the bacterium. As a common storage condition for frozen food during transportation, distribution, and storage, freezing does not seem to be entirely safe due to the cold tolerance of S. aureus. In addition, our study indicated that the biofilm formation ability of S. aureus was significantly increased in response to freezing stress. To explore the molecular mechanism regulating the response to freezing stress, the proteomics signature of S. aureus after freezing stress based on tandem mass tag (TMT) labeling and liquid chromatography tandem mass spectrometry (LC-MS/MS) was analyzed. Gene Ontology and pathway analysis revealed that ribosome function, metabolism, RNA repair, and stress response proteins were differentially regulated (P < 0.05). Furthermore, transpeptidase sortase A, biofilm operon icaADBC HTH-type negative transcriptional regulator IcaR, and HTH-type transcriptional regulator MgrA were involved in the modulation of increased biofilm formation in response to freezing stress (P < 0.05). Moreover, significant lysine acetylation and malonylation signals in the S. aureus response to freezing stress were observed. Collectively, the current work provides additional insight for comprehending the molecular mechanism of S. aureus in response to freezing stress and presents potential targets for developing strategies to control S. aureus. KEY POINTS: • TMT proteomic analysis was first used on S. aureus in response to freezing stress. • Ribosome-, metabolism-, and biofilm-related proteins change after freezing stress. • Increased biofilm formation in S. aureus responded to freezing stress.
Collapse
|
17
|
OUIDIR T, GABRIEL B, CHABANE YNAIT. Overview of multi-species biofilms in different ecosystems: wastewater treatment, soil and oral cavity. J Biotechnol 2022; 350:67-74. [DOI: 10.1016/j.jbiotec.2022.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023]
|
18
|
Nisar A, Gongye X, Huang Y, Khan S, Chen M, Wu B, He M. Genome-Wide Analyses of Proteome and Acetylome in Zymomonas mobilis Under N 2-Fixing Condition. Front Microbiol 2021; 12:740555. [PMID: 34803957 PMCID: PMC8600466 DOI: 10.3389/fmicb.2021.740555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Zymomonas mobilis, a promising candidate for industrial biofuel production, is capable of nitrogen fixation naturally without hindering ethanol production. However, little is known about the regulation of nitrogen fixation in Z. mobilis. We herein conducted a high throughput analysis of proteome and protein acetylation in Z. mobilis under N2-fixing conditions and established its first acetylome. The upregulated proteins mainly belong to processes of nitrogen fixation, motility, chemotaxis, flagellar assembly, energy production, transportation, and oxidation–reduction. Whereas, downregulated proteins are mainly related to energy-consuming and biosynthetic processes. Our acetylome analyses revealed 197 uniquely acetylated proteins, belonging to major pathways such as nitrogen fixation, central carbon metabolism, ammonia assimilation pathway, protein biosynthesis, and amino acid metabolism. Further, we observed acetylation in glycolytic enzymes of central carbon metabolism, the nitrogenase complex, the master regulator NifA, and the enzyme in GS/GOGAT cycle. These findings suggest that protein acetylation may play an important role in regulating various aspects of N2-metabolism in Z. mobilis. This study provides new knowledge of specific proteins and their associated cellular processes and pathways that may be regulated by protein acetylation in Z. mobilis.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Xiangxu Gongye
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yuhuan Huang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Sawar Khan
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Mao Chen
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
19
|
Integrated mass spectrometry-based multi-omics for elucidating mechanisms of bacterial virulence. Biochem Soc Trans 2021; 49:1905-1926. [PMID: 34374408 DOI: 10.1042/bst20191088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.
Collapse
|
20
|
Blake C, Nordgaard M, Maróti G, Kovács ÁT. Diversification of Bacillus subtilis during experimental evolution on Arabidopsis thaliana and the complementarity in root colonization of evolved subpopulations. Environ Microbiol 2021; 23:6122-6136. [PMID: 34296794 DOI: 10.1111/1462-2920.15680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The soil bacterium Bacillus subtilis is known to suppress pathogens as well as promote plant growth. However, in order to fully exploit the potential as natural fertilizer, we need a better understanding of the interactions between B. subtilis and plants. Here, B. subtilis was examined for root colonization through experimental evolution on Arabidopsis thaliana. The populations evolved rapidly, improved in root colonization and diversified into three distinct morphotypes. In order to better understand the adaptation that had taken place, single evolved isolates from the final transfer were randomly selected for further characterization, revealing changes in growth and pellicle formation in medium supplemented with plant polysaccharides. Intriguingly, certain evolved isolates showed improved root colonization only on the plant species they evolved on, but not on another plant species, namely tomato, suggesting A. thaliana specific adaption paths. Finally, the mix performed better than the sum of its constituents in monoculture, which was demonstrated to be caused by complementarity effects. Our results suggest that genetic diversification occurs in an ecological relevant setting on plant roots and proves to be a stable strategy for root colonization.
Collapse
Affiliation(s)
- Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Mathilde Nordgaard
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
21
|
Yuan K, Hou L, Jin Q, Niu C, Mao M, Wang R, Huang Z. Comparative transcriptomics analysis of Streptococcus mutans with disruption of LuxS/AI-2 quorum sensing and recovery of methyl cycle. Arch Oral Biol 2021; 127:105137. [PMID: 33965851 DOI: 10.1016/j.archoralbio.2021.105137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The LuxS/AI-2 quorum sensing (QS) system has critical roles in Streptococcus mutans cariogenicity. Whereas the molecular and cellular mechanisms of the LuxS/AI-2 QS system are not thoroughly understood. Given that LuxS has roles in QS and methyl cycle, its mutation can cause QS deficiency and methyl cycle disruption. The aim of this study was to investigate effects of the LuxS/AI-2 QS system on gene expression in Streptococcus mutans when methyl cycle was recovered with exogenous sahH gene. METHODS Our previous study introduced the exogenous sahH gene from Pseudomonas aeruginosa into an S. mutans luxS-null strain to restore the disrupted methyl cycle, and this produced the solely the LuxS/AI-2 QS system deficient strain. Here, we analyzed the transcriptomics of this strain to get insights into the molecular mechanisms of the LuxS/AI-2 QS system applying RNA-seq. RESULTS With recovery of methyl cycle, 84 genes didn't change in expression trends in S. mutans luxS-null strain. These genes mainly encode the ABC transporters, sugar transporter EII and enzymes of carbohydrate metabolism, and are rich in the Phosphotransferase system, Fructose and mannose metabolism, Amino sugar and nucleotide sugar metabolism, Galactose metabolism, Glycolysis/Gluconeogenesis, RNA degradation, Lysine biosynthesis, and Glycine, serine and threonine metabolism. CONCLUSIONS The LuxS/AI-2 QS system may mainly affect ABC transporters and carbohydrate transport, transformation and metabolism via EII subunits and enzymes to influence virulence-associated traits without effects of methyl cycle inStreptococcus mutans.
Collapse
Affiliation(s)
- Keyong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lili Hou
- Department of Nursing, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiaoqiao Jin
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Mengying Mao
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ruirui Wang
- Department of Stomatology, Minhang Branch, Zhongshan Hospital, Fudan University, China.
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
22
|
Sharipova MR, Mardanova AM, Rudakova NL, Pudova DS. Bistability and Formation of the Biofilm Matrix as Adaptive Mechanisms during the Stationary Phase of Bacillus subtilis. Microbiology (Reading) 2021. [DOI: 10.1134/s002626172006017x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
23
|
Wang Y, Wu S, Wang L, Yang Z, Zhao J, Zhang L. Binding selectivity of inhibitors toward the first over the second bromodomain of BRD4: theoretical insights from free energy calculations and multiple short molecular dynamics simulations. RSC Adv 2020; 11:745-759. [PMID: 35423696 PMCID: PMC8693360 DOI: 10.1039/d0ra09469b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4) plays an important role in mediating gene transcription involved in cancers and non-cancer diseases such as acute heart failure and inflammatory diseases. In this work, multiple short molecular dynamics (MSMD) simulations are integrated with a molecular mechanics generalized Born surface area (MM-GBSA) approach to decipher binding selectivity of three inhibitors 8NS, 82Y, and 837 toward two domains BD1 and BD2 of BRD4. The results demonstrate that the enthalpy effects play critical roles in selectivity identification of inhibitors toward BD1 and BD2, determining that 8NS has better selectivity toward BD2 than BD1, while 82Y and 837 more favorably bind to BD1 than BD2. A residue-based free-energy decomposition method was used to calculate an inhibitor-residue interaction spectrum and unveil contributions of separate residues to binding selectivity. The results identify six common residues, containing (P82, P375), (V87, V380), (L92, L385), (L94, L387), (N140, N433), and (I146, V439) individually belonging to (BD1, BD2) of BRD4, and yield a considerable binding difference of inhibitors to BD1 and BD2, suggesting that these residues play key roles in binding selectivity of inhibitors toward BD1 and BD2 of BRD4. Therefore, these results provide useful dynamics information and a structure affinity relationship for the development of highly selective inhibitors targeting BD1 and BD2 of BRD4.
Collapse
Affiliation(s)
- Yan Wang
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Shiliang Wu
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Lifei Wang
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University Nanchang 330045 China
| | - Juan Zhao
- School of Science, Shandong Jiaotong University Jinan 250357 China
| | - Lulu Zhang
- School of Science, Shandong Jiaotong University Jinan 250357 China
| |
Collapse
|
24
|
Ceyssens PJ, De Smet J, Wagemans J, Akulenko N, Klimuk E, Hedge S, Voet M, Hendrix H, Paeshuyse J, Landuyt B, Xu H, Blanchard J, Severinov K, Lavigne R. The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit. Viruses 2020; 12:v12090976. [PMID: 32887488 PMCID: PMC7552054 DOI: 10.3390/v12090976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we describe the biological function of the phage-encoded protein RNA polymerase alpha subunit cleavage protein (Rac), a predicted Gcn5-related acetyltransferase encoded by phiKMV-like viruses. These phages encode a single-subunit RNA polymerase for transcription of their late (structure- and lysis-associated) genes, whereas the bacterial RNA polymerase is used at the earlier stages of infection. Rac mediates the inactivation of bacterial transcription by introducing a specific cleavage in the α subunit of the bacterial RNA polymerase. This cleavage occurs within the flexible linker sequence and disconnects the C-terminal domain, required for transcription initiation from most highly active cellular promoters. To achieve this, Rac likely taps into a novel post-translational modification (PTM) mechanism within the host Pseudomonas aeruginosa. From an evolutionary perspective, this novel phage-encoded regulation mechanism confirms the importance of PTMs in the prokaryotic metabolism and represents a new way by which phages can hijack the bacterial host metabolism.
Collapse
Affiliation(s)
- Pieter-Jan Ceyssens
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Jeroen De Smet
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Jeroen Wagemans
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (E.K.); (K.S.)
| | - Evgeny Klimuk
- Institute of Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (E.K.); (K.S.)
| | - Subray Hedge
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA; (S.H.); (H.X.); (J.B.)
| | - Marleen Voet
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Hanne Hendrix
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Jan Paeshuyse
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Bart Landuyt
- Department of Biology, KU Leuven, 3000 Leuven, Belgium;
| | - Hua Xu
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA; (S.H.); (H.X.); (J.B.)
| | - John Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA; (S.H.); (H.X.); (J.B.)
| | - Konstantin Severinov
- Institute of Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (E.K.); (K.S.)
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
- Correspondence: ; Tel.: +32-16-379-524
| |
Collapse
|
25
|
Xiang M, Kang Q, Zhang D. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell. Synth Syst Biotechnol 2020; 5:245-251. [PMID: 32775709 PMCID: PMC7394859 DOI: 10.1016/j.synbio.2020.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive model bacterium Bacillus subtilis, has been broadly applied in various fields because of its low pathogenicity and strong protein secretion ability, as well as its well-developed fermentation technology. B. subtilis is considered as an attractive host in the field of metabolic engineering, in particular for protein expression and secretion, so it has been well studied and applied in genetic engineering. In this review, we discussed why B. subtilis is a good chassis cell for metabolic engineering. We also summarized the latest research progress in systematic biology, synthetic biology and evolution-based engineering of B. subtilis, and showed systemic metabolic engineering expedite the harnessing B. subtilis for bioproduction.
Collapse
Affiliation(s)
- Mengjie Xiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qian Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
26
|
Bienvenut WV, Brünje A, Boyer J, Mühlenbeck JS, Bernal G, Lassowskat I, Dian C, Linster E, Dinh TV, Koskela MM, Jung V, Seidel J, Schyrba LK, Ivanauskaite A, Eirich J, Hell R, Schwarzer D, Mulo P, Wirtz M, Meinnel T, Giglione C, Finkemeier I. Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation. Mol Syst Biol 2020; 16:e9464. [PMID: 32633465 PMCID: PMC7339202 DOI: 10.15252/msb.20209464] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.
Collapse
Affiliation(s)
- Willy V Bienvenut
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Génétique Quantitative et ÉvolutionGif‐sur‐YvetteFrance
| | - Annika Brünje
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Jean‐Baptiste Boyer
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Jens S Mühlenbeck
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Gautier Bernal
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Institute of Plant Sciences Paris‐SaclayGif‐sur‐YvetteFrance
| | - Ines Lassowskat
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Cyril Dian
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Eric Linster
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Trinh V Dinh
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Minna M Koskela
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
- Present address:
Institute of MicrobiologyTřeboňCzech Republic
| | - Vincent Jung
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Institute IMAGINEParisFrance
| | - Julian Seidel
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | - Laura K Schyrba
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Aiste Ivanauskaite
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Jürgen Eirich
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Rüdiger Hell
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Dirk Schwarzer
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | - Paula Mulo
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Markus Wirtz
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Thierry Meinnel
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Carmela Giglione
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Iris Finkemeier
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| |
Collapse
|
27
|
Li D, Ramanathan S, Wang G, Wu Y, Tang Q, Li G. Acetylation of lysine 7 of AhyI affects the biological function in Aeromonas hydrophila. Microb Pathog 2020; 140:103952. [DOI: 10.1016/j.micpath.2019.103952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/04/2019] [Accepted: 12/26/2019] [Indexed: 01/18/2023]
|
28
|
Qin L, Erkelens AM, Ben Bdira F, Dame RT. The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biol 2019; 9:190223. [PMID: 31795918 PMCID: PMC6936261 DOI: 10.1098/rsob.190223] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Every organism across the tree of life compacts and organizes its genome with architectural chromatin proteins. While eukaryotes and archaea express histone proteins, the organization of bacterial chromosomes is dependent on nucleoid-associated proteins. In Escherichia coli and other proteobacteria, the histone-like nucleoid structuring protein (H-NS) acts as a global genome organizer and gene regulator. Functional analogues of H-NS have been found in other bacterial species: MvaT in Pseudomonas species, Lsr2 in actinomycetes and Rok in Bacillus species. These proteins complement hns- phenotypes and have similar DNA-binding properties, despite their lack of sequence homology. In this review, we focus on the structural and functional characteristics of these four architectural proteins. They are able to bridge DNA duplexes, which is key to genome compaction, gene regulation and their response to changing conditions in the environment. Structurally the domain organization and charge distribution of these proteins are conserved, which we suggest is at the basis of their conserved environment responsive behaviour. These observations could be used to find and validate new members of this protein family and to predict their response to environmental changes.
Collapse
Affiliation(s)
- L. Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. M. Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - F. Ben Bdira
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - R. T. Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
29
|
Li Y, Xue H, Bian DR, Xu G, Piao C. Acetylome analysis of lysine acetylation in the plant pathogenic bacterium Brenneria nigrifluens. Microbiologyopen 2019; 9:e00952. [PMID: 31677250 PMCID: PMC6957402 DOI: 10.1002/mbo3.952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/28/2022] Open
Abstract
Protein lysine acetylation, a dynamic and reversible posttranslational modification, plays a crucial role in several cellular processes, including cell cycle regulation, metabolism, enzymatic activities, and protein interactions. Brenneria nigrifluens is a pathogen of walnut trees with shallow bark canker and can cause serious disease in walnut trees. Until now, a little has been known about the roles of lysine acetylation in plant pathogenic bacteria. In the present study, the lysine acetylome of B. nigrifluens was determined by high‐resolution LC‐MS/MS analysis. In total, we identified 1,866 lysine acetylation sites distributed in 737 acetylated proteins. Bioinformatics results indicated that acetylated proteins participate in many different biological functions in B. nigrifluens. Four conserved motifs, namely, LKac, Kac*F, I*Kac, and L*Kac, were identified in this bacterium. Protein interaction network analysis indicated that all kinds of interactions are modulated by protein lysine acetylation. Overall, 12 acetylated proteins were related to the virulence of B. nigrifluens.
Collapse
Affiliation(s)
- Yong Li
- The Key Laboratory of National Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Han Xue
- The Key Laboratory of National Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Dan-Ran Bian
- The Key Laboratory of National Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Guantang Xu
- The Key Laboratory of National Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Chungen Piao
- The Key Laboratory of National Forestry and Grassland Administration on Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
30
|
Christensen DG, Xie X, Basisty N, Byrnes J, McSweeney S, Schilling B, Wolfe AJ. Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Front Microbiol 2019; 10:1604. [PMID: 31354686 PMCID: PMC6640162 DOI: 10.3389/fmicb.2019.01604] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N-𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Collapse
Affiliation(s)
- David G. Christensen
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Xueshu Xie
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA, United States
| | - James Byrnes
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Sean McSweeney
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | | | - Alan J. Wolfe
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
31
|
Abstract
Acetylation is a posttranslational modification conserved in all domains of life that is carried out by N-acetyltransferases. While acetylation can occur on Nα-amino groups, this review will focus on Nε-acetylation of lysyl residues and how the posttranslational modification changes the cellular physiology of bacteria. Up until the late 1990s, acetylation was studied in eukaryotes in the context of chromatin maintenance and gene expression. At present, bacterial protein acetylation plays a prominent role in central and secondary metabolism, virulence, transcription, and translation. Given the diversity of niches in the microbial world, it is not surprising that the targets of bacterial protein acetyltransferases are very diverse, making their biochemical characterization challenging. The paradigm for acetylation in bacteria involves the acetylation of acetyl-CoA synthetase, whose activity must be tightly regulated to maintain energy charge homeostasis. While this paradigm has provided much mechanistic detail for acetylation and deacetylation, in this review we discuss advances in the field that are changing our understanding of the physiological role of protein acetylation in bacteria.
Collapse
Affiliation(s)
- Chelsey M VanDrisse
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA;
| | | |
Collapse
|
32
|
Christensen DG, Baumgartner JT, Xie X, Jew KM, Basisty N, Schilling B, Kuhn ML, Wolfe AJ. Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. mBio 2019; 10:e02708-18. [PMID: 30967470 PMCID: PMC6456759 DOI: 10.1128/mbio.02708-18] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Posttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules. N-ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms of N-ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. Bacterial N-ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered.
Collapse
Affiliation(s)
- D G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| | - J T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - X Xie
- Buck Institute for Research on Aging, Novato, California, USA
| | - K M Jew
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - N Basisty
- Buck Institute for Research on Aging, Novato, California, USA
| | - B Schilling
- Buck Institute for Research on Aging, Novato, California, USA
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - A J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|