1
|
Khurana S, Floriani F, Li Y, Liu X, Zandinejad A. The impact of customized surface topography and porosity created by additive manufacturing technology on gingival fibroblasts. J Prosthodont 2025. [PMID: 39875691 DOI: 10.1111/jopr.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
PURPOSE The purpose of this study was to analyze gingival fibroblast proliferation on additively manufactured polymethylmethacrylate (PMMA) groups with different surface characteristics namely no treatment group (NTG) and customized 250 µm diameter porosity (AM-250G) group. MATERIALS AND METHODS 3D-printed NTG was compared for its influence on growth of cells to a additively manufactured surface with porosity (AM-250G). For each group (NTG, AM-250G) 20 samples of material were tested. Fibroblast cells, at a concentration of 2.5 × 104 cells/mL, were seeded into 48 plates separately into two groups (NTG, AM-250G). These were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37°C and 5% CO2 atmosphere. For cell proliferation MTT assay was conducted at 24, 48, and 72 h. Cell proliferation was quantified through optical density (OD) measurements of the cell supernatant, and surface analysis was conducted using a scanning electron microscope (SEM). Data normality was confirmed by the Shapiro-Wilk test, with a significance level set at p < 0.05. Statistical analysis was conducted using an independent Student's t-test at each time point. RESULTS A significant difference in cell proliferation was observed at 24 h, with the NTG group showing higher cell numbers compared to AM-250G group. Qualitative analysis of cell culture was performed using scanning electron microscopy to compare to the NTG and the porosity (AM-250G) groups after 24, 48, and 72 h of fibroblast tissue attachment. No significant differences were observed between the groups at the 48 and 72-h intervals. CONCLUSIONS At 24 h, the NTG surface demonstrated superior cell proliferation compared to the surface with porosity (AM-250G). However, significant differences in cell growth on both materials at 48 and 72 h, suggesting that both surface types eventually support similar levels of cell proliferation, with an increase of extensive spread and elongation of fibroblasts cells proliferation on the surface with porosity.
Collapse
Affiliation(s)
- Saumya Khurana
- Department of Biomedical Science, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | | | - Yingzi Li
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Xiaohua Liu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Amirali Zandinejad
- Prosthodontist, Implant Dentistry Associates of Arlington, Arlington, Texas, USA
| |
Collapse
|
2
|
Li Z, Luo Y, Lu M, Wang Y, Zhong L, Zhou Y, Duan Z, Min L, Tu C. Design, characterisation, and clinical evaluation of a novel porous Ti-6Al-4V hemipelvic prosthesis based on Voronoi diagram. BIOMATERIALS TRANSLATIONAL 2024; 5:314-324. [PMID: 39734704 PMCID: PMC11681186 DOI: 10.12336/biomatertransl.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 12/31/2024]
Abstract
Three-dimensional printed Ti-6Al-4V hemipelvic prosthesis has become a current popular method for pelvic defect reconstruction. This paper presents a novel biomimetic hemipelvic prosthesis design that utilises patient-specific anatomical data in conjunction with the Voronoi diagram algorithm. Unlike traditional design methods that rely on fixed, homogeneous unit cell, the Voronoi diagram enables to create imitation of trabecular structure (ITS). The proposed approach was conducted for six patients. The entire contour of the customised prosthesis matched well with the residual bone. The porosity and pore size of the ITS were evaluated. The distribution of the pore size ranged from 500 to 1400 μm. Porosity calculations indicated the average porosity was 63.13 ± 0.30%. Cubic ITS samples were fabricated for micrograph and mechanical analysis. Scanning electron microscopy images of the ITS samples exhibited rough surface morphology without obvious defects. The Young's modulus and compressive strength were 1.68 ± 0.05 GPa and 174 ± 8 MPa, respectively. Post-operative X-rays confirmed proper matching of the customised prostheses with the bone defect. Tomosynthesis-Shimadzu metal artifact reduction technology images indicated close contact between the implant and host bone, alongside favourable bone density and absence of resorption or osteolysis around the implant. At the last follow-up, the average Musculoskeletal Tumour Society score was 23.2 (range, 21-26). By leveraging additive manufacturing and Voronoi diagram algorithm, customised implants tailored to individual patient anatomy can be fabricated, offering wide distribution of the pore size, reasonable mechanical properties, favourable osseointegration, and satisfactory function.
Collapse
Affiliation(s)
- Zhuangzhuang Li
- Orthopaedic Research Institute and Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan Province, China
| | - Yi Luo
- Orthopaedic Research Institute and Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan Province, China
| | - Minxun Lu
- Orthopaedic Research Institute and Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan Province, China
| | - Yitian Wang
- Orthopaedic Research Institute and Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan Province, China
| | - Linsen Zhong
- Tianqi Additive Manufacturing Co., Ltd, Chengdu, Sichuan Province, China
| | - Yong Zhou
- Orthopaedic Research Institute and Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan Province, China
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Centre, and The University of Miami Miller School of Medicine, Miami, FL, USA
| | - Li Min
- Orthopaedic Research Institute and Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan Province, China
| | - Chongqi Tu
- Orthopaedic Research Institute and Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Shevtsov M, Pitkin E, Combs SE, Meulen GVD, Preucil C, Pitkin M. Comparison In Vitro Study on the Interface between Skin and Bone Cell Cultures and Microporous Titanium Samples Manufactured with 3D Printing Technology Versus Sintered Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1484. [PMID: 39330641 PMCID: PMC11434446 DOI: 10.3390/nano14181484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Percutaneous implants osseointegrated into the residuum of a person with limb amputation need to provide mechanical stability and protection against infections. Although significant progress has been made in the biointegration of percutaneous implants, the problem of forming a reliable natural barrier at the level of the surface of the implant and the skin and bone tissues remains unresolved. The use of a microporous implant structure incorporated into the Skin and Bone Integrated Pylon (SBIP) should address the issue by allowing soft and bone tissues to grow directly into the implant structure itself, which, in turn, should form a reliable barrier to infections and support strong osseointegration. To evaluate biological interactions between dermal fibroblasts and MC3T3-E1 osteoblasts in vitro, small titanium discs (with varying pore sizes and volume fractions to achieve deep porosity) were fabricated via 3D printing and sintering. The cell viability MTT assay demonstrated low cytotoxicity for cells co-cultured in the pores of the 3D-printed and sintered Ti samples during the 14-day follow-up period. A subsequent Quantitative Real-Time Polymerase Chain Reaction (RT-PCR) analysis of the relative gene expression of biomarkers that are associated with cell adhesion (α2, α5, αV, and β1 integrins) and extracellular matrix components (fibronectin, vitronectin, type I collagen) demonstrated that micropore sizes ranging from 200 to 500 µm of the 3D printed and sintered Ti discs were favorable for dermal fibroblast adhesion. For example, for representative 3D-printed Ti sample S6 at 72 h the values were 4.71 ± 0.08 (α2 integrin), 4.96 ± 0.08 (α5 integrin), 4.71 ± 0.08 (αV integrin), and 1.87 ± 0.12 (β1 integrin). In contrast, Ti discs with pore sizes ranging from 400 to 800 µm demonstrated the best results (in terms of marker expression related to osteogenic differentiation, including osteopontin, osteonectin, osteocalcin, TGF-β1, and SMAD4) for MC3T3-E1 cells. For example, for the representative 3D sample S4 on day 14, the marker levels were 11.19 ± 0.77 (osteopontin), 7.15 ± 0.29 (osteonectin), and 6.08 ± 0.12 (osteocalcin), while for sintered samples the levels of markers constituted 5.85 ± 0.4 (osteopontin), 4.45 ± 0.36 (osteonectin), and 4.46 ± 0.3 (osteocalcin). In conclusion, the data obtained show the high biointegrative properties of porous titanium structures, while the ability to implement several pore options in one structure using 3D printing makes it possible to create personalized implants for the best one-time integration with both skin and bone tissues.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Emil Pitkin
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie E Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | | | | | - Mark Pitkin
- Department of Orthopaedics and Rehabilitation Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Poly-Orth International, Sharon, MA 02067, USA
| |
Collapse
|
4
|
Shrivas S, Samaur H, Yadav V, Boda SK. Soft and Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration. ACS Biomater Sci Eng 2024; 10:1966-1987. [PMID: 38530973 DOI: 10.1021/acsbiomaterials.3c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A holistic biointegration of percutaneous bone-anchored metallic prostheses with both hard and soft tissues dictates their longevity in the human body. While titanium (Ti) has nearly solved osseointegration, soft tissue integration of percutaneous metallic prostheses is a perennial problem. Unlike the firm soft tissue sealing in biological percutaneous structures (fingernails and teeth), foreign body response of the skin to titanium (Ti) leads to inflammation, epidermal downgrowth and inferior peri-implant soft tissue sealing. This review discusses various implant surface treatments/texturing and coatings for osseointegration, soft tissue integration, and against bacterial attachment. While surface microroughness by SLA (sandblasting with large grit and acid etched) and porous calcium phosphate (CaP) coatings improve Ti osseointegration, smooth and textured titania nanopores, nanotubes, microgrooves, and biomolecular coatings encourage soft tissue attachment. However, the inferior peri-implant soft tissue sealing compared to natural teeth can lead to peri-implantitis. Toward this end, the application of smart multifunctional bioadhesives with strong adhesion to soft tissues, mechanical resilience, durability, antibacterial, and immunomodulatory properties for soft tissue attachment to metallic prostheses is proposed.
Collapse
Affiliation(s)
- Sangeeta Shrivas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vinod Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sunil Kumar Boda
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
5
|
Zandinejad A, Khurana S, Liang Y, Liu X. Comparative evaluation of gingival fibroblast growth on 3D-printed and milled zirconia: An in vitro study. J Prosthodont 2024; 33:54-60. [PMID: 36693242 DOI: 10.1111/jopr.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The purpose of this study was to analyze the fibroblast growth and proliferation on 3D-printed zirconia in presence and absence of porosities. MATERIAL AND METHODS A total of 40 bars (8 × 4 × 3) were included in this study. Thirty 3D-printed and 10 milled zirconia samples were prepared. The 3D-printed samples had different porosities, 0% (PZ0), 20% (PZ20), and 40% (PZ40) with 10 specimens in each group. Milled zirconia samples were used as the control (MZ). Rat gingival fibroblasts were cultured for 48 h, and the proliferation of fibroblasts on each sample in each group (n = 10) was determined by MTT assays. The differences among the four groups were compared by one-way ANOVA. To test the significance of the observed differences between two groups, an unpaired Student's t-test was applied. The significance level was set at p < 0.05. Qualitative analysis for the cell culture was performed using scanning electron microscopy. RESULTS One-way ANOVA showed that the numbers of the fibroblasts among the four groups had a statistical difference. Post hoc Bonferroni test revealed that there was no significant difference between PZ0 and MZ; however, all other groups and among groups were significantly different. CONCLUSIONS Fibroblasts had a better affinity toward the MZ and PZ0 in a short period of cell culture time.
Collapse
Affiliation(s)
- Amirali Zandinejad
- Implant Dentistry Associations of Arlington, Arlington, Texas, USA
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Saumya Khurana
- Department of Biomedical Science, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Yongxi Liang
- Department of Biomedical Science, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Xiaohua Liu
- Department of Biomedical Science, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| |
Collapse
|
6
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Civantos A, Mesa-Restrepo A, Torres Y, Shetty AR, Cheng MK, Jaramillo-Correa C, Aditya T, Allain JP. Nanotextured porous titanium scaffolds by argon ion irradiation: Toward conformal nanopatterning and improved implant osseointegration. J Biomed Mater Res A 2023; 111:1850-1865. [PMID: 37334879 DOI: 10.1002/jbm.a.37582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Stress shielding and osseointegration are two main challenges in bone regeneration, which have been targeted successfully by chemical and physical surface modification methods. Direct irradiation synthesis (DIS) is an energetic ion irradiation method that generates self-organized nanopatterns conformal to the surface of materials with complex geometries (e.g., pores on a material surface). This work exposes porous titanium samples to energetic argon ions generating nanopatterning between and inside pores. The unique porous architected titanium (Ti) structure is achieved by mixing Ti powder with given amounts of spacer NaCl particles (vol % equal to 30%, 40%, 50%, 60%, and 70%), compacted and sintered, and combined with DIS to generate a porous Ti with bone-like mechanical properties and hierarchical topography to enhance Ti osseointegration. The porosity percentages range between 25% and 30% using 30 vol % NaCl space-holder (SH) volume percentages to porosity rates of 63%-68% with SH volume of 70 vol % NaCl. Stable and reproducible nanopatterning on the flat surface between pores, inside pits, and along the internal pore walls are achieved, for the first time on any porous biomaterial. Nanoscale features were observed in the form of nanowalls and nanopeaks of lengths between 100 and 500 nm, thicknesses of 35-nm and heights between 100 and 200 nm on average. Bulk mechanical properties that mimic bone-like structures were observed along with increased wettability (by reducing contact values). Nano features were cell biocompatible and enhanced in vitro pre-osteoblast differentiation and mineralization. Higher alkaline phosphatase levels and increased calcium deposits were observed on irradiated 50 vol % NaCl samples at 7 and 14 days. After 24 h, nanopatterned porous samples decreased the number of attached macrophages and the formation of foreign body giant cells, confirming nanoscale tunability of M1-M2 immuno-activation with enhanced osseointegration.
Collapse
Affiliation(s)
- Ana Civantos
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick Holonyak, Jr., Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Andrea Mesa-Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Yadir Torres
- Department of Engineering and Materials Science and Transport, University of Seville, Seville, Spain
| | - Akshath R Shetty
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ming Kit Cheng
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Camilo Jaramillo-Correa
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Teresa Aditya
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Jean Paul Allain
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick Holonyak, Jr., Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
- Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
8
|
Gong T, Lu M, Wang J, Zhang Y, Wang Y, Tang F, Li Z, Zhou Y, Min L, Luo Y, Tu C. 3D-Printed Modular Endoprosthesis Reconstruction Following Total Calcanectomy in Calcaneal Malignancy. Foot Ankle Int 2023; 44:1021-1029. [PMID: 37542414 DOI: 10.1177/10711007231185334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
BACKGROUND The use of 3D-printed endoprosthesis has been proposed as a viable limb-salvage procedure following total calcanectomy in patients with calcaneal malignancy. However, certain drawbacks persist concerning the prosthetic design. In this case series, we designed a modular endoprosthesis incorporating a novel drainage system, aiming to improve the functional outcomes and to promote wound healing. METHODS We retrospectively analyzed patients with calcaneal malignancy who underwent 3D-printed modular endoprosthesis reconstruction. Clinically, we evaluated functional outcomes using the 10-cm visual analog scale (VAS) score, the 1993 version of the Musculoskeletal Tumor Society (MSTS-93) score, and the American Orthopaedic Foot & Ankle Society (AOFAS) hindfoot score. Complications were also recorded. RESULTS Five male patients met the final inclusion criteria. The median age was 20 years (range 13-47 years). The median follow-up time was 28 months (range, 13-65 months). Median postoperative functional MSTS-93, VAS, and AOFAS scores were 27 points (range, 25-29), 0 points (range, 0-1), and 86 points (range, 83-93), respectively. Wound healing was observed in all patients, and there were no complications related to the endoprosthesis at the last follow-up. CONCLUSION The use of 3D-printed modular endoprosthesis was associated with satisfactory short-term outcomes in patients undergoing calcaneal reconstruction. The incorporation of a novel design featuring an integrated draining system has the potential to enhance wound healing and expedite functional recovery. LEVEL OF EVIDENCE Level IV, case series.
Collapse
Affiliation(s)
- Taojun Gong
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan province, Chengdu, Sichuan, People's Republic of China
| | - Minxun Lu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan province, Chengdu, Sichuan, People's Republic of China
| | - Jie Wang
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan province, Chengdu, Sichuan, People's Republic of China
| | - Yuqi Zhang
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan province, Chengdu, Sichuan, People's Republic of China
| | - Yitian Wang
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan province, Chengdu, Sichuan, People's Republic of China
| | - Fan Tang
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan province, Chengdu, Sichuan, People's Republic of China
| | - Zhuangzhuang Li
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan province, Chengdu, Sichuan, People's Republic of China
| | - Yong Zhou
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan province, Chengdu, Sichuan, People's Republic of China
| | - Li Min
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan province, Chengdu, Sichuan, People's Republic of China
| | - Yi Luo
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan province, Chengdu, Sichuan, People's Republic of China
| | - Chongqi Tu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan province, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
9
|
Ntousi O, Roumpi M, Siogkas P, Deligianni D, Fotiadis DI. Computational Fluid Dynamic Analysis of customised 3D-printed bone scaffolds with different architectures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083223 DOI: 10.1109/embc40787.2023.10340034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Through the recent years, tissue engineering has been proven as a solid substitute of autografts in the stimulation of bone tissue regeneration, through the development of three dimensional (3D) porous matrices, commonly known as scaffolds. In this work, we analysed two scaffold structures with 500μm pore size, by performing computational fluid dynamics simulations, to compare permeability, Wall Shear Stress (WSS), velocity and pressure distributions. Taking into account those parameters the geometry named as "PCL-50" was the best to anticipate showing a superior performance in supporting cell growth due to the improved flow characteristics in the scaffold.Clinical Relevance- Bone defects that require invasive surgical treatment with high risks in terms of success and effectiveness. Bone tissue engineering (BTE) in combination with the use of computational fluid dynamics (CFD) analysis tools aim to assist in designing optimal scaffolds that better promote bone growth and repair. The fluid dynamic characteristics of a porous scaffold plays a vital role in cell viability and cell growth, affecting the osteogenic performance of the scaffold.
Collapse
|
10
|
Sun C, Zhao H, Wang L, Zhang J, Zheng J, Yang Z, Huang L, Wang L, Liu C, Li D, Li Q. Additive manufactured polyether-ether-ketone composite scaffolds with hydroxyapatite filler and porous structure promoted the integration with soft tissue. BIOMATERIALS ADVANCES 2022; 141:213119. [PMID: 36152523 DOI: 10.1016/j.bioadv.2022.213119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Additive Manufactured (AM) Polyether-ether-ketone (PEEK) orthopaedic implants offer new opportunities for bone substitutes. However, owing to its chemical inertness, the integration between PEEK implants and soft tissue represents a major challenge threatening the early success of the PEEK implants. Here we investigated the influence of hydroxyapatite (HA) fillers and porous structure of AM HA/PEEK scaffolds on the integration with soft tissue through in-vitro cellular experiments and in-vivo rabbit experiments. Among the animal experiments, HA/PEEK composite scaffolds with HA contents of 0, 20 wt%, 40 wt% and pore sizes of 0.8 mm, 1.6 mm were manufactured by fused filament fabrication. The results indicated that HA promoted the proliferation and adhesion of myofibroblasts on PEEK-based composites by releasing Ca2+ to active FAK and its downstream proteins, while the surface morphology of the scaffolds was also roughened by the HA particles, both of which led to the tighter adhesion between HA/PEEK scaffolds and soft tissue in-vivo. The macroscopic bonding force between soft tissue and scaffolds was dominated by the pore size of the scaffolds but was hardly affected by neither the HA content and nor the surface morphology. Scaffolds with larger pore size bonded more strongly to the soft tissue, and the maximum bonding force reached to 5.61 ± 2.55 N for 40 wt% HA/PEEK scaffolds with pore size of 1.6 mm, which was higher than that between natural bone and soft tissue of rabbits. Although the larger pore size and higher HA content of the PEEK-based scaffolds facilitated the bonding with the soft tissue, the consequent outcome of reduced mechanical properties has to be compromised in the design of the porous PEEK-based composite implants. The present study provides engineering-accessible synergistic strategies on material components and porous architecture of AM PEEK orthopaedic implants for improving the integration with soft tissue.
Collapse
Affiliation(s)
- Changning Sun
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China; Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Huiyu Zhao
- Department of Spine Surgery, Center for Orthopaedic Surgery, Academy of Orthopedics, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, 510665, Guangzhou, China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China
| | - Jinghua Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China
| | - Jibao Zheng
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China
| | - Zijian Yang
- Department of Spine Surgery, Center for Orthopaedic Surgery, Academy of Orthopedics, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, 510665, Guangzhou, China
| | - Lijun Huang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China.
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China.
| | - Qingchu Li
- Department of Spine Surgery, Center for Orthopaedic Surgery, Academy of Orthopedics, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, 510665, Guangzhou, China.
| |
Collapse
|
11
|
Wang B, Zhao J, Lu W, Ma Y, Wang X, An X, Fan Z. The preparation of lactoferrin/magnesium silicate lithium injectable hydrogel and application in promoting wound healing. Int J Biol Macromol 2022; 220:1501-1511. [PMID: 36122774 DOI: 10.1016/j.ijbiomac.2022.09.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
The development of novel wound dressings with highly effective antibacterial and accelerating wound healing properties has become the focus of current research. In this study, a novel and injectable lactoferrin (LF)/lithium magnesium silicate hydrogel (LMSH) was first synthesized through a simple electrostatic interaction method. The physical and biological properties are systematically characterized. The results show that the synthesized LF/LMSH has good antibacterial properties and biocompatibility. More importantly, it can effectively promote wound healing in the rat full-thickness skin wound model after 14 days post-operation, and the healing rate can reach 99.1 %, which is much higher than that of other groups. Meanwhile, histochemical and immunofluorescent staining confirm that the prepared injectable LF/LMSH has good pro-collagen deposition, pro-angiogenic and anti-inflammatory properties. The healed wounds present a consistently thickened epidermis with more follicular and glandular structures, indicating the great potential of the prepared material for wound management.
Collapse
Affiliation(s)
- Bei Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Jiayuan Zhao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Wenxin Lu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Yuanya Ma
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Xusen Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaoli An
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
12
|
Bregoli C, Biffi CA, Morellato K, Gruppioni E, Primavera M, Rampoldi M, Lando M, Adani R, Tuissi A. Osseointegrated Metallic Implants for Finger Amputees: A Review of the Literature. Orthop Surg 2022; 14:1019-1033. [PMID: 35524645 PMCID: PMC9163974 DOI: 10.1111/os.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/01/2022] Open
Abstract
Digital trauma amputations and digital agenesis strongly affect the functionality and aesthetic appearance of the hand. Autologous reconstruction is the gold standard of treatment. Unfortunately, microsurgical options and transplantation procedures are not possible for patients who present contraindications or refuse to undergo transplantation from the toe (e.g. toe‐to‐thumb transplantation). To address these issues, osseointegrated finger prostheses are a promising alternative. The functional assessments registered during follow‐up confirmed the promising outcomes of osseointegrated prostheses in the treatment of hand finger amputees. This review outlines (a) a detailed analysis of osseointegrated finger metallic components of the implants, (b) the surgical procedures suggested in the literature, and (c) the functional assessments and promising outcomes that demonstrate the potential of these medical osseointegrated devices in the treatment of finger amputees.
Collapse
Affiliation(s)
- Chiara Bregoli
- Unit of Lecco, CNR ICMATE, National Research Council, Lecco, Italy
| | | | | | | | - Matteo Primavera
- Hand and Reconstructive Surgery Unit, Centro Traumatologico Ortopedico A. Alesini, Rome, Italy
| | - Michele Rampoldi
- Hand and Reconstructive Surgery Unit, Centro Traumatologico Ortopedico A. Alesini, Rome, Italy
| | - Mario Lando
- Department of Hand surgery and Microsurgery, University Hospital of Modena, Modena, Italy
| | - Roberto Adani
- Department of Hand surgery and Microsurgery, University Hospital of Modena, Modena, Italy
| | - Ausonio Tuissi
- Unit of Lecco, CNR ICMATE, National Research Council, Lecco, Italy
| |
Collapse
|
13
|
Van den Borre CE, Zigterman BGR, Mommaerts MY, Braem A. How surface coatings on titanium implants affect keratinized tissue: A systematic review. J Biomed Mater Res B Appl Biomater 2022; 110:1713-1723. [PMID: 35103386 PMCID: PMC9306745 DOI: 10.1002/jbm.b.35025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Apart from osseointegration, the stability and long‐term survival of percutaneous titanium implants is also strongly dependent on a qualitative soft‐tissue integration in the transcutaneous region. A firm connective tissue seal is needed to minimize soft‐tissue dehiscence and epithelial downgrowth. It is well‐known that the implant surface plays a key role in controlling the biological response of the surrounding keratinized tissue and several coating systems have been suggested to enhance the soft‐tissue cell interactions. Although some promising results have been obtained in vitro, their clinical significance can be debated. Therefore, the purpose of this systematic review is to gain more insight into the effect of such coatings on the interface formed with keratinized soft‐tissue in vivo. A comprehensive search was undertaken in March 2021. Relevant electronic databases were consulted to identify appropriate studies using a set of search strings. In total, 12 out of 4971 publications were included in this review. The reported coating systems were assigned to several subgroups according to their characteristics: metallic, ceramic and composite. Notwithstanding the differences in study characteristics (animal model, implantation period, reported outcomes), it was noticed that several coatings improve the soft‐tissue integration as compared to pristine titanium. Porous titanium coatings having only limited pore sizes (<250 μm) do not support dermal fibroblast tissue attachment. Yet, larger pores (>700 μm) allow extensive vascularized soft‐tissue infiltration, thereby supporting cell attachment. Nanostructured ceramic coatings are found to reduce the inflammatory response in favor of the formation of cell adhesive structures, that is, hemidesmosomes. Biomolecule coatings seem of particular interest to stimulate the soft‐tissue behavior provided that a durable fixation to the implant surface can be ensured. In this respect, fibroblast growth factor‐2 entrapped in a biomimetic apatite coating instigates a close to natural soft‐tissue attachment with epidermal collagen fibers attaching almost perpendicular to the implant surface. However, several studies had limitations with respect to coating characterization and detailed soft‐tissue analysis, small sample size and short implantation periods. To date, robust and long‐term in vivo studies are still lacking. Further investigation is required before a clear consensus on the optimal coating system allowing enhancing the soft‐tissue seal around percutaneous titanium implants can be reached.
Collapse
Affiliation(s)
- Casper E Van den Borre
- Doctoral School of Life Sciences and Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandaan G R Zigterman
- European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maurice Y Mommaerts
- European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annabel Braem
- Department of Materials Engineering, Biomaterials and Tissue Engineering Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Sartori M, Borsari V, Maglio M, Brogini S, Bragonzoni L, Zaffagnini S, Fini M. Skin adhesion to the percutaneous component of direct bone anchored systems: systematic review on preclinical approaches and biomaterials. Biomater Sci 2021; 9:7008-7023. [PMID: 34549759 DOI: 10.1039/d1bm00707f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Nowadays, direct bone anchored systems are an increasingly adopted approach in the therapeutic landscape for amputee patients. However, the percutaneous nature of these devices poses a major challenge to obtain a stable and lasting proper adhesion between the implant surface and the skin. A systematic review was carried out in three databases (PubMed, Scopus, Web of Science) to provide an overview of the innovative strategies tested with preclinical models (in vitro and in vivo) in the last ten years to improve the skin adhesion of direct bone anchored systems. Fifty five articles were selected after screening, also employing PECO question and inclusion criteria. A modified Cochrane RoB 2.0 tool for the in vitro studies and the SYRCLE tool for in in vivo studies were used to assess the risk of bias. The evidence collected suggests that the implementation of porous percutaneous structures could be one of the most favorable approach to improve proper skin adhesion, especially in association with bioactive coatings, as hydroxyapatite, and exploiting the field of nanostructure. Some issues still remain open as (a) the identification and characterization of the best material/coating association able to limit the shear stresses at the interface and (b) the role of keratinocyte turnover on the skin/biomaterial adhesion and integration processes.
Collapse
Affiliation(s)
- Maria Sartori
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Veronica Borsari
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Melania Maglio
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Silvia Brogini
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Laura Bragonzoni
- University of Bologna - Department for Life Quality Studies, Bologna, Italy
| | - Stefano Zaffagnini
- IRCCS - Istituto Ortopedico Rizzoli, II Orthopaedic and Traumatologic Clinic, Via G.C. Pupilli 1, 40136, Bologna, Italy
| | - Milena Fini
- IRCCS - Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Via di Barbiano 1/10, 40136, Bologna, Italy.
| |
Collapse
|
15
|
Farajpour H, Bastami F, Bohlouli M, Khojasteh A. Reconstruction of bilateral ramus-condyle unit defect using custom titanium prosthesis with preservation of both condyles. J Mech Behav Biomed Mater 2021; 124:104765. [PMID: 34509905 DOI: 10.1016/j.jmbbm.2021.104765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Novel technologies for management and reconstruction of complex bony defects regarding both function and facial appearance are interestingly used in maxillofacial surgery. In the current study, we demonstrated reconstruction of a bilateral ramus-condyle unit (RCU) defect while preserving both condyles by a novel designed titanium prosthesis using virtual surgical planning (VSP), computer-aided design and manufacturing (CAD/CAM), and Selective Laser Melting (SLM) technologies. MATERIALS AND METHODS A 3D customized titanium prosthesis was designed for a 49 -year-old patient with bilateral mandibular aggressive central giant cell granuloma (CGCG) according to mandibular normal anatomy and structure while preserving bilateral intact condyles. Finite element study was performed to investigate the effects of new design strength and the stress shielding phenomenon. The design of macro-pores inside the body of prosthesis allowed it to act as a scaffold for bone tissue engineering under load bearing conditions. RESULTS Analysis of the strength and stress shielding phenomenon demonstrated favorable outcomes regarding the novel design. For instance, there was no stress shielding in any of the preserved condyles with regard to the size and distribution of stresses. Also, the stress distribution around the pores showed that these pores had no effect on the strength of the prosthesis. Thirty month follow-ups after reconstruction of bilateral RCU defect showed normal jaw function with a favorable facial appearance and mandibular contour. CONCLUSION We design a novel patient-specific prosthesis with desirable biomechanical features for reconstruction of bilateral RCU defect after resection of the benign tumor with preservation of bilateral intact condyles.
Collapse
Affiliation(s)
- Hekmat Farajpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Bastami
- Department of Oral and Maxillofacial Surgery, and Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Oral and Maxillofacial Surgery, Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Guest Professor, Faculty of Health and Medicine, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
16
|
Li Y, Felländer-Tsai L. The bone anchored prostheses for amputees - Historical development, current status, and future aspects. Biomaterials 2021; 273:120836. [PMID: 33894405 DOI: 10.1016/j.biomaterials.2021.120836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/28/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
In the past 50 years, bone anchored prostheses have evolved from a concept for experimental treatment to a rapidly developing area in orthopedics and traumatology. Up to date, there are dozens of centers in the world providing osseointegration amputation reconstructions and more than a thousand patients using the bone anchored prostheses. Compared with conventional socket prostheses, the bone anchored prosthesis by osseointegration avoids the debilitating problems related with soft tissues. It also provides physiological weight bearing, improved range of motion, and sensory feedback, all of which contribute to the improvement on quality of life for amputees. The present article briefly reviews the historical development of osseointegration surgery for amputation reconstruction and the current challenges. The implant design characters and surgical techniques of the two types of implants; the screw-type implant (presented by the OPRA system), and the press-fit implants (presented by EEP and OPL systems) are described. The major complications, infections and mechanical failures, are discussed in detail based on the latest evidence. Future aspects and experimental trials aiming to overcome the current challenges are presented.
Collapse
Affiliation(s)
- Yan Li
- Division of Orthopaedics and Biotechnology, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Theme Trauma and Reparative Medicine, Department of Orthopedics and Traumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Li Felländer-Tsai
- Division of Orthopaedics and Biotechnology, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Theme Trauma and Reparative Medicine, Department of Orthopedics and Traumatology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Malone-Povolny MJ, Bradshaw TM, Merricks EP, Long CT, Nichols TC, Schoenfisch MH. Combination of Nitric Oxide Release and Surface Texture for Mitigating the Foreign Body Response. ACS Biomater Sci Eng 2021; 7:2444-2452. [PMID: 33848421 DOI: 10.1021/acsbiomaterials.1c00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The tissue response to polyurethane (PU)-coated implants employing active and/or passive FBR mitigation techniques was evaluated over a 28 day study in a diabetic swine model. Active FBR mitigation was achieved through the sustained release of nitric oxide (NO) from a mesoporous silica nanoparticle-doped PU coating. Passive FBR mitigation was achieved through the application of a foam- or fiber-based topcoat. These topcoats were designed to possess topographical features known to promote tissue integration with foam-coated implants having pore sizes of approximately 50 μm and fiber-coated implants consisting of fiber diameters of less than 1 μm. Nitric oxide-release profiles were minimally impacted by the presence of either topcoat. Inflammatory cell density and collagen density at the implant-tissue interface were assessed at 7, 14, 21, and 28 days following implantation. Nitric oxide-releasing implants had significantly lower inflammatory cell density and collagen density than non-NO-releasing controls. The presence of a topcoat did not significantly impact inflammatory cell density, though top-coated textured implants resulted in significantly lower collagen density, irrespective of NO release. Overall, coatings that combine NO release with surface texture demonstrated the greatest potential for tissue-based biomedical device applications.
Collapse
Affiliation(s)
- Maggie J Malone-Povolny
- Department of Chemistry, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, North Carolina 27599, United States
| | - Taron M Bradshaw
- Department of Chemistry, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, North Carolina 27599, United States
| | - C Tyler Long
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, North Carolina 27599, United States
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
18
|
Guo Y, An X, Fan Z. Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing. J Mech Behav Biomed Mater 2021; 118:104452. [PMID: 33756417 DOI: 10.1016/j.jmbbm.2021.104452] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
The poor mechanical properties and the lack of antibacterial ability of hydrogels limit their applications as wound dressing. In this work, a novel and high strength polyvinyl alcohol (PVA)/tannic acid (TA) hydrogel with aramid nanofibers (ANFs) as the reinforcement was successfully fabricated. The surface composition and microstructure of the hydrogel were characterized by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The mechanical properties, water content and swelling behaviors, as well as the antibacterial abilities and biocompatibility of the prepared hydrogel were systematically analyzed as well. The results indicated that the prepared hydrogel showed excellent mechanical properties. The tensile strength and elongation of the prepared hydrogel can respectively reach 2.06 MPa and 950% owing to the formation of the multiple H bonds among PVA, ANFs and TA. What's more, PVA/ANFs/TA (PAT) hydrogel possessed shape memory and broad-spectrum antibacterial properties against S. aureus, E. coli and P. aeruginosa (100% antibacterial rate) at the concentration of 12 mg/mL. PAT hydrogels also had low cytotoxicity, affirming its potential application as wound dressing.
Collapse
Affiliation(s)
- Yuqing Guo
- School of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaoli An
- School of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Zengjie Fan
- School of Stomatology, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
19
|
Wang L, Luo Q, Zhang X, Qiu J, Qian S, Liu X. Co-implantation of magnesium and zinc ions into titanium regulates the behaviors of human gingival fibroblasts. Bioact Mater 2021; 6:64-74. [PMID: 32817914 PMCID: PMC7419333 DOI: 10.1016/j.bioactmat.2020.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Soft tissue sealing around implants acts as a barrier between the alveolar bone and oral environment, protecting implants from the invasion of bacteria or external stimuli. In this work, magnesium (Mg) and zinc (Zn) are introduced into titanium by plasma immersed ion implantation technology, and their effects on the behaviors of human gingival fibroblasts (HGFs) as well as the underlying mechanisms are investigated. Surface characterization confirms Mg and Zn exist on the surface in metallic and oxidized states. Contact angle test suggests that surface wettability of titanium changes after ion implantation and thus influences protein adsorption of surfaces. In vitro studies disclose that HGFs on Mg ion-implanted samples exhibit better adhesion and migration while cells on Zn ion-implanted samples have higher proliferation rate and amounts. The results of immunofluorescence staining and real-time reverse-transcriptase polymerase chain reaction (RT-PCR) suggest that Mg mainly regulates the motility and adhesion of HGFs through activating the MAPK signal pathway whereas Zn influences HGFs proliferation by triggering the TGF-β signal pathway. The synergistic effect of Mg and Zn ions ensure that HGFs cultured on co-implanted samples possessed both high proliferation rate and motility, which are critical to soft tissue sealing of implants.
Collapse
Key Words
- BSA, bovine serum albumin
- CLSM, confocal laser-scanning microscope
- DAPI, 4′, 6-diamidino-2-phenylindole
- ECM, extracellular matrix
- FM, fibroblasts medium
- HGFs, human gingival fibroblasts
- Human gingival fibroblasts
- Magnesium
- PBS, phosphate buffer saline
- PFA, para-formaldehyde
- PIII, plasma immersion ion implantation
- Plasma immersion ion implantation
- RT-PCR, reverse-transcriptase polymerase chain reaction
- SEM, scanning electron microscope
- Soft tissue sealing
- XPS, X-ray photoelectron spectroscopy
- Zinc
Collapse
Affiliation(s)
- Lanyu Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiming Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianming Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shi Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, 315300, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
20
|
Zhang A, Chen H, Liu Y, Wu N, Chen B, Zhao X, Han Q, Wang J. Customized reconstructive prosthesis design based on topological optimization to treat severe proximal tibia defect. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00102-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Feng X, Ma L, Liang H, Liu X, Lei J, Li W, Wang K, Song Y, Wang B, Li G, Li S, Yang C. Osteointegration of 3D-Printed Fully Porous Polyetheretherketone Scaffolds with Different Pore Sizes. ACS OMEGA 2020; 5:26655-26666. [PMID: 33110992 PMCID: PMC7581231 DOI: 10.1021/acsomega.0c03489] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 05/02/2023]
Abstract
Polyetheretherketone (PEEK) constitutes a preferred alternative material for orthopedic implants owing to its good mechanical properties and biocompatibility. However, the poor osseointegration property of PEEK implants has limited their clinical applications. To address this issue, in this study, we investigated the mechanical and biological properties of fully porous PEEK scaffolds with different pore sizes both in vitro and in vivo. PEEK scaffolds with designed pore sizes of 300, 450, and 600 μm and a porosity of 60% were manufactured via fused deposition modeling (FDM) to explore the optimum pore size. Smooth solid PEEK cylinders (PEEK-S) were used as the reference material. The mechanical, cytocompatibility, proliferative, and osteogenic properties of PEEK scaffolds were characterized in comparison to those of PEEK-S. In vivo dynamic contrast-enhanced magnetic resonance imaging, microcomputed tomography, and histological observation were performed after 4 and 12 weeks of implantation to evaluate the microvascular perfusion and bone formation afforded by the various PEEK implants using a New Zealand white rabbit model with distal femoral condyle defects. Results of in vitro testing supported the good biocompatibility of the porous PEEK scaffolds manufactured via FDM. In particular, the PEEK-450 scaffolds were most beneficial for cell adhesion, proliferation, and osteogenic differentiation. Results of in vivo analysis further indicated that PEEK-450 scaffolds exhibited preferential potential for bone ingrowth and vascular perfusion. Together, our findings support that porous PEEK implants designed with a suitable pore size and fabricated via three-dimensional printing constitute promising alternative biomaterials for bone grafting and tissue engineering applications with marked potential for clinical applications.
Collapse
Affiliation(s)
- Xiaobo Feng
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hang Liang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Liu
- Department
of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Lei
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqiang Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingjin Wang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
22
|
Adib AA, Sheikhi A, Shahhosseini M, Simeunović A, Wu S, Castro CE, Zhao R, Khademhosseini A, Hoelzle DJ. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue. Biofabrication 2020; 12:045006. [PMID: 32464607 DOI: 10.1088/1758-5090/ab97a1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We develop and characterize a biomaterial formulation and robotic methods tailored for intracorporeal tissue engineering (TE) via direct-write (DW) 3D printing. Intracorporeal TE is defined as the biofabrication of 3D TE scaffolds inside of a living patient, in a minimally invasive manner. A biomaterial for intracorporeal TE requires to be 3D printable and crosslinkable via mechanisms that are safe to native tissues and feasible at physiological temperature (37 °C). The cell-laden biomaterial (bioink) preparation and bioprinting methods must support cell viability. Additionally, the biomaterial and bioprinting method must enable the spatially accurate intracorporeal 3D delivery of the biomaterial, and the biomaterial must adhere to or integrate into the native tissue. Current biomaterial formulations do not meet all the presumed intracorporeal DW TE requirements. We demonstrate that a specific formulation of gelatin methacryloyl (GelMA)/Laponite®/methylcellulose (GLM) biomaterial system can be 3D printed at physiological temperature and crosslinked using visible light to construct 3D TE scaffolds with clinically relevant dimensions and consistent structures. Cell viability of 71%-77% and consistent mechanical properties over 21 d are reported. Rheological modifiers, Laponite® and methylcellulose, extend the degradation time of the scaffolds. The DW modality enables the piercing of the soft tissue and over-extrusion of the biomaterial into the tissue, creating a novel interlocking mechanism with soft, hydrated native tissue mimics and animal muscle with a 3.5-4 fold increase in the biomaterial/tissue adhesion strength compared to printing on top of the tissue. The developed GLM biomaterial and robotic interlocking mechanism pave the way towards intracorporeal TE.
Collapse
Affiliation(s)
- A Asghari Adib
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|