1
|
Fratzke AP, Szule JA, Butler SM, Schaik EJV, Samuel JE. Molecular mechanisms of Coxiella burnetii formalin-fixed cellular vaccine reactogenicity. Infect Immun 2024:e0033524. [PMID: 39356158 DOI: 10.1128/iai.00335-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
Local and systemic reactogenic responses to Q-VAX have prevented licensing of this vaccine outside of Australia. These reactogenic responses occur in previously sensitized individuals and have not been well defined at the cellular level, in part because many studies have been done in guinea pigs that have limited molecular tools. We previously characterized a mouse model of reactogenicity where local reaction sites showed an influx of CD8+ and IFNγ-expressing IL17a+ CD4+ T cells consistent with a Th1 delayed-type hypersensitivity. In this study, we determined, using depletion and adoptive transfer experiments, that both anti-Coxiella antibodies and CD4+ T cells were essential for localized reactions at the site of vaccination. Furthermore, IFNγ depletion showed significant histological changes at the local reaction sites demonstrating the essential nature of this cytokine to reactogenicity. In addition to the cells and cytokines required for this response, we determined that whole cell vaccine (WCV) material remained at the site of vaccination for at least 26 weeks post-injection. Transmission electron microscopy (TEM) of these sites demonstrated intact rod-shaped bacteria at 2 weeks post-injection and partially degraded bacteria within macrophages at 26 weeks post-injection. Finally, because small cell variants (SCVs) are an environmentally stable form, we determined that local reactions were more severe when the WCV material was prepared with higher levels of SCVs compared to typical WCV or with higher levels of large cell variant (LCV). These studies support the hypothesis that antigen persistence at the site of injection contributes to this reactogenicity and that anti-Coxiella antibodies, CD4+ T cells, and IFNγ each contribute to this process.
Collapse
Affiliation(s)
- A P Fratzke
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - J A Szule
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - S M Butler
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - E J van Schaik
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - J E Samuel
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, USA
| |
Collapse
|
2
|
Fratzke AP, Szule JA, Butler SM, van Schaik EJ, Samuel JE. Molecular Mechanisms of Coxiella burnetii Formalin Fixed Cellular Vaccine Reactogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608821. [PMID: 39229146 PMCID: PMC11370449 DOI: 10.1101/2024.08.20.608821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Local and systemic reactogenic responses to Q-VAX® have prevented licensing of this vaccine outside of Australia. These reactogenic responses occur in previously sensitize individuals and have not been well defined at the cellular level, in part because many studies have been done in guinea pigs that have limited molecular tools. We previously characterized a mouse model of reactogenicity where local reactions sites showed an influx of CD8+ and IFNγ-expressing IL17a+ CD4+ T cells consistent with a Th1 delayed-type hypersensitivity. In this study we determined using depletion and adoptive transfer experiments that both anti- Coxiella antibodies and CD4+ T cells were essential for localized reactions at the site of vaccination. Furthermore, IFNγ depletion showed significant histological changes at the local reaction sites demonstrating the essential nature of this cytokine to reactogenicity. In addition to the cells and cytokines required for this response, we determined WCV material remained at the site of vaccination for at least 26 weeks post-injection. Transmission electron microscopy of these sites demonstrated intact rod-shaped bacteria at 2 weeks post-injection and partially degraded bacteria within macrophages at 26 weeks post-injection. Finally, since SCVs are an environmentally stable form, we determined that local reactions were more severe when the WCV material was prepared with higher levels of SCVs compared to typical WCV or with higher levels of LCV. These studies support the hypothesis that antigen persistence at the site of injection contributes to this reactogenicity and that anti- Coxiella antibodies, CD4+ T cells, and IFNγ each contribute to this process.
Collapse
|
3
|
Sam G, Plain K, Chen S, Islam A, Westman ME, Marsh I, Stenos J, Graves SR, Rehm BHA. Synthetic Particulate Subunit Vaccines for the Prevention of Q Fever. Adv Healthc Mater 2024; 13:e2302351. [PMID: 38198823 PMCID: PMC11468694 DOI: 10.1002/adhm.202302351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/10/2023] [Indexed: 01/12/2024]
Abstract
Coxiella burnetti is an intracellular bacterium that causes Q fever, a disease of worldwide importance. Q-VAX® , the approved human Q fever vaccine, is a whole cell vaccine associated with safety concerns. Here a safe particulate subunit vaccine candidate is developed that is ambient-temperature stable and can be cost-effectively manufactured. Endotoxin-free Escherichia coli is bioengineered to efficiently self-assemble biopolymer particles (BPs) that are densely coated with either strings of 18 T-cell epitopes (COX-BP) or two full-length immunodominant antigens (YbgF-BP-Com1) all derived from C. burnetii. BP vaccine candidates are ambient-temperature stable. Safety and immunogenicity are confirmed in mice and guinea pig (GP) models. YbgF-BP-Com1 elicits specific and strong humoral immune responses in GPs with IgG titers that are at least 1 000 times higher than those induced by Q-VAX® . BP vaccine candidates are not reactogenic. After challenge with C. burnetii, YbgF-BP-Com1 vaccine leads to reduced fever responses and pathogen burden in the liver and the induction of proinflammatory cytokines IL-12 and IFN-γ inducible protein (IP-10) when compared to negative control groups. These data suggest that YbgF-BP-Com1 induces functional immune responses reducing infection by C. burnetii. Collectively, these findings illustrate the potential of BPs as effective antigen carrier for Q fever vaccine development.
Collapse
Affiliation(s)
- Gayathri Sam
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityBrisbaneQLD4111Australia
| | - Karren Plain
- Elizabeth Macarthur Agricultural InstituteNSW Department of Primary IndustriesMenangleNSW2568Australia
| | - Shuxiong Chen
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityBrisbaneQLD4111Australia
| | - Aminul Islam
- Australian Rickettsial Reference LaboratoryUniversity HospitalGeelongVIC3220Australia
| | - Mark E. Westman
- Elizabeth Macarthur Agricultural InstituteNSW Department of Primary IndustriesMenangleNSW2568Australia
| | - Ian Marsh
- Elizabeth Macarthur Agricultural InstituteNSW Department of Primary IndustriesMenangleNSW2568Australia
| | - John Stenos
- Australian Rickettsial Reference LaboratoryUniversity HospitalGeelongVIC3220Australia
| | - Stephen R. Graves
- Elizabeth Macarthur Agricultural InstituteNSW Department of Primary IndustriesMenangleNSW2568Australia
- Australian Rickettsial Reference LaboratoryUniversity HospitalGeelongVIC3220Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityBrisbaneQLD4111Australia
- Menzies Health Institute QueenslandGriffith UniversityGold CoastQLD4222Australia
| |
Collapse
|
4
|
Romanenko SA, Kliver SF, Serdyukova NA, Perelman PL, Trifonov VA, Seluanov A, Gorbunova V, Azpurua J, Pereira JC, Ferguson-Smith MA, Graphodatsky AS. Integration of fluorescence in situ hybridization and chromosome-length genome assemblies revealed synteny map for guinea pig, naked mole-rat, and human. Sci Rep 2023; 13:21055. [PMID: 38030702 PMCID: PMC10687270 DOI: 10.1038/s41598-023-46595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia.
| | - Sergei F Kliver
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
| | - Natalia A Serdyukova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jorge Azpurua
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Jorge C Pereira
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| |
Collapse
|
5
|
Early exposure to farm dust in an allergic airway inflammation rabbit model: Does it affect bronchial and cough hyperresponsiveness? PLoS One 2023; 18:e0279498. [PMID: 36706084 PMCID: PMC9882901 DOI: 10.1371/journal.pone.0279498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Over the past 50 years, the prevalence of allergic respiratory diseases has been increasing. The Hygiene hypothesis explains this progression by the decrease in the bio-diversity of early microbial exposure. This study aims to evaluate the effect of early-life farm exposure on airway hyperresponsiveness and cough hypersensitivity in an allergic airway inflammation rabbit model. METHOD A specific environment was applied to pregnant rabbits and their offspring until six weeks after birth. Rabbits were housed in a pathogen-free zone for the control group and a calf barn for the farm group. At the end of the specific environmental exposure, both groups were then housed in a conventional zone and then sensitized to ovalbumin. Ten days after sensitization, the rabbit pups received ovalbumin aerosols to provoke airway inflammation. Sensitization to ovalbumin was assessed by specific IgE assay. Cough sensitivity was assessed by mechanical stimulation of the trachea, and bronchial reactivity was assessed by methacholine challenge. The farm environment was characterized by endotoxin measurement. RESULTS A total of 38 rabbit pups were included (18 in the farm group). Endotoxin levels in the farm environment varied from 30 to 1854 EU.m-3. There was no significant difference in specific IgE values to ovalbumin (p = 0.826) between the two groups. The mechanical threshold to elicit a cough did not differ between the two groups (p = 0.492). There was no difference in the number of cough (p = 0.270) or the intensity of ventilatory responses (p = 0.735). After adjusting for age and weight, there was no difference in respiratory resistance before and after methacholine challenge. CONCLUSION Early exposure to the calf barn did not affect cough sensitivity or bronchial reactivity in ovalbumin-sensitized rabbits. These results suggest that not all farm environments protect against asthma and atopy. Continuous exposure to several sources of microbial diversity is probably needed.
Collapse
|
6
|
Gao Y, Gong X, Yu S, Jin Z, Ruan Q, Zhang C, Zhao K. Immune enhancement of N-2-Hydroxypropyl trimethyl ammonium chloride chitosan/carboxymethyl chitosan nanoparticles vaccine. Int J Biol Macromol 2022; 220:183-192. [PMID: 35981671 DOI: 10.1016/j.ijbiomac.2022.08.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
The immunogenicity and toxicity of N-2-Hydroxypropyl trimethyl ammonium chloride chitosan/N, O-carboxymethyl chitosan nanoparticles (N-2-HACC/CMCS NPs) as a universal vaccine adjuvant/delivery system remains unclear. The present study indicated that the positively charged N-2-HACC/CMCS NPs showed a regular spherical morphology, with a particle size of 219 ± 13.72 nm, zeta potential of 37.28 ± 4.58 mV, had hemocompatibility and biodegradation. Acute toxicity, repeated dose toxicity, abnormal toxicity, muscle stimulation, whole body allergic reaction evaluation in vitro, and cytotoxicity in vivo confirmed N-2-HACC/CMCS NPs is safe and non-toxic. N-2-HACC/OVA/CMCS NPs were prepared to evaluate the immunogenicity, which showed a particle size of 248.1 ± 15.53 nm, zeta potential of 17.24 ± 1.28 mV, encapsulation efficiency of 92.43 ± 0.96 %, and loading capacity of 42.97 ± 0.07 %. Oral or intramuscular route with the N-2-HACC/OVA/CMCS NPs in mice not only induced higher IgG, IgG1, IgG2a, and sIgA antibody titers, but also significantly produced higher levels of IL-6, IL-4, IFN-γ, and TNF-α, demonstrating that the N-2-HACC/OVA/CMCS NPs enhance humoral, cellular, and mucosal immune responses. Our results not only support the N-2-HACC/CMCS NPs to be a safe and potential universal nano adjuvant/delivery system in vaccine development, especially mucosal vaccines, but also rich the database knowledge of adjuvant/delivery systems, and provide new direction to introduce more licensed adjuvants.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Xiaochen Gong
- School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Shuang Yu
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Zheng Jin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Qicheng Ruan
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Chunjing Zhang
- School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China.
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, China; Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
7
|
Binette P, Tesfamariam M, Cockrell D, Heinzen RA, Richards C, Shaia C, Long CM. Murine Q Fever Vaccination Model Reveals Sex Dimorphism in Early Phase Delayed-Type Hypersensitivity Responses. Front Immunol 2022; 13:894536. [PMID: 35784317 PMCID: PMC9241443 DOI: 10.3389/fimmu.2022.894536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022] Open
Abstract
Delayed-type hypersensitivity (DTH) responses to microbial vaccines and related components are a major roadblock for widespread licensing of whole cell vaccines such as that of Q fever. Q fever is a zoonotic disease caused by the intracellular bacterium Coxiella burnetii. The only currently licensed vaccine, Q-Vax®, is a whole cell inactivated formulation that is associated with a potentially severe dermal post vaccination DTH response in previously sensitized individuals. To investigate the underlying immunologic mechanisms of this response and better represent the early-phase DTH response observed in humans, a murine sensitization and skin testing model was developed and employed. Female C57Bl/6J mice displayed the most robust early-phase DTH responses following sensitization and elicitation compared to their male counterparts and other mouse strains. Immunologic responses were measured within the skin, draining lymph nodes, and serum following both sensitization and elicitation with Q fever whole cell vaccines. Local immunologic responses in the dermis were characterized by inflammation primarily involving neutrophils, macrophages, and T cells. Secondary lymphoid organ profiling revealed distinct immunological signatures following both sensitization and elicitation with a sex-based dichotomy in T cell phenotypes and antigen presenting cell numbers. Beyond providing a post-Q fever vaccination DTH model that recapitulates early-phase DTH events, these data suggest that sex is a primary factor influencing the magnitude and composition of the ensuing response.
Collapse
Affiliation(s)
- Picabo Binette
- Laboratory of Bacteriology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| | - Mahelat Tesfamariam
- Laboratory of Bacteriology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| | - Diane Cockrell
- Laboratory of Bacteriology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| | - Robert A. Heinzen
- Laboratory of Bacteriology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| | - Crystal Richards
- Laboratory of Bacteriology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| | - Carrie Mae Long
- Laboratory of Bacteriology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
8
|
Sluder AE, Raju Paul S, Moise L, Dold C, Richard G, Silva-Reyes L, Baeten LA, Scholzen A, Reeves PM, Pollard AJ, Garritsen A, Bowen RA, De Groot AS, Rollier C, Poznansky MC. Evaluation of a Human T Cell-Targeted Multi-Epitope Vaccine for Q Fever in Animal Models of Coxiella burnetii Immunity. Front Immunol 2022; 13:901372. [PMID: 35651616 PMCID: PMC9149306 DOI: 10.3389/fimmu.2022.901372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
T cell-mediated immunity plays a central role in the control and clearance of intracellular Coxiella burnetii infection, which can cause Q fever. Therefore, we aimed to develop a novel T cell-targeted vaccine that induces pathogen-specific cell-mediated immunity to protect against Q fever in humans while avoiding the reactogenicity of the current inactivated whole cell vaccine. Human HLA class II T cell epitopes from C. burnetii were previously identified and selected by immunoinformatic predictions of HLA binding, conservation in multiple C. burnetii isolates, and low potential for cross-reactivity with the human proteome or microbiome. Epitopes were selected for vaccine inclusion based on long-lived human T cell recall responses to corresponding peptides in individuals that had been naturally exposed to the bacterium during a 2007-2010 Q fever outbreak in the Netherlands. Multiple viral vector-based candidate vaccines were generated that express concatemers of selected epitope sequences arranged to minimize potential junctional neo-epitopes. The vaccine candidates caused no antigen-specific reactogenicity in a sensitized guinea pig model. A subset of the vaccine epitope peptides elicited antigenic recall responses in splenocytes from C57BL/6 mice previously infected with C. burnetii. However, immunogenicity of the vaccine candidates in C57BL/6 mice was dominated by a single epitope and this was insufficient to confer protection against an infection challenge, highlighting the limitations of assessing human-targeted vaccine candidates in murine models. The viral vector-based vaccine candidates induced antigen-specific T cell responses to a broader array of epitopes in cynomolgus macaques, establishing a foundation for future vaccine efficacy studies in this large animal model of C. burnetii infection.
Collapse
Affiliation(s)
- Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Susan Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | | | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, The National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, The National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Laurie A Baeten
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Patrick M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, The National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Christine Rollier
- Oxford Vaccine Group, Department of Paediatrics, The National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
9
|
Tesfamariam M, Binette P, Long CM. Preclinical Animal Models for Q Fever Vaccine Development. Front Cell Infect Microbiol 2022; 12:828784. [PMID: 35223553 PMCID: PMC8866712 DOI: 10.3389/fcimb.2022.828784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Coxiella burnetii is a zoonotic pathogen responsible for the human disease Q fever. While an inactivated whole cell vaccine exists for this disease, its widespread use is precluded by a post vaccination hypersensitivity response. Efforts for the development of an improved Q fever vaccine are intricately connected to the availability of appropriate animal models of human disease. Accordingly, small mammals and non-human primates have been utilized for vaccine-challenge and post vaccination hypersensitivity modeling. Here, we review the animal models historically utilized in Q fever vaccine development, describe recent advances in this area, discuss the limitations and strengths of these models, and summarize the needs and criteria for future modeling efforts. In summary, while many useful models for Q fever vaccine development exist, there remains room for growth and expansion of these models which will in turn increase our understanding of C. burnetii host interactions.
Collapse
|
10
|
Matias J, Kurokawa C, Sajid A, Narasimhan S, Arora G, Diktas H, Lynn GE, DePonte K, Pardi N, Valenzuela JG, Weissman D, Fikrig E. Tick immunity using mRNA, DNA and protein-based Salp14 delivery strategies. Vaccine 2021; 39:7661-7668. [PMID: 34862075 PMCID: PMC8671329 DOI: 10.1016/j.vaccine.2021.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
Guinea pigs exposed to multiple infestations with Ixodes scapularis ticks develop acquired resistance to ticks, which is also known as tick immunity. The I. scapularis salivary components that contribute to tick immunity are likely multifactorial. An anticoagulant that inhibits factor Xa, named Salp14, is present in tick saliva and is associated with partial tick immunity. A tick bite naturally releases tick saliva proteins into the vertebrate host for several days, which suggests that the mode of antigen delivery may influence the genesis of tick immunity. We therefore utilized Salp14 as a model antigen to examine tick immunity using mRNA lipid nanoparticles (LNPs), plasmid DNA, or recombinant protein platforms. salp14 containing mRNA-LNPs vaccination elicited erythema at the tick bite site after tick challenge that occurred earlier, and that was more pronounced, compared with DNA or protein immunizations. Humoral and cellular responses associated with tick immunity were directed towards a 25 amino acid region of Salp14 at the carboxy terminus of the protein, as determined by antibody responses and skin-testing assays. This study demonstrates that the model of antigen delivery, also known as the vaccine platform, can influence the genesis of tick immunity in guinea pigs. mRNA-LNPs may be useful in helping to elicit erythema at the tick bite site, one of the most important early hallmarks of acquired tick resistance. mRNA-LNPs containing tick genes is a useful platform for the development of vaccines that can potentially prevent selected tick-borne diseases.
Collapse
Affiliation(s)
- Jaqueline Matias
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cheyne Kurokawa
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gunjan Arora
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Husrev Diktas
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Geoffrey E Lynn
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
11
|
Kumaresan V, Alam S, Zhang Y, Zhang G. The Feasibility of Using Coxiella burnetii Avirulent Nine Mile Phase II Viable Bacteria as a Live Attenuated Vaccine Against Q fever. Front Immunol 2021; 12:754690. [PMID: 34795669 PMCID: PMC8594375 DOI: 10.3389/fimmu.2021.754690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore if viable C. burnetii avirulent Nine Mile phase II (NMII) can elicit protective immunity against virulent NM phase I (NMI) infection. Interestingly, mice immunized with viable NMII elicited significant protection against NMI infection at different time points post-immunization. Viable NMII induced a dose-dependent NMI-specific IgG response in mice, but all doses of NMII-immunized mice conferred a similar level of protection. Comparing different routes of immunization indicated that intranasally immunized mice showed significantly higher levels of protection than other immunization routes. The observation that viable NMII induced a similar level of long-term protection against NMI challenge as the formalin-inactivated NMI vaccine (PIV) suggests that viable NMII bacteria can induce a similar level of long-term protection against virulent NMI challenge as the PIV. Viable NMII also induced significant protection against challenge with virulent Priscilla and Scurry strains, suggesting that viable NMII can elicit broad protection. Immune sera and splenocytes from viable NMII-immunized mice are protective against NMI infection, but immune serum-receiving mice did not control NMI replication. Additionally, viable NMII conferred a comparable level of protection in wild-type, CD4+ T cell-deficient, and CD8+ T cell-deficient mice, and partial protection in B cell-deficient mice. However, NMII-immunized T cell-deficient mice were unable to prevent C. burnetii replication. Thus, both B cells and T cells are required for viable NMII-induced protective immunity but T cells may play a critical role. Collectively, this study demonstrates the feasibility of using avirulent NMII as a live attenuated vaccine against human Q fever.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Shawkat Alam
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Yan Zhang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
12
|
Fratzke AP, Gregory AE, van Schaik EJ, Samuel JE. Coxiella burnetii Whole Cell Vaccine Produces a Th1 Delayed-Type Hypersensitivity Response in a Novel Sensitized Mouse Model. Front Immunol 2021; 12:754712. [PMID: 34616410 PMCID: PMC8488435 DOI: 10.3389/fimmu.2021.754712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Q-VAX®, a whole cell, formalin-inactivated vaccine, is the only vaccine licensed for human use to protect against Coxiella burnetii, the cause of Q fever. Although this vaccine provides long-term protection, local and systemic reactogenic responses are common in previously sensitized individuals which prevents its use outside of Australia. Despite the importance of preventing these adverse reactions to develop widely accepted, novel vaccines against C. burnetii, little is understood about the underlying cellular mechanisms. This is mostly attributed to the use of a guinea pig reactogenicity model where complex cellular analysis is limited. To address this, we compared three different mouse strains develop a model of C. burnetii whole cell vaccine reactogenic responses. SKH1 and C57Bl/6, but not BALBc mice, develop local granulomatous reactions after either infection- or vaccine-induced sensitization. We evaluated local and systemic responses by measuring T cell populations from the vaccination site and spleen during elicitation using flow cytometry. Local reaction sites showed influx of IFNγ+ and IL17a+ CD4 T cells in sensitized mice compared with controls and a reduction in IL4+ CD4 T cells. Additionally, sensitized mice showed a systemic response to elicitation by an increase in IFNγ+ and IL17a+ CD4 T cells in the spleen. These results indicate that local and systemic C. burnetii reactogenic responses are consistent with a Th1 delayed-type hypersensitivity. Our experiments provide insights into the pathophysiology of C. burnetii whole cell vaccine reactogenicity and demonstrate that C57Bl/6 and SKH1 mice can provide a valuable model for evaluating the reactogenicity of novel C. burnetii vaccine candidates.
Collapse
Affiliation(s)
- Alycia P. Fratzke
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Anthony E. Gregory
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
- Department of Physiology & Biophysics, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Erin J. van Schaik
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - James E. Samuel
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
13
|
Long CM, Beare PA, Cockrell DC, Fintzi J, Tesfamariam M, Shaia CI, Heinzen RA. Contributions of lipopolysaccharide and the type IVB secretion system to Coxiella burnetii vaccine efficacy and reactogenicity. NPJ Vaccines 2021; 6:38. [PMID: 33741986 PMCID: PMC7979919 DOI: 10.1038/s41541-021-00296-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Coxiella burnetii is the bacterial causative agent of the zoonosis Q fever. The current human Q fever vaccine, Q-VAX®, is a fixed, whole cell vaccine (WCV) licensed solely for use in Australia. C. burnetii WCV administration is associated with a dermal hypersensitivity reaction in people with pre-existing immunity to C. burnetii, limiting wider use. Consequently, a less reactogenic vaccine is needed. Here, we investigated contributions of the C. burnetii Dot/Icm type IVB secretion system (T4BSS) and lipopolysaccharide (LPS) in protection and reactogenicity of fixed WCVs. A 32.5 kb region containing 23 dot/icm genes was deleted in the virulent Nine Mile phase I (NMI) strain and the resulting mutant was evaluated in guinea pig models of C. burnetii infection, vaccination-challenge, and post-vaccination hypersensitivity. The NMI ∆dot/icm strain was avirulent, protective as a WCV against a robust C. burnetii challenge, and displayed potentially altered reactogenicity compared to NMI. Nine Mile phase II (NMII) strains of C. burnetii that produce rough LPS, were similarly tested. NMI was significantly more protective than NMII as a WCV; however, both vaccines exhibited similar reactogenicity. Collectively, our results indicate that, like phase I LPS, the T4BSS is required for full virulence by C. burnetii. Conversely, unlike phase I LPS, the T4BSS is not required for vaccine-induced protection. LPS length does not appear to contribute to reactogenicity while the T4BSS may contribute to this response. NMI ∆dot/icm represents an avirulent phase I strain with full vaccine efficacy, illustrating the potential of genetically modified C. burnetii as improved WCVs.
Collapse
Affiliation(s)
- Carrie M Long
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Diane C Cockrell
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan Fintzi
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mahelat Tesfamariam
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl I Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
14
|
Fratzke AP, Jan S, Felgner J, Liang L, Nakajima R, Jasinskas A, Manna S, Nihesh FN, Maiti S, Albin TJ, Esser-Kahn AP, Davies DH, Samuel JE, Felgner PL, Gregory AE. Subunit Vaccines Using TLR Triagonist Combination Adjuvants Provide Protection Against Coxiella burnetii While Minimizing Reactogenic Responses. Front Immunol 2021; 12:653092. [PMID: 33815413 PMCID: PMC8010241 DOI: 10.3389/fimmu.2021.653092] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Q fever is caused by the obligate intracellular bacterium, Coxiella burnetii, a designated potential agent of bioterrorism because of its route of transmission, resistance to disinfectants, and low infectious dose. The only vaccine licensed for human use is Q-VAX® (Seqirus, licensed in Australia), a formalin-inactivated whole-cell vaccine, which produces severe local and systemic reactogenic responses in previously sensitized individuals. Accordingly, the U.S. Food and Drug Administration and other regulatory bodies around the world, have been reluctant to approve Q-VAX for widespread use. To obviate these adverse reactions, we prepared recombinant protein subunit vaccine candidates containing purified CBU1910, CBU0307, CBU0545, CBU0612, CBU0891, and CBU1398 proteins and TLR triagonist adjuvants. TLR triagonist adjuvants combine different TLR agonists to enhance immune responses to vaccine antigens. We tested both the protective efficacy and reactogenicity of our vaccine candidates in Hartley guinea pigs using intratracheal infection with live C. burnetii. While all of our candidates showed varying degrees of protection during challenge, local reactogenic responses were significantly reduced for one of our vaccine candidates when compared with a formalin-inactivated whole-cell vaccine. Our findings show that subunit vaccines combined with novel TLR triagonist adjuvants can generate protective immunity to C. burnetii infection while reducing reactogenic responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/pharmacology
- Antigens, Bacterial/therapeutic use
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Vaccines/genetics
- Bacterial Vaccines/pharmacology
- Bacterial Vaccines/therapeutic use
- Coxiella burnetii/immunology
- Disease Models, Animal
- Guinea Pigs
- Humans
- Immunogenicity, Vaccine
- Q Fever/immunology
- Q Fever/microbiology
- Q Fever/prevention & control
- Recombinant Proteins/genetics
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Toll-Like Receptors/antagonists & inhibitors
- Vaccines, Subunit/genetics
- Vaccines, Subunit/pharmacology
- Vaccines, Subunit/therapeutic use
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/pharmacology
- Vaccines, Synthetic/therapeutic use
Collapse
Affiliation(s)
- Alycia P. Fratzke
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
| | - Sharon Jan
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Li Liang
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Algis Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Saikat Manna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Fnu N. Nihesh
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Sampa Maiti
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Tyler J. Albin
- Department of Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - D. Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
| | - Philip L. Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Anthony E. Gregory
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
15
|
Reeves PM, Raju Paul S, Baeten L, Korek SE, Yi Y, Hess J, Sobell D, Scholzen A, Garritsen A, De Groot AS, Moise L, Brauns T, Bowen R, Sluder AE, Poznansky MC. Novel multiparameter correlates of Coxiella burnetii infection and vaccination identified by longitudinal deep immune profiling. Sci Rep 2020; 10:13311. [PMID: 32770104 PMCID: PMC7414860 DOI: 10.1038/s41598-020-69327-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Q-fever is a flu-like illness caused by Coxiella burnetii (Cb), a highly infectious intracellular bacterium. There is an unmet need for a safe and effective vaccine for Q-fever. Correlates of immune protection to Cb infection are limited. We proposed that analysis by longitudinal high dimensional immune (HDI) profiling using mass cytometry combined with other measures of vaccination and protection could be used to identify novel correlates of effective vaccination and control of Cb infection. Using a vaccine-challenge model in HLA-DR transgenic mice, we demonstrated significant alterations in circulating T-cell and innate immune populations that distinguished vaccinated from naïve mice within 10 days, and persisted until at least 35 days post-vaccination. Following challenge, vaccinated mice exhibited reduced bacterial burden and splenomegaly, along with distinct effector T-cell and monocyte profiles. Correlation of HDI data to serological and pathological measurements was performed. Our data indicate a Th1-biased response to Cb, consistent with previous reports, and identify Ly6C, CD73, and T-bet expression in T-cell, NK-cell, and monocytic populations as distinguishing features between vaccinated and naïve mice. This study refines the understanding of the integrated immune response to Cb vaccine and challenge, which can inform the assessment of candidate vaccines for Cb.
Collapse
Affiliation(s)
- P M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA.
| | - S Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - L Baeten
- Colorado State University, Fort Collins, CO, USA
| | - S E Korek
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Y Yi
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - J Hess
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - D Sobell
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - A Scholzen
- InnatOss Laboratories B.V, Oss, The Netherlands
| | - A Garritsen
- InnatOss Laboratories B.V, Oss, The Netherlands
| | - A S De Groot
- EpiVax, Inc, Providence, RI, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - L Moise
- EpiVax, Inc, Providence, RI, USA.,Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, USA
| | - T Brauns
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - R Bowen
- Colorado State University, Fort Collins, CO, USA
| | - A E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - M C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Gilkes AP, Albin TJ, Manna S, Supnet M, Ruiz S, Tom J, Badten AJ, Jain A, Nakajima R, Felgner J, Davies DH, Stetkevich SA, Zlotnik A, Pearlman E, Nalca A, Felgner PL, Esser-Kahn AP, Burkhardt AM. Tuning Subunit Vaccines with Novel TLR Triagonist Adjuvants to Generate Protective Immune Responses against Coxiella burnetii. THE JOURNAL OF IMMUNOLOGY 2019; 204:611-621. [PMID: 31871024 DOI: 10.4049/jimmunol.1900991] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/16/2019] [Indexed: 12/11/2022]
Abstract
Coxiella burnetii is an obligate intracellular bacterium and the causative agent of Q fever. C. burnetii is considered a potential bioterrorism agent because of its low infectious dose; resistance to heat, drying, and common disinfectants; and lack of prophylactic therapies. Q-Vax, a formalin-inactivated whole-bacteria vaccine, is currently the only prophylactic measure that is protective against C. burnetii infections but is not U.S. Food and Drug Administration approved. To overcome the safety concerns associated with the whole-bacteria vaccine, we sought to generate and evaluate recombinant protein subunit vaccines against C. burnetii To accomplish this, we formulated C. burnetii Ags with a novel TLR triagonist adjuvant platform, which used combinatorial chemistry to link three different TLR agonists together to form one adjuvanting complex. We evaluated the immunomodulatory activity of a panel of TLR triagonist adjuvants and found that they elicited unique Ag-specific immune responses both in vitro and in vivo. We evaluated our top candidates in a live C. burnetii aerosol challenge model in C56BL/6 mice and found that several of our novel vaccine formulations conferred varying levels of protection to the challenged animals compared with sham immunized mice, although none of our candidates were as protective as the commercial vaccine across all protection criteria that were analyzed. Our findings characterize a novel adjuvant platform and offer an alternative approach to generating protective and effective vaccines against C. burnetii.
Collapse
Affiliation(s)
- Adrienne P Gilkes
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Tyler J Albin
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Saikat Manna
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697.,The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637; and
| | - Medalyn Supnet
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Sara Ruiz
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702
| | - Janine Tom
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Alexander J Badten
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Aarti Jain
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Rie Nakajima
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Jiin Felgner
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - D Huw Davies
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | | | - Albert Zlotnik
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Eric Pearlman
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Aysegul Nalca
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702
| | - Philip L Felgner
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Aaron P Esser-Kahn
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697; .,The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637; and
| | - Amanda M Burkhardt
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697; .,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
17
|
Ledbetter L, Cherla R, Chambers C, Zhang Y, Zhang G. Eosinophils Affect Antibody Isotype Switching and May Partially Contribute to Early Vaccine-Induced Immunity against Coxiella burnetii. Infect Immun 2019; 87:e00376-19. [PMID: 31427447 PMCID: PMC6803328 DOI: 10.1128/iai.00376-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/09/2019] [Indexed: 01/21/2023] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium which causes human Q fever. An acidified citrate cysteine medium (ACCM-2) has been developed which mimics the intracellular replicative niche of C. burnetii and allows axenic growth of the bacteria. To determine if C. burnetii cultured in ACCM-2 retains immunogenicity, we compared the protective efficacies of formalin-inactivated C. burnetii Nine Mile phase I (PIV) and phase II (PIIV) vaccines derived from axenic culture 7, 14, and 28 days postvaccination. PIV conferred significant protection against virulent C. burnetii as early as 7 days postvaccination, which suggests that ACCM-2-derived PIV retains immunogenicity and protectivity. We analyzed the cellular immune response in spleens from PIV- and PIIV-vaccinated mice by flow cytometry at 7 and 14 days postvaccination and found significantly more granulocytes in PIV-vaccinated mice than in PIIV-vaccinated mice. Interestingly, we found these infiltrating granulocytes to be SSChigh CD11b+ CD125+ Siglec-F+ (where SSChigh indicates a high side scatter phenotype) eosinophils. There was no change in the number of eosinophils in PIV-vaccinated CD4-deficient mice compared to the level in controls, which suggests that eosinophil accumulation is CD4+ T cell dependent. To evaluate the importance of eosinophils in PIV-mediated protection, we vaccinated and challenged eosinophil-deficient ΔdblGATA mice. ΔdblGATA mice had significantly worse disease than their wild-type counterparts when challenged 7 days postvaccination, while no significant difference was seen at 28 days postvaccination. Nevertheless, ΔdblGATA mice had elevated serum IgM with decreased IgG1 and IgG2a whether mice were challenged at 7 or 28 days postvaccination. These results suggest that eosinophils may play a role in early vaccine protection against C. burnetii and contribute to antibody isotype switching.
Collapse
Affiliation(s)
- Lindsey Ledbetter
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Rama Cherla
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Catherine Chambers
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Yan Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Guoquan Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
18
|
Stokes JV, Crawford AE, Cross CE, Ross AML, Walker JD, Willeford BV, Varela-Stokes AS. An optimized five-color/seven-parameter flow cytometry panel for immunophenotyping guinea pig peripheral blood lymphocytes. J Immunol Methods 2019; 476:112682. [PMID: 31682796 DOI: 10.1016/j.jim.2019.112682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 11/25/2022]
Abstract
Guinea pigs are an ideal animal model for the study of several infectious diseases, including tuberculosis, legionellosis, brucellosis, and spotted fever rickettsiosis. In comparison to the murine model, clinical signs in guinea pigs are more representative of disease in humans, the guinea pig immune system is more similar to that of the human, and their large size offers logistic advantages for sample collection while following disease progression. Unfortunately, the advantage of using guinea pigs in biomedical research, particularly in understanding the immune response to infectious agents, is limited in large part by the paucity of available reagents and lack of genetically manipulated strains. Here, we expand the utility of guinea pigs in biomedical research by establishing an optimized five-color/seven-parameter polychromatic flow cytometric assay for immunophenotyping lymphocytes. This assay fills a need for immunophenotyping peripheral blood lymphocytes and is an improvement over current published flow cytometry assays for guinea pigs. We anticipate that our approach will be an important starting point for developing new assays to evaluate the cellular immune response to infectious diseases in the guinea pig model. Importantly, we are currently using this assay for evaluating immunity to spotted fever rickettsiosis in a guinea pig-tick-Rickettsia system, where CD8+ T cells are a critical contributor to the immune response. Developing resources to utilize the guinea pig more effectively will enhance our ability to understand infectious diseases where the guinea pig would otherwise be the ideal model.
Collapse
Affiliation(s)
- John V Stokes
- Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Anna E Crawford
- Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Claire E Cross
- Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Anne-Marie L Ross
- Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Jamie D Walker
- Laboratory Animal Resources, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Bridget V Willeford
- Laboratory Animal Resources, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Andrea S Varela-Stokes
- Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States of America.
| |
Collapse
|
19
|
Metters G, Norville IH, Titball RW, Hemsley CM. From cell culture to cynomolgus macaque: infection models show lineage-specific virulence potential of Coxiella burnetii. J Med Microbiol 2019; 68:1419-1430. [PMID: 31424378 DOI: 10.1099/jmm.0.001064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular pathogen that causes the zoonotic disease Q fever in humans, which can occur in either an acute or a chronic form with serious complications. The bacterium has a wide host range, including unicellular organisms, invertebrates, birds and mammals, with livestock representing the most significant reservoir for human infections. Cell culture models have been used to decipher the intracellular lifestyle of C. burnetii, and several infection models, including invertebrates, rodents and non-human primates, are being used to investigate host-pathogen interactions and to identify bacterial virulence factors and vaccine candidates. However, none of the models replicate all aspects of human disease. Furthermore, it is becoming evident that C. burnetii isolates belonging to different lineages exhibit differences in their virulence in these models. Here, we compare the advantages and disadvantages of commonly used infection models and summarize currently available data for lineage-specific virulence.
Collapse
Affiliation(s)
- Georgina Metters
- College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, UK
| | - Isobel H Norville
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Richard W Titball
- College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, UK
| | - Claudia M Hemsley
- College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
20
|
Williamson ED, Westlake GE. Vaccines for emerging pathogens: prospects for licensure. Clin Exp Immunol 2019; 198:170-183. [PMID: 30972733 PMCID: PMC6797873 DOI: 10.1111/cei.13284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 12/28/2022] Open
Abstract
Globally, there are a number of emerging pathogens. For most, there are no licensed vaccines available for human use, although there is ongoing research and development. However, given the extensive and increasing list of emerging pathogens and the investment required to bring vaccines into clinical use, the task is huge. Overlaid on this task is the risk of anti‐microbial resistance (AMR) acquisition by micro‐organisms which can endow a relatively harmless organism with pathogenic potential. Furthermore, climate change also introduces a challenge by causing some of the insect vectors and environmental conditions prevalent in tropical regions to begin to spread out from these traditional areas, thus increasing the risk of migration of zoonotic disease. Vaccination provides a defence against these emerging pathogens. However, vaccines for pathogens which cause severe, but occasional, disease outbreaks in endemic pockets have suffered from a lack of commercial incentive for development to a clinical standard, encompassing Phase III clinical trials for efficacy. An alternative is to develop such vaccines to request US Emergency Use Authorization (EUA), or equivalent status in the United States, Canada and the European Union, making use of a considerable number of regulatory mechanisms that are available prior to licensing. This review covers the status of vaccine development for some of the emerging pathogens, the hurdles that need to be overcome to achieve EUA or an equivalent regional or national status and how these considerations may impact vaccine development for the future, such that a more comprehensive stockpile of promising vaccines can be achieved.
Collapse
Affiliation(s)
- E D Williamson
- CBR Division, Defence Science and Technology Laboratory, Salisbury, Wiltshire, UK
| | - G E Westlake
- CBR Division, Defence Science and Technology Laboratory, Salisbury, Wiltshire, UK
| |
Collapse
|
21
|
Scholzen A, Richard G, Moise L, Baeten LA, Reeves PM, Martin WD, Brauns TA, Boyle CM, Raju Paul S, Bucala R, Bowen RA, Garritsen A, De Groot AS, Sluder AE, Poznansky MC. Promiscuous Coxiella burnetii CD4 Epitope Clusters Associated With Human Recall Responses Are Candidates for a Novel T-Cell Targeted Multi-Epitope Q Fever Vaccine. Front Immunol 2019; 10:207. [PMID: 30828331 PMCID: PMC6384241 DOI: 10.3389/fimmu.2019.00207] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is a Gram-negative intracellular bacterium transmitted via aerosol. Regulatory approval of the Australian whole-cell vaccine Q-VAX® in the US and Europe is hindered by reactogenicity in previously exposed individuals. The aim of this study was to identify and rationally select C. burnetii epitopes for design of a safe, effective, and less reactogenic T-cell targeted human Q fever vaccine. Immunoinformatic methods were used to predict 65 HLA class I epitopes and 50 promiscuous HLA class II C. burnetii epitope clusters, which are conserved across strains of C. burnetii. HLA binding assays confirmed 89% of class I and 75% of class II predictions, and 11 HLA class II epitopes elicited IFNγ responses following heterologous DNA/DNA/peptide/peptide prime-boost immunizations of HLA-DR3 transgenic mice. Human immune responses to the predicted epitopes were characterized in individuals naturally exposed to C. burnetii during the 2007–2010 Dutch Q fever outbreak. Subjects were divided into three groups: controls with no immunological evidence of previous infection and individuals with responses to heat-killed C. burnetii in a whole blood IFNγ release assay (IGRA) who remained asymptomatic or who experienced clinical Q fever during the outbreak. Recall responses to C. burnetii epitopes were assessed by cultured IFNγ ELISpot. While HLA class I epitope responses were sparse in this cohort, we identified 21 HLA class II epitopes that recalled T-cell IFNγ responses in 10–28% of IGRA+ subjects. IGRA+ individuals with past asymptomatic and symptomatic C. burnetii infection showed a comparable response pattern and cumulative peptide response which correlated with IGRA responses. None of the peptides elicited reactogenicity in a C. burnetii exposure-primed guinea pig model. These data demonstrate that a substantial proportion of immunoinformatically identified HLA class II epitopes show long-lived immunoreactivity in naturally infected individuals, making them desirable candidates for a novel human multi-epitope Q fever vaccine.
Collapse
Affiliation(s)
| | | | - Leonard Moise
- EpiVax, Inc., Providence, RI, United States.,Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Laurie A Baeten
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Patrick M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | | | - Timothy A Brauns
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | | | - Susan Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|