1
|
Wang Z, Zhang W, Zhou Y, Zhang Q, Kulkarni KP, Melmaiee K, Tian Y, Dong M, Gao Z, Su Y, Yu H, Xu G, Li Y, He H, Liu Q, Sun H. Genetic and epigenetic signatures for improved breeding of cultivated blueberry. HORTICULTURE RESEARCH 2024; 11:uhae138. [PMID: 38988623 PMCID: PMC11233858 DOI: 10.1093/hr/uhae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Blueberry belongs to the Vaccinium genus and is a highly popular fruit crop with significant economic importance. It was not until the early twentieth century that they began to be domesticated through extensive interspecific hybridization. Here, we collected 220 Vaccinium accessions from various geographical locations, including 154 from the United States, 14 from China, eight from Australia, and 29 from Europe and other countries, comprising 164 Vaccinium corymbosum, 15 Vaccinium ashei, 10 lowbush blueberries, seven half-high blueberries, and others. We present the whole-genome variation map of 220 accessions and reconstructed the hundred-year molecular history of interspecific hybridization of blueberry. We focused on the two major blueberry subgroups, the northern highbush blueberry (NHB) and southern highbush blueberry (SHB) and identified candidate genes that contribute to their distinct traits in climate adaptability and fruit quality. Our analysis unveiled the role of gene introgression from Vaccinium darrowii and V. ashei into SHB in driving the differentiation between SHB and NHB, potentially facilitating SHB's adaptation to subtropical environments. Assisted by genome-wide association studies, our analysis suggested VcTBL44 as a pivotal gene regulator governing fruit firmness in SHB. Additionally, we conducted whole-genome bisulfite sequencing on nine NHB and 12 SHB cultivars, and characterized regions that are differentially methylated between the two subgroups. In particular, we discovered that the β-alanine metabolic pathway genes were enriched for DNA methylation changes. Our study provides high-quality genetic and epigenetic variation maps for blueberry, which offer valuable insights and resources for future blueberry breeding.
Collapse
Affiliation(s)
- Zejia Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Wanchen Zhang
- Jilin Provincial Laboratory of Crop Germplasm Resources, College of Horticulture, Jilin Agricultural University, No. 2888 Xincheng Street, Economic Development District, Changchun 130118, China
| | - Yangyan Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Qiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Krishnanand P Kulkarni
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA
| | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA
| | - Youwen Tian
- Jilin Provincial Laboratory of Crop Germplasm Resources, College of Horticulture, Jilin Agricultural University, No. 2888 Xincheng Street, Economic Development District, Changchun 130118, China
| | - Mei Dong
- Jilin Provincial Laboratory of Crop Germplasm Resources, College of Horticulture, Jilin Agricultural University, No. 2888 Xincheng Street, Economic Development District, Changchun 130118, China
| | - Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yanning Su
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Hong Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guohui Xu
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Yadong Li
- Jilin Provincial Laboratory of Crop Germplasm Resources, College of Horticulture, Jilin Agricultural University, No. 2888 Xincheng Street, Economic Development District, Changchun 130118, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Haiyue Sun
- Jilin Provincial Laboratory of Crop Germplasm Resources, College of Horticulture, Jilin Agricultural University, No. 2888 Xincheng Street, Economic Development District, Changchun 130118, China
| |
Collapse
|
2
|
Loarca J, Liou M, Dawson JC, Simon PW. Advancing utilization of diverse global carrot ( Daucus carota L.) germplasm with flowering habit trait ontology. FRONTIERS IN PLANT SCIENCE 2024; 15:1342513. [PMID: 38779064 PMCID: PMC11110672 DOI: 10.3389/fpls.2024.1342513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Biennial vegetable crops are challenging to breed due to long breeding cycle times. At the same time, it is important to preserve a strong biennial growth habit, avoiding premature flowering that renders the crop unmarketable. Gene banks carry important genetic variation which may be essential to improve crop resilience, but these collections are underutilized due to lack of characterization for key traits like bolting tendency for biennial vegetable crops. Due to concerns about introducing undesirable traits such as premature flowering into elite germplasm, many accessions may not be considered for other key traits that benefit growers, leaving crops more vulnerable to pests, diseases, and abiotic stresses. In this study, we develop a method for characterizing flowering to identify accessions that are predominantly biennial, which could be incorporated into biennial breeding programs without substantially increasing the risk of annual growth habits. This should increase the use of these accessions if they are also sources of other important traits such as disease resistance. We developed the CarrotOmics flowering habit trait ontology and evaluated flowering habit in the largest (N=695), and most diverse collection of cultivated carrots studied to date. Over 80% of accessions were collected from the Eurasian supercontinent, which includes the primary and secondary centers of carrot diversity. We successfully identified untapped genetic diversity in biennial carrot germplasm (n=197 with 0% plants flowering) and predominantly-biennial germplasm (n=357 with <15% plants flowering). High broad-sense heritability for flowering habit (0.81 < H2< 0.93) indicates a strong genetic component of this trait, suggesting that these carrot accessions should be consistently biennial. Breeders can select biennial plants and eliminate annual plants from a predominantly biennial population. The establishment of the predominantly biennial subcategory nearly doubles the availability of germplasm with commercial potential and accounts for 54% of the germplasm collection we evaluated. This subcollection is a useful source of genetic diversity for breeders. This method could also be applied to other biennial vegetable genetic resources and to introduce higher levels of genetic diversity into commercial cultivars, to reduce crop genetic vulnerability. We encourage breeders and researchers of biennial crops to optimize this strategy for their particular crop.
Collapse
Affiliation(s)
- Jenyne Loarca
- Vegetable Crops Research Unit, United States Department of Agriculture, Madison, WI, United States
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael Liou
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Julie C. Dawson
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Philipp W. Simon
- Vegetable Crops Research Unit, United States Department of Agriculture, Madison, WI, United States
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Cola G, Cavenago B, Gardana CS, Spinardi A. Effect of Elicitor Treatments on Quality Attributes in Blueberry: Implications of Cultivar and Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1105. [PMID: 38674514 PMCID: PMC11054320 DOI: 10.3390/plants13081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Elicitors of plant defence responses can trigger defence mechanisms that are able to protect plant tissues from biotic or abiotic stresses. Since one defence response involves the activation of secondary metabolites' biosynthesis, the purpose of this study was to evaluate the effect of chitosan and melatonin pre-harvest treatments on the quality and the nutritional parameters of the fruits of blueberry (Vaccinium corymbosum L.). Across the two years of experiment, three different cultivars (cv.s. 'Cosmopolitan', 'Hortblue Poppins' and 'Legacy') were treated with 1% chitosan or 100 µM melatonin every two weeks during the ripening season and ripe fruits were progressively harvested and analysed. The treatment with both elicitors had only slight effects on dry matter, soluble solids content, titratable acidity and pH, with a cultivar-dependent response. On the other hand, elicitors significantly affected the levels of phenylpropanoid and antioxidant compounds in all cvs. in both years, with a higher accumulation of total anthocyanins and phenolics and the enhancement of the antioxidant capacity, with positive effects on the nutraceutical quality of fruits. The anthocyanin profile in terms of both absolute concentrations and the relative proportion of single anthocyanins was affected by both harvest year and cv., highlighting the role of the genetic background in the plant response to environmental conditions (with particular reference to summer heat stress) and to elicitor treatments.
Collapse
Affiliation(s)
- Gabriele Cola
- Department of Agricultural and Environmental Sciences (DISAA), Università Degli Studi Di Milano, 20133 Milan, Italy; (G.C.); (B.C.)
| | - Beatrice Cavenago
- Department of Agricultural and Environmental Sciences (DISAA), Università Degli Studi Di Milano, 20133 Milan, Italy; (G.C.); (B.C.)
| | - Claudio Sebastiano Gardana
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133 Milan, Italy;
| | - Anna Spinardi
- Department of Agricultural and Environmental Sciences (DISAA), Università Degli Studi Di Milano, 20133 Milan, Italy; (G.C.); (B.C.)
| |
Collapse
|
4
|
Park S, Park YO, Park Y. Population Genetic Analysis in Persimmons ( Diospyros kaki Thunb.) Based on Genome-Wide Single-Nucleotide Polymorphisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112097. [PMID: 37299077 DOI: 10.3390/plants12112097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
This study investigated the genetic diversity and population structure of a persimmon (Diospyros kaki Thunb., 2n = 6x = 90) collection in South Korea by evaluating 9751 genome-wide single-nucleotide polymorphisms (SNPs) detected using genotyping-by-sequencing in 93 cultivars. The results of neighbor-joining clustering, principal component analysis, and STRUCTURE analysis based on SNPs indicated clear separation between cultivar groups (pollination-constant nonastringent (PCNA, 40 cultivars), pollination-constant astringent (PCA, 19), pollination-variant nonastringent (PVNA, 23), and the pollination-variant astringent type (PVA, 9)) based on the astringency types, while separation between PVA and PVNA-type cultivars was unclear. Population genetic diversity based on SNPs showed that the proportions of polymorphic SNPs within each group ranged from 99.01% (PVNA) to 94.08% (PVA), and the PVNA group exhibited the highest genetic diversity (He = 3.86 and uHe = 0.397). F (fixation index) values were low ranging from -0.024 (PVA) to 0.176 (PCA) with an average of 0.089, indicating a deficiency of heterozygosity. Analysis of molecular variance (AMOVA) and Fst among cultivar groups indicated that variation within individuals was higher than that among the groups. Pairwise Fst values among the groups ranged from 0.01566 (between PVA and PVNA) to 0.09416 (between PCA and PCNA), indicating a low level of cultivar type differentiation. These findings highlight the potential application of biallelic SNPs in population genetics studies of allopolyploids species and provide valuable insights that may have significant implications for breeding and cultivar identification in persimmon.
Collapse
Affiliation(s)
- Seoyeon Park
- Department of Horticultural Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ye-Ok Park
- Sweet Persimmon Research Institute, Gyeongsangnam-do Agricultural Research and Extension Services, Gimhae 50871, Republic of Korea
| | - Younghoon Park
- Department of Horticultural Science, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
5
|
Manzanero BR, Kulkarni KP, Vorsa N, Reddy UK, Natarajan P, Elavarthi S, Iorizzo M, Melmaiee K. Genomic and evolutionary relationships among wild and cultivated blueberry species. BMC PLANT BIOLOGY 2023; 23:126. [PMID: 36872311 PMCID: PMC9987114 DOI: 10.1186/s12870-023-04124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Blueberries (Vaccinium section Cyanococcus) are an economically important fruit crop in the United States. Understanding genetic structure and relationships in blueberries is essential to advance the genetic improvement of horticulturally important traits. In the present study, we investigated the genomic and evolutionary relationships in 195 blueberry accessions from five species (comprising 33 V. corymbosum, 14 V. boreale, 81 V. darrowii, 29 V. myrsinites, and 38 V. tenellum) using single nucleotide polymorphisms (SNPs) mined from genotyping-by-sequencing (GBS) data. RESULTS GBS generated ~ 751 million raw reads, of which 79.7% were mapped to the reference genome V. corymbosum cv. Draper v1.0. After filtering (read depth > 3, minor allele frequency > 0.05, and call rate > 0.9), 60,518 SNPs were identified and used in further analyses. The 195 blueberry accessions formed three major clusters on the principal component (PC) analysis plot, in which the first two PCs accounted for 29.2% of the total genetic variance. Nucleotide diversity (π) was highest for V. tenellum and V. boreale (0.023 each), and lowest for V. darrowii (0.012). Using TreeMix analysis, we identified four migration events and deciphered gene flow among the selected species. In addition, we detected a strong V. boreale lineage in cultivated blueberry species. Pairwise SweeD analysis identified a wide sweep (encompassing 32 genes) as a strong signature of domestication on the scaffold VaccDscaff 12. From this region, five genes encoded topoisomerases, six genes encoded CAP-gly domain linker (which regulates the dynamics of the microtubule cytoskeleton), and three genes coded for GSL8 (involved in the synthesis of the cell wall component callose). One of the genes, augustus_masked-VaccDscaff12-processed-gene-172.10, is a homolog of Arabidopsis AT2G25010 and encodes the protein MAINTENANCE OF MERISTEMS-like involved in root and shoot growth. Additional genomic stratification by admixture analysis identified genetic lineages and species boundaries in blueberry accessions. The results from this study indicate that V. boreale is a genetically distant outgroup, while V. darrowii, V. myrsinites, and V. tenellum are closely related. CONCLUSION Our study provides new insights into the evolution and genetic architecture of cultivated blueberries.
Collapse
Affiliation(s)
- Byron R. Manzanero
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901 USA
| | - Krishnanand P. Kulkarni
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901 USA
| | - Nicholi Vorsa
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
- Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Chatsworth, NJ 08019 USA
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, WV 25112 USA
| | | | - Sathya Elavarthi
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901 USA
| | - Massimo Iorizzo
- Department of Horticultural Science and Plants for Human Health Institute, NC State University, Kannapolis, NC 28081 USA
| | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901 USA
| |
Collapse
|
6
|
Polyploid SNP Genotyping Using the MassARRAY System. Methods Mol Biol 2023; 2638:93-113. [PMID: 36781637 DOI: 10.1007/978-1-0716-3024-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Molecular marker discovery and genotyping are major challenges in polyploid breeding programs incorporating molecular biology tools. In this context, this work describes a method for single nucleotide polymorphism (SNP) genotyping in polyploid crops using matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry, the MassARRAY System.
Collapse
|
7
|
T. V. N, S. RP, R. L. R. Population structure and genetic diversity characterization of soybean for seed longevity. PLoS One 2022; 17:e0278631. [PMID: 36472991 PMCID: PMC9725150 DOI: 10.1371/journal.pone.0278631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Seed longevity is an important trait in the context of germplasm conservation and economics of seed production. The identification of populations with high level of genetic variability for seed longevity and associated traits will become a valuable resource for superior alleles for seed longevity. In this study, Genotyping-by-sequencing (GBS)-single nucleotide polymorphism (SNP) approach, simple sequence repeats (SSR) markers and agro-morphological traits have been explored to investigate the diversity and population structure of assembled 96 genotypes. The GBS technique performed on 96 genotypes of soybean (Glycine max (L.) Merrill) resulted in 37,897 SNPs on sequences aligned to the reference genome sequence. The average genome coverage was 6.81X with a mapping rate of 99.56% covering the entire genome. Totally, 29,955 high quality SNPs were identified after stringent filtering and most of them were detected in non-coding regions. The 96 genotypes were phenotyped for eight quantitative and ten qualitative traits by growing in field by following augmented design. The STRUCTURE (Bayesian-model based algorithm), UPGMA (Un-weighed Pair Group Method with Arithmetic mean) and principal component analysis (PCA) approaches using SSR, SNP as well as quantitative and qualitative traits revealed population structure and diversity in assembled population. The Bayesian-model based STRUCTURE using SNP markers could effectively identify clusters with higher seed longevity associated with seed coat colour and size which were subsequently validated by UPGMA and PCA based on SSR and agro-morphological traits. The results of STRUCTURE, PCA and UPGMA cluster analysis showed high degree of similarity and provided complementary data that helped to identify genotypes with higher longevity. Six black colour genotypes, viz., Local black soybean, Kalitur, ACC Nos. 39, 109, 101 and 37 showed higher seed longevity during accelerated ageing. Higher coefficient of variability observed for plant height, number of pods per plant, seed yield per plant, 100 seed weight and seed longevity confirms the diversity in assembled population and its suitability for quantitative trait loci (QTL) mapping.
Collapse
Affiliation(s)
- Naflath T. V.
- Department of Seed Science and Technology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, India
| | - Rajendra Prasad S.
- Department of Seed Science and Technology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, India
| | - Ravikumar R. L.
- Department of Plant Biotechnology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
8
|
Genetic diversity and population structure of wild and cultivated Crotalaria species based on genotyping-by-sequencing. PLoS One 2022; 17:e0272955. [PMID: 36048841 PMCID: PMC9436042 DOI: 10.1371/journal.pone.0272955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022] Open
Abstract
Crotalaria is a plant genus that is found all over the world, with over 700 species of herbs and shrubs. The species are potential alternative food and industrial crops due to their adaptability to different environments. Currently, information on the genetic diversity and population structure of these species is scanty. Genotyping-by-sequencing (GBS) is a cost-effective high-throughput technique in diversity evaluation of plant species that have not been fully sequenced. In the current study, de novo GBS was used to characterize 80 Crotalaria accessions from five geographical regions in Kenya. A total of 9820 single nucleotide polymorphism (SNP) markers were obtained after thinning and filtering, which were then used for the analysis of genetic diversity and population structure in Crotalaria. The proportion of SNPs with a minor allele frequency (maf) > = 0.05 was 45.08%, while the Guanine-Cytosine (GC) content was 0.45, from an average sequence depth of 455,909 reads per base. The transition vs transversion ratio was 1.81 and Heterozygosity (He) ranged between 0.01–0.07 in all the sites and 0.04 to 0.52 in the segregating sites. The mean Tajima’s D value for the population was -0.094, suggesting an excess of rare alleles. The fixation index (Fst) between the different populations based on the Wright Fst (1943) ranged from 0.0119 to 0.066 for the Eastern-Western and Nairobi-Western populations. Model based techniques of population structure analysis including structure, k-means and cross-entropy depicted eight clusters in the study accessions. Non-model based techniques especially DAPC depicted poor population stratification. Correspondence Analysis (CA), Principal coordinate analyses (PCoA) and phylogenetic analysis identified a moderate level of population stratification. Results from this study will help conservationists and breeders understand the genetic diversity of Crotalaria. The study also provides valuable information for genetic improvement of domesticated species.
Collapse
|
9
|
Edger PP, Iorizzo M, Bassil NV, Benevenuto J, Ferrão LFV, Giongo L, Hummer K, Lawas LMF, Leisner CP, Li C, Munoz PR, Ashrafi H, Atucha A, Babiker EM, Canales E, Chagné D, DeVetter L, Ehlenfeldt M, Espley RV, Gallardo K, Günther CS, Hardigan M, Hulse-Kemp AM, Jacobs M, Lila MA, Luby C, Main D, Mengist MF, Owens GL, Perkins-Veazie P, Polashock J, Pottorff M, Rowland LJ, Sims CA, Song GQ, Spencer J, Vorsa N, Yocca AE, Zalapa J. There and back again; historical perspective and future directions for Vaccinium breeding and research studies. HORTICULTURE RESEARCH 2022; 9:uhac083. [PMID: 35611183 PMCID: PMC9123236 DOI: 10.1093/hr/uhac083] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2022] [Indexed: 06/02/2023]
Abstract
The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.
Collapse
Affiliation(s)
- Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- MSU AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nahla V Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Juliana Benevenuto
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Luis Felipe V Ferrão
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Lara Giongo
- Fondazione Edmund Mach - Research and Innovation CentreItaly
| | - Kim Hummer
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Lovely Mae F Lawas
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changying Li
- Phenomics and Plant Robotics Center, College of Engineering, University of Georgia, Athens, USA
| | - Patricio R Munoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Amaya Atucha
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ebrahiem M Babiker
- USDA-ARS Southern Horticultural Laboratory, Poplarville, MS 39470-0287, USA
| | - Elizabeth Canales
- Department of Agricultural Economics, Mississippi State University, Mississippi State, MS 39762, USA
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Lisa DeVetter
- Department of Horticulture, Washington State University Northwestern Washington Research and Extension Center, Mount Vernon, WA, 98221, USA
| | - Mark Ehlenfeldt
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Karina Gallardo
- School of Economic Sciences, Washington State University, Puyallup, WA 98371, USA
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Michael Hardigan
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Amanda M Hulse-Kemp
- USDA-ARS, Genomics and Bioinformatics Research Unit, Raleigh, NC 27695, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - MacKenzie Jacobs
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Claire Luby
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA
| | - Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | | | | | - James Polashock
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Lisa J Rowland
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MD 20705, USA
| | - Charles A Sims
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Jessica Spencer
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nicholi Vorsa
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Juan Zalapa
- USDA-ARS, VCRU, Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Favre F, Jourda C, Besse P, Charron C. Genotyping-by-Sequencing Technology in Plant Taxonomy and Phylogeny. Methods Mol Biol 2021; 2222:167-178. [PMID: 33301094 DOI: 10.1007/978-1-0716-0997-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Genotyping-by-sequencing (GBS) is a method to discover and genotype simultaneous genome-wide high-throughput single nucleotide polymorphisms (SNPs). GBS is based on reducing genome complexity with restriction enzymes. Here we describe a method developed by Elshire et al. for constructing simplified GBS libraries and recent bioinformatic approaches developed to analyze the large volume of polymorphism data generated by this method. GBS approach is suitable for population studies, taxonomic and phylogenic studies, germplasm characterization, and breeding and trait mapping for a wide range of organisms, including plants with complex genomes.
Collapse
Affiliation(s)
- Félicien Favre
- Université de La Réunion, UMR PVBMT, St Pierre, La Réunion, France
| | | | - Pascale Besse
- UMR PVBMT, Universite de la Reunion, St Pierre, Réunion, France
| | | |
Collapse
|
11
|
Nagasaka K, Nishiyama S, Fujikawa M, Yamane H, Shirasawa K, Babiker E, Tao R. Genome-Wide Identification of Loci Associated With Phenology-Related Traits and Their Adaptive Variations in a Highbush Blueberry Collection. FRONTIERS IN PLANT SCIENCE 2021; 12:793679. [PMID: 35126419 PMCID: PMC8814416 DOI: 10.3389/fpls.2021.793679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 05/04/2023]
Abstract
Genetic variation in phenological traits is the key in expanding production areas of crops. Southern highbush blueberry (SHB) is a blueberry cultivar group adapted to warmer climates and has been developed by multiple interspecific hybridizations between elite northern highbush blueberry (NHB) (Vaccinium corymbosum L.) and low-chill Vaccinium species native to the southern United States. In this study, we employed a collection of diverse SHB accessions and performed a genome-wide association study (GWAS) for five phenology-related traits [chilling requirement (CR), flowering date, ripening date, fruit development period, and continuous flowering] using polyploid GWAS models. Phenology-related traits showed higher heritability and larger correlation coefficients between year replications, which resulted in the detection of robust phenotype-genotype association peaks. Notably, a single association peak for the CR was detected on Chromosome 4. Comparison of genotypes at the GWAS peaks between NHB and SHB revealed the putative introgression of low-chill and late-flowering alleles into the highbush genetic pool. Our results provide basic insights into the diversity of phenological traits in blueberry and the genetic establishment of current highbush cultivar groups.
Collapse
Affiliation(s)
- Kyoka Nagasaka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Soichiro Nishiyama
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- *Correspondence: Soichiro Nishiyama,
| | - Mao Fujikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Ebrahiem Babiker
- Thad Cochran Southern Horticultural Laboratory, United States Department of Agriculture, Agricultural Research Service, Poplarville, MS, United States
- Ebrahiem Babiker,
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Mengist MF, Burtch H, Debelo H, Pottorff M, Bostan H, Nunn C, Corbin S, Kay CD, Bassil N, Hummer K, Lila MA, Ferruzzi MG, Iorizzo M. Development of a genetic framework to improve the efficiency of bioactive delivery from blueberry. Sci Rep 2020; 10:17311. [PMID: 33057109 PMCID: PMC7560831 DOI: 10.1038/s41598-020-74280-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/23/2020] [Indexed: 01/28/2023] Open
Abstract
In the present study, we applied a novel high-throughput in vitro gastrointestinal digestion model to phenotype bioaccessibility of phenolics in a diverse germplasm collection representing cultivated highbush blueberries. Results revealed significant (P < 0.05) differences between accessions, years, and accession by year interaction for relative and absolute bioaccessibility of flavonoids and phenolic acids. Broad sense heritability estimates revealed low to moderate inheritances of relative and absolute bioaccessibility, suggesting that besides environmental variables, genetics factors could control bioaccessibility of phenolics. Acylated anthocyanins had significantly higher relative bioaccessibility than non-acylated anthocyanins. Correlation analysis indicated that relative bioaccessibility did not show significant association with fruit quality or raw concentration of metabolites. The study also identified accessions that have high relative and absolute bioaccessibility values. Overall, combining the bioaccessibility of phenolics with genetic and genomic approaches will enable the identification of genotypes and genetic factors influencing these traits in blueberry.
Collapse
Affiliation(s)
- Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Haley Burtch
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Hawi Debelo
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Hamed Bostan
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Candace Nunn
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Sydney Corbin
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.,Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, 27606, NC, USA
| | - Nahla Bassil
- USDA-ARS-National Clonal Germplasm Repository, Corvallis, OR, 97333, USA
| | - Kim Hummer
- USDA-ARS-National Clonal Germplasm Repository, Corvallis, OR, 97333, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.,Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, 27606, NC, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA. .,Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, 27606, NC, USA.
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC, 28081, USA. .,Department of Horticultural Science, North Carolina State University, Raleigh, 27607, NC, USA.
| |
Collapse
|
13
|
Genomic insight into the developmental history of southern highbush blueberry populations. Heredity (Edinb) 2020; 126:194-205. [PMID: 32873965 DOI: 10.1038/s41437-020-00362-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 11/08/2022] Open
Abstract
Interspecific hybridization is a common breeding approach for introducing novel traits and genetic diversity to breeding populations. Southern highbush blueberry (SHB) is a blueberry cultivar group that has been intensively bred over the last 60 years. Specifically, it was developed by multiple interspecific crosses between northern highbush blueberry [NHB, Vaccinium corymbosum L. (2n = 4x = 48)] and low-chill Vaccinium species to expand the geographic limits of highbush blueberry production. In this study, we genotyped polyploid blueberries, including 105 SHB, 17 NHB, and 10 rabbiteye blueberry (RE) (Vaccinium virgatum Aiton), from the accessions planted at Poplarville, Mississippi, and accessions distributed in Japan, based on the double-digest restriction site-associated DNA sequencing. The genome-wide SNP data clearly indicated that RE cultivars were genetically distinct from SHB and NHB cultivars, whereas NHB and SHB were genetically indistinguishable. The population structure results appeared to reflect the differences in the allele selection strategies that breeders used for developing germplasm adapted to local climates. The genotype data implied that there are no or very few genomic segments that were commonly introgressed from low-chill Vaccinium species to the SHB genome. Principal component analysis-based outlier detection analysis found a few loci associated with a variable that could partially differentiate NHB and SHB. These SNP loci were detected in Mb-scale haplotype blocks and may be close to the functional genes related to SHB development. Collectively, the data generated in this study suggest a polygenic adaptation of SHB to the southern climate, and may be relevant for future population-scale genome-wide analyses of blueberry.
Collapse
|
14
|
Reza Mohammadi, Panahi B, Amiri S. ISSR Based Study of Fine Fescue (Festuca ovina L.) Highlighted the Genetic Diversity of Iranian Accessions. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720030123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Wang Y, Nie F, Shahid MQ, Baloch FS. Molecular footprints of selection effects and whole genome duplication (WGD) events in three blueberry species: detected by transcriptome dataset. BMC PLANT BIOLOGY 2020; 20:250. [PMID: 32493212 PMCID: PMC7268529 DOI: 10.1186/s12870-020-02461-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/24/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Both selection effects and whole genome duplication played very important roles in plant speciation and evolution, and to decipher the corresponding molecular footprint has always been a central task of geneticists. Vaccinium is species rich genus that comprised of about 450 species, and blueberry is one of the most important species of Vaccinium genus, which is gaining popularity because of high healthful value. In this article, we aimed to decipher the molecular footprints of natural selection on the single copy genes and WGD events occur in the evolutionary history of blueberry species. RESULTS We identified 30,143, 29,922 and 28,891 putative protein coding sequences from 45,535, 42,914 and 43,630 unigenes assembled from the leaves' transcriptome assembly of 19 rabbiteye (T1), 13 southern highbush (T2) and 22 northern highbush (T3) blueberry cultivars. A total of 17, 21 and 27 single copy orthologs were found to undergone positive selection in T1 versus T2, T1 versus T3, and T2 versus T3, respectively, and these orthologs were enriched in metabolic pathways including "Terpenoid backbone biosynthesis", "Valine, leucine and isoleucine biosynthesis", "Butanoate metabolism", "C5-Branched dibasic acid metabolism" "Pantothenate and CoA biosynthesis". We also detected significant molecular footprints of a recent (about 9.04 MYA), medium (about 43.44 MYA) and an ancient (about 116.39 MYA) WGD events that occurred in the evolutionary history of three blueberry species. CONCLUSION Some important functional genes revealed positive selection effect in blueberry. At least three rounds of WGD events were detected in the evolutionary history of blueberry species. Our work provides insights about the genetic mechanism of adaptive evolution in blueberry and species radiation of Vaccinium in short geological scale time.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Health and Life Science, Kaili University, Kaili City, 556011 Guizhou Province China
| | - Fei Nie
- Biological institute of Guizhou Province, Guiyang City, 556000 Guizhou Province China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong Province China
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
16
|
Mengist MF, Grace MH, Xiong J, Kay CD, Bassil N, Hummer K, Ferruzzi MG, Lila MA, Iorizzo M. Diversity in Metabolites and Fruit Quality Traits in Blueberry Enables Ploidy and Species Differentiation and Establishes a Strategy for Future Genetic Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:370. [PMID: 32318085 PMCID: PMC7147330 DOI: 10.3389/fpls.2020.00370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/16/2020] [Indexed: 05/30/2023]
Abstract
Blueberry is well recognized as a rich source of health promoting phytochemicals such as flavonoids and phenolic acids. Multiple studies in blueberry and other crops indicated that flavonoids and phenolic acids function as bioactive compounds in the human body promoting multiple health effects. Despite their importance, information is limited about the levels of variation in bioactive compounds within and between ploidy level and species, and their association with fruit quality traits. Such information is crucial to define a strategy to study the genetic mechanisms controlling these traits and to select for these traits in blueberry breeding programs. Here we evaluated 33 health related phytochemicals belonging to four major groups of flavonoids and phenolic acids across 128 blueberry accessions over two years together with fruit quality traits, including fruit weight, titratable acidity, total soluble acids and pH. Highly significant variation between accessions, years, and accession by year interaction were identified for most of the traits. Cluster analysis grouped phytochemicals by their functional structure (e.g., anthocyanins, flavanols, flavonols, and phenolic acids). Multivariate analysis of the traits resulted in separation of diploid, tetraploid and hexaploid accessions. Broad sense heritability of the traits estimated in 100 tetraploid accessions, ranged from 20 to 90%, with most traits revealing moderate to high broad sense heritability (H2 > 40%), suggesting that strong genetic factors control these traits. Fruit size can be estimated as a proxy of fruit weight or volume and vice versa, and it was negatively correlated with content of most of phytochemicals evaluated here. However, size-independent variation for anthocyanin content and profile (e.g., acylated vs. non-acylated anthocyanin) exists in the tetraploid accessions and can be explored to identify other factors such as genes related to the biosynthetic pathway that control this trait. This result also suggests that metabolite concentrations and fruit size, to a certain degree can be improved simultaneously in breeding programs. Overall, the results of this study provide a framework to uncover the genetic basis of bioactive compounds and fruit quality traits and will be useful to advance blueberry-breeding programs focusing on integrating these traits.
Collapse
Affiliation(s)
- Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Mary H Grace
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Jia Xiong
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Nahla Bassil
- USDA-ARS-National Clonal Germplasm Repository, Corvallis, OR, United States
| | - Kim Hummer
- USDA-ARS-National Clonal Germplasm Repository, Corvallis, OR, United States
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, NCRC, Kannapolis, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
17
|
Madrera RR, Valles BS, Negrillo AC, Fernández JF. Physicochemical characterization of blueberry (Vacciniumspp.) juices from 55 cultivars grown in Northern Spain. ACTA ALIMENTARIA 2019. [DOI: 10.1556/066.2019.48.2.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- R. Rodríguez Madrera
- Regional Agrifood Research and Development Service (SERIDA), E-33300 Villaviciosa (Asturias). Spain
| | - B. Suárez Valles
- Regional Agrifood Research and Development Service (SERIDA), E-33300 Villaviciosa (Asturias). Spain
| | - A. Campa Negrillo
- Regional Agrifood Research and Development Service (SERIDA), E-33300 Villaviciosa (Asturias). Spain
| | - J.J. Ferreira Fernández
- Regional Agrifood Research and Development Service (SERIDA), E-33300 Villaviciosa (Asturias). Spain
| |
Collapse
|
18
|
Wang Y, Shahid MQ, Ghouri F, Ercişli S, Baloch FS, Nie F. Transcriptome analysis and annotation: SNPs identified from single copy annotated unigenes of three polyploid blueberry crops. PLoS One 2019; 14:e0216299. [PMID: 31034501 PMCID: PMC6488077 DOI: 10.1371/journal.pone.0216299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/17/2019] [Indexed: 02/03/2023] Open
Abstract
Blueberry is a kind of new rising popular perennial fruit with high healthful quality. It is of utmost importance to develop new blueberry varieties for different climatic zones to satisfy the demand of people in the world. Molecular marker assisted breeding is believed to be an ideal method for the development of new blueberry varieties for its shorter breeding cycle than the conventional breeding. Simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) markers are widely used molecular tools for marker assisted breeding, which could be detected at large scale by the transcriptome sequencing. Here, we sequenced the leaves transcriptome of 19 rabbiteye (Vaccinium ashei Reade), 13 southern highbush (Vaccinium. corymbosum L × native southern Vaccinium Spp) and 22 cultivars of northern highbush blueberry (Vaccinium corymbosum L) by using next generation sequencing technologies. A total of 80.825 Gb clean data with an average of about 12.525 million reads per cultivar were obtained. We assembled 58,968, 55,973 and 53,887 unigenes by using the clean data from rabbiteye, southern highbush and northern highbush blueberry cultivars, respectively. Among these unigenes, 3599, 3495 and 3513 unigenes were detected as candidate resistance genes in three blueberry crops. Moreover, we identified more than 8756, 9020, and 9198 SSR markers from these unigenes, and 7665, 4861, 13,063 SNPs from the annotated single copy unigenes, respectively. The results will be helpful for the molecular genetics and association analysis of blueberry and the basic molecular information of pest and disease resistance of blueberry, and would also offer huge number of molecular tools for the marker assisted breeding to produce blueberry cultivars with different adaptive characteristics.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Life and Health Science, Kaili University, Kaili City, Guizhou Province, China
- * E-mail: (YW); (FN)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Sezai Ercişli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant İzzet Baysal University, Bolu, Turkey
| | - Fei Nie
- Biological Institute of Guizhou Province, Guiyang City, Guizhou Province, China
- * E-mail: (YW); (FN)
| |
Collapse
|