1
|
Raghavan P. Top-Down and Bottom-Up Mechanisms of Motor Recovery Poststroke. Phys Med Rehabil Clin N Am 2024; 35:235-257. [PMID: 38514216 DOI: 10.1016/j.pmr.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Stroke remains a leading cause of disability. Motor recovery requires the interaction of top-down and bottom-up mechanisms, which reinforce each other. Injury to the brain initiates a biphasic neuroimmune process, which opens a window for spontaneous recovery during which the brain is particularly sensitive to activity. Physical activity during this sensitive period can lead to rapid recovery by potentiating anti-inflammatory and neuroplastic processes. On the other hand, lack of physical activity can lead to early closure of the sensitive period and downstream changes in muscles, such as sarcopenia, muscle stiffness, and reduced cardiovascular capacity, and blood flow that impede recovery.
Collapse
Affiliation(s)
- Preeti Raghavan
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
2
|
Guevara E, Rivas-Ruvalcaba FJ, Kolosovas-Machuca ES, Ramírez-Elías M, de León Zapata RD, Ramirez-GarciaLuna JL, Rodríguez-Leyva I. Parkinson's disease patients show delayed hemodynamic changes in primary motor cortex in fine motor tasks and decreased resting-state interhemispheric functional connectivity: a functional near-infrared spectroscopy study. NEUROPHOTONICS 2024; 11:025004. [PMID: 38812966 PMCID: PMC11135928 DOI: 10.1117/1.nph.11.2.025004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024]
Abstract
Significance People with Parkinson's disease (PD) experience changes in fine motor skills, which is viewed as one of the hallmark signs of this disease. Due to its non-invasive nature and portability, functional near-infrared spectroscopy (fNIRS) is a promising tool for assessing changes related to fine motor skills. Aim We aim to compare activation patterns in the primary motor cortex using fNIRS, comparing volunteers with PD and sex- and age-matched control participants during a fine motor task and walking. Moreover, inter and intrahemispheric functional connectivity (FC) was investigated during the resting state. Approach We used fNIRS to measure the hemodynamic changes in the primary motor cortex elicited by a finger-tapping task in 20 PD patients and 20 controls matched for age, sex, education, and body mass index. In addition, a two-minute walking task was carried out. Resting-state FC was also assessed. Results Patients with PD showed delayed hypoactivation in the motor cortex during the fine motor task with the dominant hand and delayed hyperactivation with the non-dominant hand. The findings also revealed significant correlations among various measures of hemodynamic activity in the motor cortex using fNIRS and different cognitive and clinical variables. There were no significant differences between patients with PD and controls during the walking task. However, there were significant differences in interhemispheric connectivity between PD patients and control participants, with a statistically significant decrease in PD patients compared with control participants. Conclusions Decreased interhemispheric FC and delayed activity in the primary motor cortex elicited by a fine motor task may one day serve as one of the many potential neuroimaging biomarkers for diagnosing PD.
Collapse
Affiliation(s)
- Edgar Guevara
- CONAHCYT-Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Universidad Autónoma de San Luis Potosí, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, San Luis Potosí, Mexico
| | - Francisco Javier Rivas-Ruvalcaba
- Hospital Central “Dr. Ignacio Morones Prieto”, Universidad Autónoma de San Luis Potosí, Faculty of Medicine, Neurology Service, San Luis Potosí, Mexico
| | - Eleazar Samuel Kolosovas-Machuca
- Universidad Autónoma de San Luis Potosí, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, San Luis Potosí, Mexico
- Universidad Autónoma de San Luis Potosí, Faculty of Science, San Luis Potosí, Mexico
| | - Miguel Ramírez-Elías
- Universidad Autónoma de San Luis Potosí, Faculty of Science, San Luis Potosí, Mexico
| | | | - Jose Luis Ramirez-GarciaLuna
- Universidad Autónoma de San Luis Potosí, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, San Luis Potosí, Mexico
- Hospital Central “Dr. Ignacio Morones Prieto”, Universidad Autónoma de San Luis Potosí, Division of Surgery, Faculty of Medicine, San Luis Potosí, Mexico
| | - Ildefonso Rodríguez-Leyva
- Hospital Central “Dr. Ignacio Morones Prieto”, Universidad Autónoma de San Luis Potosí, Faculty of Medicine, Neurology Service, San Luis Potosí, Mexico
| |
Collapse
|
3
|
Tanamachi K, Kuwahara W, Okawada M, Sasaki S, Kaneko F. Relationship between resting-state functional connectivity and change in motor function after motor imagery intervention in patients with stroke: a scoping review. J Neuroeng Rehabil 2023; 20:159. [PMID: 37980496 PMCID: PMC10657492 DOI: 10.1186/s12984-023-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND In clinical practice, motor imagery has been proposed as a treatment modality for stroke owing to its feasibility in patients with severe motor impairment. Motor imagery-based interventions can be categorized as open- or closed-loop. Closed-loop intervention is based on voluntary motor imagery and induced peripheral sensory afferent (e.g., Brain Computer Interface (BCI)-based interventions). Meanwhile, open-loop interventions include methods without voluntary motor imagery or sensory afferent. Resting-state functional connectivity (rs-FC) is defined as a significant temporal correlated signal among functionally related brain regions without any stimulus. rs-FC is a powerful tool for exploring the baseline characteristics of brain connectivity. Previous studies reported changes in rs-FC after motor imagery interventions. Systematic reviews also reported the effects of motor imagery-based interventions at the behavioral level. This study aimed to review and describe the relationship between the improvement in motor function and changes in rs-FC after motor imagery in patients with stroke. REVIEW PROCESS The literature review was based on Arksey and O'Malley's framework. PubMed, Ovid MEDLINE, Cochrane Central Register of Controlled Trials, and Web of Science were searched up to September 30, 2023. The included studies covered the following topics: illusion without voluntary action, motor imagery, action imitation, and BCI-based interventions. The correlation between rs-FC and motor function before and after the intervention was analyzed. After screening by two independent researchers, 13 studies on BCI-based intervention, motor imagery intervention, and kinesthetic illusion induced by visual stimulation therapy were included. CONCLUSION All studies relating to motor imagery in this review reported improvement in motor function post-intervention. Furthermore, all those studies demonstrated a significant relationship between the change in motor function and rs-FC (e.g., sensorimotor network and parietal cortex).
Collapse
Affiliation(s)
- Kenya Tanamachi
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Wataru Kuwahara
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Megumi Okawada
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shun Sasaki
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Fuminari Kaneko
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan.
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Zeng G, Zhou Y, Yang Y, Ruan L, Tan L, Luo H, Ruan J. Neural oscillations after acute large artery atherosclerotic cerebral infarction during resting state and sleep spindles. J Sleep Res 2023; 32:e13889. [PMID: 36944554 DOI: 10.1111/jsr.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Electroencephalogram-microstate analysis was conducted using low-resolution electromagnetic tomography (LORETA)-KEY to evaluate dynamic brain network changes in patients with acute large artery atherosclerotic cerebral infarction (LAACI) during the rest and sleep stages. This study included 35 age- and sex-matched healthy controls and 34 patients with acute LAACI. Each participant performed a 3-h, 19-channel video electroencephalogram test. Subsequently, 20 epochs of 2-s sleep spindles during stage N2 sleep and five epochs of 10-s electroencephalogram data in the resting state for each participant were obtained. In both the resting state and sleep spindles, patients with LAACI displayed altered neural oscillations. The parameters of microstate A (coverage, occurrence, and duration) increased during the resting state in the patients with LAACI compared with healthy controls. The coverage and occurrence of microstate B and D were reduced in the LAACI group compared with the healthy controls (p < 0.05). Moreover, during sleep spindles, the duration of microstate A and the transition probability from microstate A and B to C decreased, but the coverage of microstate B and the transition rate from microstate B to D increased (p < 0.05) in the LAACI group compared with the healthy controls. These results enable better understanding of how neural oscillations are modified in patients with LAACI during the resting state and sleep spindles. Following LAACI, the dynamic brain network undergoes changes during sleep spindles and the resting state. Continued long-term investigations are required to determine how well these changes in brain dynamics reflect the clinical characteristics of patients with LAACI.
Collapse
Affiliation(s)
- Guoli Zeng
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Neurology, Luzhou People's Hospital, Luzhou, China
| | - Yan Zhou
- Department of Neurology, Jianyang People's Hospital, Jianyang, China
| | - Yushu Yang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Lili Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Linjie Tan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
5
|
Jimenez-Marin A, De Bruyn N, Gooijers J, Llera A, Meyer S, Alaerts K, Verheyden G, Swinnen SP, Cortes JM. Multimodal and multidomain lesion network mapping enhances prediction of sensorimotor behavior in stroke patients. Sci Rep 2022; 12:22400. [PMID: 36575263 PMCID: PMC9794717 DOI: 10.1038/s41598-022-26945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Beyond the characteristics of a brain lesion, such as its etiology, size or location, lesion network mapping (LNM) has shown that similar symptoms after a lesion reflects similar dis-connectivity patterns, thereby linking symptoms to brain networks. Here, we extend LNM by using a multimodal strategy, combining functional and structural networks from 1000 healthy participants in the Human Connectome Project. We apply multimodal LNM to a cohort of 54 stroke patients with the aim of predicting sensorimotor behavior, as assessed through a combination of motor and sensory tests. Results are two-fold. First, multimodal LNM reveals that the functional modality contributes more than the structural one in the prediction of sensorimotor behavior. Second, when looking at each modality individually, the performance of the structural networks strongly depended on whether sensorimotor performance was corrected for lesion size, thereby eliminating the effect that larger lesions generally produce more severe sensorimotor impairment. In contrast, functional networks provided similar performance regardless of whether or not the effect of lesion size was removed. Overall, these results support the extension of LNM to its multimodal form, highlighting the synergistic and additive nature of different types of network modalities, and their corresponding influence on behavioral performance after brain injury.
Collapse
Affiliation(s)
- Antonio Jimenez-Marin
- Computational Neuroimaging Group, Biocruces-Bizkaia Health Research Institute, Biocruces Bizkaia, Plaza de Cruces S/N, 48903, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nele De Bruyn
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- LBI-KU Leuven Brain Institute, Leuven, Belgium
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
- LIS Data Solutions, Machine Learning Group, Santander, Spain
| | - Sarah Meyer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Alaerts
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- LBI-KU Leuven Brain Institute, Leuven, Belgium
| | - Jesus M Cortes
- Computational Neuroimaging Group, Biocruces-Bizkaia Health Research Institute, Biocruces Bizkaia, Plaza de Cruces S/N, 48903, Barakaldo, Spain.
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
- IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
6
|
Cassidy JM, Mark JI, Cramer SC. Functional connectivity drives stroke recovery: shifting the paradigm from correlation to causation. Brain 2022; 145:1211-1228. [PMID: 34932786 PMCID: PMC9630718 DOI: 10.1093/brain/awab469] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/14/2022] Open
Abstract
Stroke is a leading cause of disability, with deficits encompassing multiple functional domains. The heterogeneity underlying stroke poses significant challenges in the prediction of post-stroke recovery, prompting the development of neuroimaging-based biomarkers. Structural neuroimaging measurements, particularly those reflecting corticospinal tract injury, are well-documented in the literature as potential biomarker candidates of post-stroke motor recovery. Consistent with the view of stroke as a 'circuitopathy', functional neuroimaging measures probing functional connectivity may also prove informative in post-stroke recovery. An important step in the development of biomarkers based on functional neural network connectivity is the establishment of causality between connectivity and post-stroke recovery. Current evidence predominantly involves statistical correlations between connectivity measures and post-stroke behavioural status, either cross-sectionally or serially over time. However, the advancement of functional connectivity application in stroke depends on devising experiments that infer causality. In 1965, Sir Austin Bradford Hill introduced nine viewpoints to consider when determining the causality of an association: (i) strength; (ii) consistency; (iii) specificity; (iv) temporality; (v) biological gradient; (vi) plausibility; (vii) coherence; (viii) experiment; and (ix) analogy. Collectively referred to as the Bradford Hill Criteria, these points have been widely adopted in epidemiology. In this review, we assert the value of implementing Bradford Hill's framework to stroke rehabilitation and neuroimaging. We focus on the role of neural network connectivity measurements acquired from task-oriented and resting-state functional MRI, EEG, magnetoencephalography and functional near-infrared spectroscopy in describing and predicting post-stroke behavioural status and recovery. We also identify research opportunities within each Bradford Hill tenet to shift the experimental paradigm from correlation to causation.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Allied Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jasper I Mark
- Department of Allied Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles; and California Rehabilitation Institute, Los Angeles, CA, USA
| |
Collapse
|
7
|
Tian N, Liang L, Luo X, Hu R, Long W, Song R. More than just statics: Altered complexity of dynamic amplitude of low-frequency fluctuations in the resting brain after stroke. J Neural Eng 2022; 19. [PMID: 35594839 DOI: 10.1088/1741-2552/ac71ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/20/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Previous neuroimaging studies mainly focused on static characteristics of brain activity, and little is known about its characteristics over time, especially in post-stroke (PS) patients. In this study, we aimed to investigate the static and dynamic characteristics of brain activity after stroke using functional magnetic resonance imaging (fMRI). APPROACH Twenty ischemic PS patients and nineteen healthy controls (HCs) were recruited to receive a resting-state fMRI scanning. The static amplitude of low-frequency fluctuations (sALFF) and fuzzy entropy of dynamic ALFF (FE-dALFF) were applied to identify the stroke-induced alterations. MAIN RESULTS Compared with the HCs, PS patients showed significantly increased FE-dALFF values in the right angular gyrus (ANG), bilateral precuneus (PCUN), and right inferior parietal lobule (IPL) as well as significantly decreased FE-dALFF values in the right postcentral gyrus (PoCG), right dorsolateral superior frontal gyrus (SFGdor), and right precentral gyrus (PreCG). The ROC analyses demonstrated that FE-dALFF and sALFF possess comparable sensitivity in distinguishing PS patients from the HCs. Moreover, a significantly positive correlation was observed between the FE-dALFF values and the Fugl-Meyer Assessment (FMA) scores in the right SFGdor (r =0.547), right IPL (r =0.522), and right PCUN (r =0.486). SIGNIFICANCE This study provided insight into the stroke-induced alterations in static and dynamic characteristics of local brain activity, highlighting the potential of FE-dALFF in understanding neurophysiological mechanisms and evaluating pathological changes.
Collapse
Affiliation(s)
- Na Tian
- Sun Yat-Sen University, Higher Mega Education Center, Guangzhou, Guangdong, 510006, CHINA
| | - Liuke Liang
- School of Biomedical Engineering, Sun Yat-Sen University, Higher Mega Education Center, Guangzhou, Guangdong, 510006, CHINA
| | - Xuemao Luo
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, Guangdong, CN, Jiangmen, Guangdong, 529030, CHINA
| | - Rongliang Hu
- Department of Rehabilitation Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, CN, Jiangmen, Guangdong, 529030, CHINA
| | - Wansheng Long
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, Guangdong, CN, Jiangmen, Guangdong, 529030, CHINA
| | - Rong Song
- Biomedical Engineering, National Sun Yat-sen University, Higher Mega Education Center, Guangzhou, 510006, CHINA
| |
Collapse
|
8
|
Crespo Pimentel B, Sedlacik J, Schröder J, Heinze M, Østergaard L, Fiehler J, Gerloff C, Thomalla G, Cheng B. Comprehensive Evaluation of Cerebral Hemodynamics and Oxygen Metabolism in Revascularization of Asymptomatic High-Grade Carotid Stenosis. Clin Neuroradiol 2021; 32:163-173. [PMID: 34487195 PMCID: PMC8894147 DOI: 10.1007/s00062-021-01077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
Introduction Revascularization procedures in carotid artery stenosis have shown a positive effect in the restoration of cerebral oxygen metabolism as assessed by T2’ (T2 prime) imaging as well as capillary homeostasis by measurement of capillary transit time heterogeneity (CTH); however, data in patients with asymptomatic carotid stenosis without manifest brain lesions are scarce. Patients and Methods The effect of revascularization on the hemodynamic profile and capillary homeostasis was evaluated in 13 patients with asymptomatic high-grade carotid stenosis without ischemic brain lesions using dynamic susceptibility contrast perfusion imaging and oxygenation-sensitive T2’ mapping before and 6–8 weeks after revascularization by endarterectomy or stenting. The cognitive performance at both timepoints was further assessed. Results Perfusion impairment at baseline was accompanied by an increased CTH (p = 0.008) in areas with a time to peak delay ≥ 2 s in the affected hemisphere compared to contralateral regions. Carotid intervention improved the overall moderate hemodynamic impairment at baseline by leading to an increase in normalized cerebral blood flow (p = 0.017) and a decrease in mean transit time (p = 0.027), oxygen extraction capacity (OEC) (p = 0.033) and CTH (p = 0.048). The T2’ values remained unchanged. Conclusion This study presents novel evidence of a state of altered microvascular function in patients with high-grade carotid artery stenosis in the absence of ischemic brain lesions, which shows sustained normalization after revascularization procedures. Supplementary Information The online version of this article (10.1007/s00062-021-01077-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jan Sedlacik
- Centre for the Developing Brain & Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Julian Schröder
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Heinze
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Fiehler
- Department of Neuroradiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Hu M, Cheng HJ, Ji F, Chong JSX, Lu Z, Huang W, Ang KK, Phua KS, Chuang KH, Jiang X, Chew E, Guan C, Zhou JH. Brain Functional Changes in Stroke Following Rehabilitation Using Brain-Computer Interface-Assisted Motor Imagery With and Without tDCS: A Pilot Study. Front Hum Neurosci 2021; 15:692304. [PMID: 34335210 PMCID: PMC8322606 DOI: 10.3389/fnhum.2021.692304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Brain-computer interface-assisted motor imagery (MI-BCI) or transcranial direct current stimulation (tDCS) has been proven effective in post-stroke motor function enhancement, yet whether the combination of MI-BCI and tDCS may further benefit the rehabilitation of motor functions remains unknown. This study investigated brain functional activity and connectivity changes after a 2 week MI-BCI and tDCS combined intervention in 19 chronic subcortical stroke patients. Patients were randomized into MI-BCI with tDCS group and MI-BCI only group who underwent 10 sessions of 20 min real or sham tDCS followed by 1 h MI-BCI training with robotic feedback. We derived amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) from resting-state functional magnetic resonance imaging (fMRI) data pre- and post-intervention. At baseline, stroke patients had lower ALFF in the ipsilesional somatomotor network (SMN), lower ReHo in the contralesional insula, and higher ALFF/Reho in the bilateral posterior default mode network (DMN) compared to age-matched healthy controls. After the intervention, the MI-BCI only group showed increased ALFF in contralesional SMN and decreased ALFF/Reho in the posterior DMN. In contrast, no post-intervention changes were detected in the MI-BCI + tDCS group. Furthermore, higher increases in ALFF/ReHo/FC measures were related to better motor function recovery (measured by the Fugl-Meyer Assessment scores) in the MI-BCI group while the opposite association was detected in the MI-BCI + tDCS group. Taken together, our findings suggest that brain functional re-normalization and network-specific compensation were found in the MI-BCI only group but not in the MI-BCI + tDCS group although both groups gained significant motor function improvement post-intervention with no group difference. MI-BCI and tDCS may exert differential or even opposing impact on brain functional reorganization during post-stroke motor rehabilitation; therefore, the integration of the two strategies requires further refinement to improve efficacy and effectiveness.
Collapse
Affiliation(s)
- Mengjiao Hu
- NTU Institute for Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore.,Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hsiao-Ju Cheng
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Fang Ji
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanna Su Xian Chong
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhongkang Lu
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
| | - Weimin Huang
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore.,School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kok Soon Phua
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
| | - Kai-Hsiang Chuang
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore.,Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Xudong Jiang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Effie Chew
- Division of Neurology, University Medicine Cluster, National University Health System, Singapore, Singapore
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Juan Helen Zhou
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Van Dyck D, Deconinck N, Aeby A, Baijot S, Coquelet N, Trotta N, Rovai A, Goldman S, Urbain C, Wens V, De Tiège X. Resting-state functional brain connectivity is related to subsequent procedural learning skills in school-aged children. Neuroimage 2021; 240:118368. [PMID: 34242786 DOI: 10.1016/j.neuroimage.2021.118368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022] Open
Abstract
This magnetoencephalography (MEG) study investigates how procedural sequence learning performance is related to prior brain resting-state functional connectivity (rsFC), and to what extent sequence learning induces rapid changes in brain rsFC in school-aged children. Procedural learning was assessed in 30 typically developing children (mean age ± SD: 9.99 years ± 1.35) using a serial reaction time task (SRTT). During SRTT, participants touched as quickly and accurately as possible a stimulus sequentially or randomly appearing in one of the quadrants of a touchscreen. Band-limited power envelope correlation (brain rsFC) was applied to MEG data acquired at rest pre- and post-learning. Correlation analyses were performed between brain rsFC and sequence-specific learning or response time indices. Stronger pre-learning interhemispheric rsFC between inferior parietal and primary somatosensory/motor areas correlated with better subsequent sequence learning performance and faster visuomotor response time. Faster response time was associated with post-learning decreased rsFC within the dorsal extra-striate visual stream and increased rsFC between temporo-cerebellar regions. In school-aged children, variations in functional brain architecture at rest within the sensorimotor network account for interindividual differences in sequence learning and visuomotor performance. After learning, rapid adjustments in functional brain architecture are associated with visuomotor performance but not sequence learning skills.
Collapse
Affiliation(s)
- Dorine Van Dyck
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Nicolas Deconinck
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Alec Aeby
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université libre de Bruxelles (ULB), Brussels, Belgium; Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Simon Baijot
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université libre de Bruxelles (ULB), Brussels, Belgium; Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Coquelet
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicola Trotta
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Antonin Rovai
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Charline Urbain
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
11
|
Kessner SS, Schlemm E, Gerloff C, Thomalla G, Cheng B. Grey and white matter network disruption is associated with sensory deficits after stroke. NEUROIMAGE-CLINICAL 2021; 31:102698. [PMID: 34023668 PMCID: PMC8163991 DOI: 10.1016/j.nicl.2021.102698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/04/2022]
Abstract
Somatosensory deficits occur in about 60% of patients after ischaemic stroke. Clinical and imaging data of 101 ischaemic stroke patients were analysed. Stroke lesions may disrupt grey (GM) and/or white matter (WM) network. Lesion volume explains 23% of sensory deficit variance; GM / WM disruption adds 14% Subnetwork of postcentral, supramarginal, transverse temporal gyri involved.
Somatosensory deficits after ischaemic stroke are common and can occur in patients with lesions in the anterior parietal cortex and subcortical nuclei. It is less clear to what extent damage to white matter tracts within the somatosensory system may contribute to somatosensory deficits after stroke. We compared the roles of cortical damage and disruption of subcortical white matter tracts as correlates of somatosensory deficit after ischaemic stroke. Clinical and imaging data were assessed in incident stroke patients. Somatosensory deficits were measured using a standardized somatosensory test. Remote effects were quantified by projecting the MRI-based segmented stroke lesions onto a predefined atlas of white matter connectivity. Direct ischaemic damage to grey matter was computed by lesion overlap with grey matter areas. The association between lesion impact scores and sensory deficit was assessed statistically. In 101 patients, median sensory score was 188/193 (97.4%). Lesion volume was associated with somatosensory deficit, explaining 23.3% of variance. Beyond this, the stroke-induced grey and white matter disruption within a subnetwork of the postcentral, supramarginal, and transverse temporal gyri explained an additional 14% of the somatosensory outcome variability. On mutual comparison, white matter network disruption was a stronger predictor than grey matter damage. Ischaemic damage to both grey and white matter are structural correlates of acute somatosensory disturbance after ischaemic stroke. Our data suggest that white matter integrity of a somatosensory network of primary and secondary cortex is a prerequisite for normal processing of somatosensory inputs and might be considered as an additional parameter for stroke outcome prediction in the future.
Collapse
Affiliation(s)
- Simon S Kessner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Eckhard Schlemm
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
De Bruyn N, Saenen L, Thijs L, Van Gils A, Ceulemans E, Essers B, Alaerts K, Verheyden G. Brain connectivity alterations after additional sensorimotor or motor therapy for the upper limb in the early-phase post stroke: a randomized controlled trial. Brain Commun 2021; 3:fcab074. [PMID: 33937771 PMCID: PMC8072522 DOI: 10.1093/braincomms/fcab074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 11/28/2022] Open
Abstract
Somatosensory function plays an important role for upper limb motor learning. However, knowledge about underlying mechanisms of sensorimotor therapy is lacking. We aim to investigate differences in therapy-induced resting-state functional connectivity changes between additional sensorimotor compared with motor therapy in the early-phase post stroke. Thirty first-stroke patients with a sensorimotor impairment were included for an assessor-blinded multi-centre randomized controlled trial within 8 weeks post stroke [13 (43%) females; mean age: 67 ± 13 years; mean time post stroke: 43 ± 13 days]. Patients were randomly assigned to additional sensorimotor (n = 18) or motor (n = 12) therapy, receiving 16 h of additional therapy within 4 weeks. Sensorimotor evaluations and resting-state functional magnetic resonance imaging were performed at baseline (T1), post-intervention (T2) and after 4 weeks follow-up (T3). Resting-state functional magnetic resonance imaging was also performed in an age-matched healthy control group (n = 19) to identify patterns of aberrant connectivity in stroke patients between hemispheres, or within ipsilesional and contralesional hemispheres. Mixed model analysis investigated session and treatment effects between stroke therapy groups. Non-parametric partial correlations were used to investigate brain−behaviour associations with age and frame-wise displacement as nuisance regressors. Connections within the contralesional hemisphere that showed hypo-connectivity in subacute stroke patients (compared with healthy controls) showed a trend towards a more pronounced pre-to-post normalization (less hypo-connectivity) in the motor therapy group, compared with the sensorimotor therapy group (mean estimated difference = −0.155 ± 0.061; P = 0.02). Further, the motor therapy group also tended to show a further pre-to-post increase in functional connectivity strength among connections that already showed hyper-connectivity in the stroke patients at baseline versus healthy controls (mean estimated difference = −0.144 ± 0.072; P = 0.06). Notably, these observed increases in hyper-connectivity of the contralesional hemisphere were positively associated with improvements in functional activity (r = 0.48), providing indications that these patterns of hyper-connectivity are compensatory in nature. The sensorimotor and motor therapy group showed no significant differences in terms of pre-to-post changes in inter-hemispheric connectivity or ipsilesional intrahemispheric connectivity. While effects are only tentative within this preliminary sample, results suggest a possible stronger normalization of hypo-connectivity and a stronger pre-to-post increase in compensatory hyper-connectivity of the contralesional hemisphere after motor therapy compared with sensorimotor therapy. Future studies with larger patient samples are however recommended to confirm these trend-based preliminary findings.
Collapse
Affiliation(s)
- Nele De Bruyn
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Leen Saenen
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Liselot Thijs
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Annick Van Gils
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Eva Ceulemans
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Bea Essers
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Kaat Alaerts
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Kraeutner SN, Rubino C, Rinat S, Lakhani B, Borich MR, Wadden KP, Boyd LA. Resting State Connectivity Is Modulated by Motor Learning in Individuals After Stroke. Neurorehabil Neural Repair 2021; 35:513-524. [PMID: 33825574 PMCID: PMC8135242 DOI: 10.1177/15459683211006713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objective Activity patterns across brain regions that can be characterized at rest (ie, resting-state functional connectivity [rsFC]) are disrupted after stroke and linked to impairments in motor function. While changes in rsFC are associated with motor recovery, it is not clear how rsFC is modulated by skilled motor practice used to promote recovery. The current study examined how rsFC is modulated by skilled motor practice after stroke and how changes in rsFC are linked to motor learning. Methods Two groups of participants (individuals with stroke and age-matched controls) engaged in 4 weeks of skilled motor practice of a complex, gamified reaching task. Clinical assessments of motor function and impairment, and brain activity (via functional magnetic resonance imaging) were obtained before and after training. Results While no differences in rsFC were observed in the control group, increased connectivity was observed in the sensorimotor network, linked to learning in the stroke group. Relative to healthy controls, a decrease in network efficiency was observed in the stroke group following training. Conclusions Findings indicate that rsFC patterns related to learning observed after stroke reflect a shift toward a compensatory network configuration characterized by decreased network efficiency.
Collapse
Affiliation(s)
| | - Cristina Rubino
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Shie Rinat
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Bimal Lakhani
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Katie P Wadden
- Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Lara A Boyd
- University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Kaneko F, Shindo K, Yoneta M, Okawada M, Akaboshi K, Liu M. A Case Series Clinical Trial of a Novel Approach Using Augmented Reality That Inspires Self-body Cognition in Patients With Stroke: Effects on Motor Function and Resting-State Brain Functional Connectivity. Front Syst Neurosci 2019; 13:76. [PMID: 31920571 PMCID: PMC6929676 DOI: 10.3389/fnsys.2019.00076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Barring a few studies, there are not enough established treatments to improve upper limb motor function in patients with severe impairments due to chronic stroke. This study aimed to clarify the effect of the kinesthetic perceptional illusion induced by visual stimulation (KINVIS) on upper limb motor function and the relationship between motor function and resting-state brain networks. Eleven patients with severe paralysis of upper limb motor function in the chronic phase (seven men and four women; age: 54.7 ± 10.8 years; 44.0 ± 29.0 months post-stroke) participated in the study. Patients underwent an intervention consisting of therapy using KINVIS and conventional therapeutic exercise (TherEX) for 10 days. Our originally developed KiNvis™ system was applied to induce KINVIS while watching the movement of the artificial hand. Clinical outcomes were examined to evaluate motor functions and resting-state brain functional connectivity (rsFC) by analyzing blood-oxygen-level-dependent (BOLD) signals measured using functional magnetic resonance imaging (fMRI). The outcomes of motor function (Fugle-Meyer Assessment, FMA) and spasticity (Modified Ashworth Scale, MAS) significantly improved after the intervention. The improvement in MAS scores for the fingers and the wrist flexors reached a minimum of clinically important differences. Before the intervention, strong and significant negative correlations between the motor functions and rsFC of the inferior parietal lobule (IPL) and premotor cortex (PMd) in the unaffected hemisphere was demonstrated. These strong correlations were disappeared after the intervention. A negative and strong correlation between the motor function and rsFC of the bilateral inferior parietal sulcus (IPS) significantly changed to strong and positive correlation after the intervention. These results may suggest that the combination approach of KINVIS therapy and TherEX improved motor functions and decreased spasticity in the paralyzed upper extremity after stroke in the chronic phase, possibly indicating the contribution of embodied-visual stimulation. The rsFC for the interhemispheric IPS and intrahemispheric IPL and PMd may be a possible regulatory factor for improving motor function and spasticity. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT01274117.
Collapse
Affiliation(s)
- Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Fujisawa, Japan
| | - Keiichiro Shindo
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Fujisawa, Japan
| | - Masaki Yoneta
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Fujisawa, Japan.,Hokuto Social Medical Corporation, Obihiro, Japan
| | - Megumi Okawada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Fujisawa, Japan.,Hokuto Social Medical Corporation, Obihiro, Japan
| | - Kazuto Akaboshi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Fujisawa, Japan.,Hokuto Social Medical Corporation, Obihiro, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Lu Q, Huang G, Chen L, Li W, Liang Z. Structural and functional reorganization following unilateral internal capsule infarction contribute to neurological function recovery. Neuroradiology 2019; 61:1181-1190. [PMID: 31399852 DOI: 10.1007/s00234-019-02278-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE To investigate proliferative reorganization in the bilateral corticospinal tract (CST) and functional reorganization in the sensorimotor network (SMN) after internal capsule stroke, and to examine the significance of this reorganization. METHODS We recruited 17 patients with first-onset acute stroke (16 male, 1 female, mean age 52 ± 10 years) and 17 age- and sex-matched healthy controls. We excluded patients aged < 18 or > 65 years and those with lesions outside the unilateral internal capsule. All subjects underwent diffusion tensor imaging and resting-state functional MRI on days 7, 30, and 90 from symptom onset. We measured fractional anisotropy (FA) in the CST, interhemispheric functional connectivity (FC) within the SMN, and pre-MRI clinical scores, including the National Institutes of Health Stroke Scale (NIHSS), Barthel Index (BI), and Fugl-Meyer (FM). Correlations among the changes in FA, FC, and clinical scores were analyzed. RESULTS From day 7 to 90 after stroke, FA in the bilateral CST increased (ipsilesional side, Pinternal capsule = 0.009, Pcentrum semiovale = 0.001; contralesional side, Pinternal capsule = 0.006, Pcentrum semiovale = 0.017), as did FC (P < 0.05); NIHSS scores decreased (P < 0.05), while FM and BI progressively increased (P < 0.05). Increased FA in bilateral CST was negatively correlated with decreased NIHSS scores. Increased FA in only the ipsilesional side was positively correlated with increased FM. Increased FC was positively correlated only with increased BI. CONCLUSION Proliferative reorganization in the CST and functional reorganization in the SMN support and promote neurological functional recovery after internal capsule infarction.
Collapse
Affiliation(s)
- Qiuhong Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, China
| | - Gelun Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, China
| | - Li Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, China
| | - Wenmei Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, China
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, China.
| |
Collapse
|