1
|
Piermaier LM, Caspers S, Herold C, Wolf-Vollenbröker M, Brzoska P, Bechler E, Filler TJ. Proprioceptors of the human pericardium. Basic Res Cardiol 2024:10.1007/s00395-024-01075-9. [PMID: 39120717 DOI: 10.1007/s00395-024-01075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
In the human organism, all functions are regulated and, therefore, require a feedback mechanism. This control involves a perception of the spatial tensile state of cardiac tissues. The presence and distribution of respective proprioceptive corpuscles have not been considered so far. Therefore, a comprehensive study of the entire human fibrous pericardium was conducted to describe the presence of proprioceptors, their density, and distribution patterns. Eight human pericardial specimens gained from our body donation program were used to create a three-dimensional map of proprioceptors in the pericardium based on their histological and immunohistochemical identification. The 3D map was generated as a volume-rendered 3D model based on magnetic resonance imaging of the pericardium, to which all identified receptors were mapped. To discover a systematic pattern in receptor distribution, statistical cluster analysis was conducted using the Scikit-learn library in Python. Ruffini-like corpuscles (RLCs) were found in all pericardia and assigned to three histological receptor localizations depending on the fibrous pericardium's layering, with no other corpuscular proprioceptors identified. Cluster analysis revealed that RLCs exhibit a specific topographical arrangement. The highest receptor concentrations occur at the ventricular bulges, where their size reaches its maximum in terms of diameter, and at the perivascular pericardial turn-up. The findings suggest that the pericardium is subject to proprioceptive control. RLCs record lateral shearing between the pericardial sublayers, and their distribution pattern enables the detection of distinct dilatation of the heart. Therefore, the pericardium might have an undiscovered function as a sensor with the RLCs as its anatomical correlate.
Collapse
Affiliation(s)
- Lea M Piermaier
- Institute for Anatomy I, Medical Faculty & Hospital Düsseldorf, Heinrich-Heine-University, Building 22.02, Floor U1, Room 15, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty & Hospital Düsseldorf, Heinrich-Heine-University, Building 22.02, Floor U1, Room 15, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich GmbH, Jülich, Germany
| | - Christina Herold
- Medical Faculty & Hospital Düsseldorf, Cécile and Oskar Vogt Institute of Brain Research, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Wolf-Vollenbröker
- Institute for Anatomy I, Medical Faculty & Hospital Düsseldorf, Heinrich-Heine-University, Building 22.02, Floor U1, Room 15, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Patrick Brzoska
- Institute for Anatomy I, Medical Faculty & Hospital Düsseldorf, Heinrich-Heine-University, Building 22.02, Floor U1, Room 15, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Eric Bechler
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Core Facility for Magnetic Resonance Imaging, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Timm J Filler
- Institute for Anatomy I, Medical Faculty & Hospital Düsseldorf, Heinrich-Heine-University, Building 22.02, Floor U1, Room 15, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
2
|
Barber SM, Wolfe T, Steele AG, Hoffman K, Hogan MK, Frazier A, Tang X, Sayenko DG, Horner PJ. A novel minimally invasive and versatile kyphoplasty balloon-based model of porcine spinal cord injury. Front Neurol 2024; 15:1422357. [PMID: 39087009 PMCID: PMC11289774 DOI: 10.3389/fneur.2024.1422357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Spinal cord injury (SCI) animal models often utilize an open surgical laminectomy, which results in animal morbidity and also leads to changes in spinal canal diameter, spinal cord perfusion, cerebrospinal fluid flow dynamics, and spinal stability which may confound SCI research. Moreover, the use of open surgical laminectomy for injury creation lacks realism when considering human SCI scenarios. Methods We developed a novel, image-guided, minimally invasive, large animal model of SCI which utilizes a kyphoplasty balloon inserted into the epidural space via an interlaminar approach without the need for open surgery. Results The model was validated in 5 Yucatán pigs with imaging, neurofunctional, histologic, and electrophysiologic findings consistent with a mild compression injury. Discussion Few large animal models exist that have the potential to reproduce the mechanisms of spinal cord injury (SCI) commonly seen in humans, which in turn limits the relevance and applicability of SCI translational research. SCI research relies heavily on animal models, which typically involve an open surgical, dorsal laminectomy which is inherently invasive and may have untoward consequences on animal morbidity and spinal physiology that limit translational impact. We developed a minimally invasive, large animal model of spinal cord injury which utilizes a kyphoplasty balloon inserted percutaneously into the spinal epidural space. Balloon inflation results in a targeted, compressive spinal cord injury with histological and electrophysiological features directly relevant to human spinal cord injury cases without the need for invasive surgery. Balloon inflation pressure, length of time that balloon remains inflated, and speed of inflation may be modified to achieve variations in injury severity and subtype.
Collapse
Affiliation(s)
- Sean M. Barber
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, United States
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Tatiana Wolfe
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
- University of Arkansas for Medical Sciences, Psychiatric Research Institute, Brain Imaging Research Center, Little Rock, AR, United States
| | - Alexander G. Steele
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Kris Hoffman
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Matthew K. Hogan
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Allison Frazier
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Xiufeng Tang
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Dimitry G. Sayenko
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Philip J. Horner
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
3
|
Jung T, Zeng N, Fabbri JD, Eichler G, Li Z, Willeke K, Wingel KE, Dubey A, Huq R, Sharma M, Hu Y, Ramakrishnan G, Tien K, Mantovani P, Parihar A, Yin H, Oswalt D, Misdorp A, Uguz I, Shinn T, Rodriguez GJ, Nealley C, Gonzales I, Roukes M, Knecht J, Yoshor D, Canoll P, Spinazzi E, Carloni LP, Pesaran B, Patel S, Youngerman B, Cotton RJ, Tolias A, Shepard KL. Stable, chronic in-vivo recordings from a fully wireless subdural-contained 65,536-electrode brain-computer interface device. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594333. [PMID: 38798494 PMCID: PMC11118429 DOI: 10.1101/2024.05.17.594333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Minimally invasive, high-bandwidth brain-computer-interface (BCI) devices can revolutionize human applications. With orders-of-magnitude improvements in volumetric efficiency over other BCI technologies, we developed a 50-μm-thick, mechanically flexible micro-electrocorticography (μECoG) BCI, integrating 256×256 electrodes, signal processing, data telemetry, and wireless powering on a single complementary metal-oxide-semiconductor (CMOS) substrate containing 65,536 recording and 16,384 stimulation channels, from which we can simultaneously record up to 1024 channels at a given time. Fully implanted below the dura, our chip is wirelessly powered, communicating bi-directionally with an external relay station outside the body. We demonstrated chronic, reliable recordings for up to two weeks in pigs and up to two months in behaving non-human primates from somatosensory, motor, and visual cortices, decoding brain signals at high spatiotemporal resolution.
Collapse
|
4
|
Chen J, Li H, Zeng S, Zhou H, Liu X, Hu P, Liu X, Liu Z, Wei F, Li Z. A pig model of symptomatic spinal epidural hematoma. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2129-2137. [PMID: 38532182 DOI: 10.1007/s00586-024-08188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE The purpose of this study was to establish an animal model capable of simulating the development and decompression process of symptomatic spinal epidural hematoma (SSEH). METHODS A total of 16 male Bama miniature pigs were included in this study and randomly allocated into four groups: Group A (4 h 20 mmHg hematoma compression), Group B (4 h 24 mmHg hematoma compression), Group C (4 h 28 mmHg hematoma compression), and Group Sham (control). Real-time intra-wound hematoma compression values were obtained using the principle of connectors. Electrophysiological analyses, including the latency and amplitude of somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP), along with behavioral observations (Tarlov score), were performed to assess this model. RESULTS ANOVA tests demonstrated significant differences in the latency and relative amplitude of SSEP and MEP between Groups C and Sham after 4 h of hematoma compression and one month after surgery (P < 0.01). Behavioral assessments 8 h after surgery indicated that animals subjected to 28 mmHg hematoma compression suffered the most severe spinal cord injury. Pearson correlation coefficient test suggested a negative correlation between the epidural pressure and Tarlov score (r = -0.700, p < 0.001). With the progression of compression and the escalation of epidural pressure, the latency of SSEP and MEP gradually increased, while the relative amplitude gradually decreased. CONCLUSIONS When the epidural pressure reaches approximately 24 mmHg, the spinal cord function occurs progressive dysfunction. Monitoring epidural pressure would be an effective approach to assist to identify the occurrence of postoperative SSEH.
Collapse
MESH Headings
- Animals
- Swine
- Male
- Hematoma, Epidural, Spinal/surgery
- Hematoma, Epidural, Spinal/diagnostic imaging
- Hematoma, Epidural, Spinal/physiopathology
- Disease Models, Animal
- Evoked Potentials, Somatosensory/physiology
- Evoked Potentials, Motor/physiology
- Swine, Miniature
Collapse
Affiliation(s)
- Jiasheng Chen
- Peking University Third Hospital, Department of Orthopaedics, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Haozheng Li
- Peking University Third Hospital, Department of Orthopaedics, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shengxin Zeng
- Peking University Third Hospital, Department of Orthopaedics, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Hua Zhou
- Peking University Third Hospital, Department of Orthopaedics, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Xiao Liu
- Peking University Third Hospital, Department of Orthopaedics, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Panpan Hu
- Peking University Third Hospital, Department of Orthopaedics, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Xiaoguang Liu
- Peking University Third Hospital, Department of Orthopaedics, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhongjun Liu
- Peking University Third Hospital, Department of Orthopaedics, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Feng Wei
- Peking University Third Hospital, Department of Orthopaedics, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zihe Li
- Peking University Third Hospital, Department of Orthopaedics, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
5
|
Tchoe Y, Wu T, U HS, Roth DM, Kim D, Lee J, Cleary DR, Pizarro P, Tonsfeldt KJ, Lee K, Chen PC, Bourhis AM, Galton I, Coughlin B, Yang JC, Paulk AC, Halgren E, Cash SS, Dayeh SA. An electroencephalogram microdisplay to visualize neuronal activity on the brain surface. Sci Transl Med 2024; 16:eadj7257. [PMID: 38657026 PMCID: PMC11093107 DOI: 10.1126/scitranslmed.adj7257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Functional mapping during brain surgery is applied to define brain areas that control critical functions and cannot be removed. Currently, these procedures rely on verbal interactions between the neurosurgeon and electrophysiologist, which can be time-consuming. In addition, the electrode grids that are used to measure brain activity and to identify the boundaries of pathological versus functional brain regions have low resolution and limited conformity to the brain surface. Here, we present the development of an intracranial electroencephalogram (iEEG)-microdisplay that consists of freestanding arrays of 2048 GaN light-emitting diodes laminated on the back of micro-electrocorticography electrode grids. With a series of proof-of-concept experiments in rats and pigs, we demonstrate that these iEEG-microdisplays allowed us to perform real-time iEEG recordings and display cortical activities by spatially corresponding light patterns on the surface of the brain in the surgical field. Furthermore, iEEG-microdisplays allowed us to identify and display cortical landmarks and pathological activities from rat and pig models. Using a dual-color iEEG-microdisplay, we demonstrated coregistration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The iEEG-microdisplay holds promise to facilitate monitoring of pathological brain activity in clinical settings.
Collapse
Affiliation(s)
- Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Tianhai Wu
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hoi Sang U
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - David M Roth
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dongwoo Kim
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel R Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for the Future of Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Patricia Pizarro
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurological Surgery, Oregon Health & Science University, Mail code CH8N, 3303 SW Bond Avenue, Portland, OR 97239, USA
| | - Karen J Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Keundong Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Po Chun Chen
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew M Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ian Galton
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian Coughlin
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurological Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Angelique C Paulk
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Halgren
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sydney S Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Shadi A Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Hilgart DR, Iversen MM, Peters AY, Zabriskie MS, Hoareau GL, Vapniarsky N, Clark GA, Shah LM, Rieke V. Non-invasive central nervous system assessment of a porcine model of neuropathic pain demonstrates increased latency of somatosensory-evoked potentials. J Neurosci Methods 2023; 396:109934. [PMID: 37524248 PMCID: PMC10530261 DOI: 10.1016/j.jneumeth.2023.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/01/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND The study of chronic pain and its treatments requires a robust animal model with objective and quantifiable metrics. Porcine neuropathic pain models have been assessed with peripheral pain recordings and behavioral responses, but thus far central nervous system electrophysiology has not been investigated. This work aimed to record non-invasive, somatosensory-evoked potentials (SEPs) via electroencephalography in order to quantitatively assess chronic neuropathic pain induced in a porcine model. NEW METHOD Peripheral neuritis trauma (PNT) was induced unilaterally in the common peroneal nerve of domestic farm pigs, with the contralateral leg serving as the control for each animal. SEPs were generated by stimulation of the peripheral nerves distal to the PNT and were recorded non-invasively using transcranial electroencephalography (EEG). The P30 wave of the SEP was analyzed for latency changes. RESULTS P30 SEPs were successfully recorded with non-invasive EEG. PNT resulted in significantly longer P30 SEP latencies (p < 0.01 [n = 8]) with a median latency increase of 14.3 [IQR 5.0 - 17.5] ms. Histological results confirmed perineural inflammatory response and nerve damage around the PNT nerves. COMPARISON WITH EXISTING METHOD(S) Control P30 SEPs were similar in latency and amplitude to those previously recorded invasively in healthy pigs. Non-invasive recordings have numerous advantages over invasive measures. CONCLUSIONS P30 SEP latency can serve as a quantifiable neurological measure that reflects central nervous system processing in a porcine model of chronic pain. Advancing the development of a porcine chronic pain model will facilitate the translation of experimental therapies into human clinical trials.
Collapse
Affiliation(s)
- David R Hilgart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Marta M Iversen
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Angela Y Peters
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Matthew S Zabriskie
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Guillaume L Hoareau
- Department of Emergency Medicine, University of Utah, Salt Lake City, UT, USA
| | - Natalia Vapniarsky
- Department of Pathology Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Gregory A Clark
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Lubdha M Shah
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Viola Rieke
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Tchoe Y, Wu T, U HS, Roth DM, Kim D, Lee J, Cleary DR, Pizarro P, Tonsfeldt KJ, Lee K, Chen PC, Bourhis AM, Galton I, Coughlin B, Yang JC, Paulk AC, Halgren E, Cash SS, Dayeh SA. The Brain Electroencephalogram Microdisplay for Precision Neurosurgery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549735. [PMID: 37503216 PMCID: PMC10370209 DOI: 10.1101/2023.07.19.549735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Brain surgeries are among the most delicate clinical procedures and must be performed with the most technologically robust and advanced tools. When such surgical procedures are performed in functionally critical regions of the brain, functional mapping is applied as a standard practice that involves direct coordinated interactions between the neurosurgeon and the clinical neurology electrophysiology team. However, information flow during these interactions is commonly verbal as well as time consuming which in turn increases the duration and cost of the surgery, possibly compromising the patient outcomes. Additionally, the grids that measure brain activity and identify the boundaries of pathological versus functional brain regions suffer from low resolution (3-10 mm contact to contact spacing) with limited conformity to the brain surface. Here, we introduce a brain intracranial electroencephalogram microdisplay (Brain-iEEG-microdisplay) which conforms to the brain to measure the brain activity and display changes in near real-time (40 Hz refresh rate) on the surface of the brain in the surgical field. We used scalable engineered gallium nitride (GaN) substrates with 6" diameter to fabricate, encapsulate, and release free-standing arrays of up to 2048 GaN light emitting diodes (μLEDs) in polyimide substrates. We then laminated the μLED arrays on the back of micro-electrocorticography (μECoG) platinum nanorod grids (PtNRGrids) and developed hardware and software to perform near real-time intracranial EEG analysis and activation of light patterns that correspond to specific cortical activities. Using the Brain-iEEG-microdisplay, we precisely ideFSntified and displayed important cortical landmarks and pharmacologically induced pathological activities. In the rat model, we identified and displayed individual cortical columns corresponding to individual whiskers and the near real-time evolution of epileptic discharges. In the pig animal model, we demonstrated near real-time mapping and display of cortical functional boundaries using somatosensory evoked potentials (SSEP) and display of responses to direct electrical stimulation (DES) from the surface or within the brain tissue. Using a dual-color Brain-iEEG-microdisplay, we demonstrated co-registration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The Brain-iEEG-microdisplay holds the promise of increasing the efficiency of diagnosis and possibly surgical treatment, thereby reducing the cost and improving patient outcomes which would mark a major advancement in neurosurgery. These advances can also be translated to broader applications in neuro-oncology and neurophysiology.
Collapse
Affiliation(s)
- Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Tianhai Wu
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Hoi Sang U
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - David M Roth
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Center for the Future of Surgery, Department of Surgery, University of California San Diego, La Jolla, California 92093, United States
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093, United States
| | - Dongwoo Kim
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Daniel R Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Neurological Surgery, Oregon Health & Science University, Mail code CH8N, 3303 SW Bond Avenue, Portland, Oregon 97239- 3098, United States
| | - Patricia Pizarro
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Center for the Future of Surgery, Department of Surgery, University of California San Diego, La Jolla, California 92093, United States
| | - Karen J Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Keundong Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Po Chun Chen
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Andrew M Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ian Galton
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Brian Coughlin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Neurological Surgery, Ohio State University, Columbus, Ohio 43210, United States
| | - Angelique C Paulk
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Eric Halgren
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
| | - Sydney S Cash
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Shadi A Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Hoareau GL, Peters A, Hilgart D, Iversen M, Clark G, Zabriskie M, Rieke V, Floyd C, Shah L. Feasibility of non-invasive recording of somatosensory evoked potential in pigs. Lab Anim Res 2022; 38:9. [PMID: 35331342 PMCID: PMC8943992 DOI: 10.1186/s42826-022-00118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/12/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Non-invasive measurement of somatosensory-evoked potentials (SEP) in a large animal model is important to translational cognitive research. We sought to develop a methodology for neurophysiological recording via a transcranial electroencephalography (EEG) cap under an effective sedative regimen with dexmedetomidine, midazolam, and butorphanol that will produce sedation instead of anesthesia while not compromising data quality. RESULTS Pigs received intramuscular dexmedetomidine, midazolam, and butorphanol for SEP assessment with peroneal nerve stimulation. Semi-quantitative sedation assessment was performed after the animal was sufficiently sedated and 30 min later, during the transcranial SEP recording. SEP data were analyzed with commercial software. Binary qualitative analysis of the recording was categorized by an experienced neurophysiologist. All four animals had adequate surface SEP recordings. Animals received 43 [21-47] mcg/kg of dexmedetomidine, 0.3 [0.2-0.3] mg/kg of midazolam, and 0.3 [0.3-0.3] mg/kg of butorphanol IM. All treatments resulted in moderate to deep sedation (Baseline median sedation score 11.5 [11-12]; median score at 30 min: 11.5 [10.5-12]). Heart rate (median [range]) (55 [49-71] beats per minute), respiratory rate (24 [21-30] breaths per minute), and hemoglobin oxygen saturation (99 [98-100]%) and body temperature (37.7 [37.4-37.9] °C) remained within clinically acceptable ranges. There were no undesirable recovery incidents. CONCLUSIONS In this pilot study, we demonstrate the feasibility of SEP recording via a transcranial EEG cap under an effective sedative regimen in pigs. Our approach will expand the use of a large animal model in neurotranslational research.
Collapse
Affiliation(s)
- Guillaume L Hoareau
- Emergency Medicine, Department of Surgery, University of Utah, Salt Lake City, UT, USA.
| | - Angela Peters
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - David Hilgart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Marta Iversen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Gregory Clark
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Matthew Zabriskie
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Viola Rieke
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Candace Floyd
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Lubdha Shah
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Wollborn J, Steiger C, Doostkam S, Schallner N, Schroeter N, Kari FA, Meinel L, Buerkle H, Schick MA, Goebel U. Carbon Monoxide Exerts Functional Neuroprotection After Cardiac Arrest Using Extracorporeal Resuscitation in Pigs. Crit Care Med 2020; 48:e299-e307. [PMID: 32205620 DOI: 10.1097/ccm.0000000000004242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Neurologic damage following cardiac arrest remains a major burden for modern resuscitation medicine. Cardiopulmonary resuscitation with extracorporeal circulatory support holds the potential to reduce morbidity and mortality. Furthermore, the endogenous gasotransmitter carbon monoxide attracts attention in reducing cerebral injury. We hypothesize that extracorporeal resuscitation with additional carbon monoxide application reduces neurologic damage. DESIGN Randomized, controlled animal study. SETTING University research laboratory. SUBJECTS Landrace-hybrid pigs. INTERVENTIONS In a porcine model, carbon monoxide was added using a novel extracorporeal releasing system after resuscitation from cardiac arrest. MEASUREMENTS AND MAIN RESULTS As markers of cerebral function, neuromonitoring modalities (somatosensory-evoked potentials, cerebral oximetry, and transcranial Doppler ultrasound) were used. Histopathologic damage and molecular markers (caspase-3 activity and heme oxygenase-1 expression) were analyzed. Cerebral oximetry showed fast rise in regional oxygen saturation after carbon monoxide treatment at 0.5 hours compared with extracorporeal resuscitation alone (regional cerebral oxygen saturation, 73% ± 3% vs 52% ± 8%; p < 0.05). Median nerve somatosensory-evoked potentials showed improved activity upon carbon monoxide treatment, whereas post-cardiac arrest cerebral perfusion differences were diminished. Histopathologic damage scores were reduced compared with customary resuscitation strategies (hippocampus: sham, 0.4 ± 0.2; cardiopulmonary resuscitation, 1.7 ± 0.4; extracorporeal cardiopulmonary resuscitation, 2.3 ± 0.2; extracorporeal cardiopulmonary resuscitation with carbon monoxide application [CO-E-CPR], 0.9 ± 0.3; p < 0.05). Furthermore, ionized calcium-binding adaptor molecule 1 staining revealed reduced damage patterns upon carbon monoxide treatment. Caspase-3 activity (cardiopulmonary resuscitation, 426 ± 169 pg/mL; extracorporeal cardiopulmonary resuscitation, 240 ± 61 pg/mL; CO-E-CPR, 89 ± 26 pg/mL; p < 0.05) and heme oxygenase-1 (sham, 1 ± 0.1; cardiopulmonary resuscitation, 2.5 ± 0.4; extracorporeal cardiopulmonary resuscitation, 2.4 ± 0.2; CO-E-CPR, 1.4 ± 0.2; p < 0.05) expression were reduced after carbon monoxide exposure. CONCLUSIONS Carbon monoxide application during extracorporeal resuscitation reduces injury patterns in neuromonitoring and decreases histopathologic cerebral damage by reducing apoptosis. This may lay the basis for further clinical translation of this highly salutary substance.
Collapse
Affiliation(s)
- Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Steiger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Soroush Doostkam
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neuropathology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Nils Schallner
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schroeter
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Fabian A Kari
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiovascular Surgery, University Heart Center Freiburg, Freiburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin A Schick
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|