1
|
Lorenzetti L, Dinh N, Whitcomb C, Martinez A, Chatani M, Lievense B, Nhamo D, Slack C, Eley N, MacQueen K. Meta-analysis of Pregnancy Events in Biomedical HIV Prevention Trials in Sub-Saharan Africa: Implications for Gender Transformative Trials. AIDS Behav 2024; 28:3850-3872. [PMID: 39153025 PMCID: PMC11471715 DOI: 10.1007/s10461-024-04459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/19/2024]
Abstract
Historically, pregnant and lactating populations (PLP) have been excluded or disenrolled from biomedical HIV prevention trials, despite being more likely to acquire HIV during pregnancy and the post-partum period. We conducted a meta-analysis of pregnancy events in biomedical HIV prevention trials in sub-Saharan Africa to support trialists moving toward more inclusive clinical and implementation studies. We searched peer-reviewed literature reporting pregnancy events and contraceptive requirements in HIV prevention trials between 2001 and 2022. We hypothesized four variables to explain variation: contraceptive requirements, study start year, study product, and sub-region. We fit a meta-analytic model to estimate individual effect sizes and sampling variances, then conducted sub-group analyses to assess moderating effects. We identified 38 references for inclusion, across which the proportion of pregnancy events was 8% (95% confidence interval [CI]: 6-10%) with high heterogeneity (I2 = 99%). Studies not requiring contraceptives (21%, 95%CI: 7-48%) reported a significantly higher proportion of pregnancy events than studies requiring two methods (5%, 95%CI: 2-10%). Studies launched between 2001 and 2007 (11%, 95%CI: 8-16%), microbicide gel trials (12%, 95%CI: 8-18%), and studies conducted in Western Africa (28%, 95%CI: 13-51%) reported higher proportions of pregnancy events than reference groups. Together, these variables have a moderating effect on pregnancy events (p < 0.0001), explaining 63% of heterogeneity in trials. Results describe how, over time, more stringent contraceptive requirements reduced pregnancy events, which ensured necessary statistical power but limited reproductive choice by participants. With the move toward continuing PLP on experimental products, trialists can utilize estimated pregnancy events reported here to inform strategies that accommodate participants' changing fertility preferences.
Collapse
Affiliation(s)
- Lara Lorenzetti
- Behavioral, Epidemiological and Clinical Sciences Division, Durham, NC, FHI 360, USA.
| | - Nhi Dinh
- Behavioral, Epidemiological and Clinical Sciences Division, Durham, NC, FHI 360, USA
| | - Cason Whitcomb
- Behavioral, Epidemiological and Clinical Sciences Division, Durham, NC, FHI 360, USA
| | - Andres Martinez
- Behavioral, Epidemiological and Clinical Sciences Division, Durham, NC, FHI 360, USA
| | | | | | | | - Catherine Slack
- School of Law, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Natalie Eley
- Behavioral, Epidemiological and Clinical Sciences Division, Durham, NC, FHI 360, USA
| | - Kathleen MacQueen
- Behavioral, Epidemiological and Clinical Sciences Division, Durham, NC, FHI 360, USA
| |
Collapse
|
2
|
Ubisse Capitine IP, Manhiça ÁM, Tembe Júnior P, Ramgi PM, Chicumbe S, Kroidl A, Fischer MR, De Schacht C. Why did I participate in an HIV vaccine study? Experiences of participation in the first phase II HIV vaccine trial in Mozambique: An ancillary study using a mixed-method approach. Vaccine X 2024; 19:100510. [PMID: 39021617 PMCID: PMC11254222 DOI: 10.1016/j.jvacx.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction This study recognized the lack of information regarding recruitment and retention factors associated with implementing HIV vaccine trials from the perspective of de facto participants. It aimed to describe the motives and experiences of 31 young adults who participated in a phase II HIV vaccine clinical trial conducted in Maputo, Mozambique. Methods This was an ancillary study with a mixed-method approach that employed a convergent design, combining both quantitative and qualitative methodologies. Data collection involved questionnaire surveys, in-depth interviews, and focus group discussions. Participants were assessed before and after learning whether they received the experimental vaccine or placebo. Thematic analysis was used for qualitative data, while descriptive analysis and statistical tests such as Fischer's test and McNemar's exact test were applied to quantitative data. The study also utilized the Health Belief Model to understand the decision-making process of participating in an HIV vaccine study. Results Most of our participants were young females, single, with limited financial resources. Participants joined the trial with the belief that they had a unique opportunity to help the fight against HIV and contribute to the research for the discovery of an HIV vaccine. Positive experiences related to trial participation include gaining knowledge about HIV and personal health and receiving risk reduction counseling. Participants reported blood collection as a negative experience and that they suffered social harm because of trial participation. Participants felt abandoned after the trial ended. Conclusion Preventive HIV vaccine trials should integrate a social-behavioral component to assess reasons for participation and refusal in real-time. Providing ongoing personal attention is crucial for young individuals who have committed 1-2 years to trial participation, extending beyond the trial period. Implementing tailored strategies for HIV risk assessment and reduction during and after the trial is essential. Addressing these factors can enhance preventive HIV vaccine trial implementation.
Collapse
Affiliation(s)
- Igor P. Ubisse Capitine
- Instituto Nacional de Saúde (INS), Maputo Province, Mozambique
- Centre for International Health (CIH), LMU Munich, Munich, Germany
| | | | | | | | - Sérgio Chicumbe
- Instituto Nacional de Saúde (INS), Maputo Province, Mozambique
| | - Arne Kroidl
- Centre for International Health (CIH), LMU Munich, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Martin R. Fischer
- Centre for International Health (CIH), LMU Munich, Munich, Germany
- Institute of Medical Education, LMU University Hospital, LMU Munich, Munich, Germany
| | | |
Collapse
|
3
|
Perdiguero B, Pérez P, Marcos-Villar L, Albericio G, Astorgano D, Álvarez E, Sin L, Elena Gómez C, García-Arriaza J, Esteban M. Highly attenuated poxvirus-based vaccines against emerging viral diseases. J Mol Biol 2023:168173. [PMID: 37301278 DOI: 10.1016/j.jmb.2023.168173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Although one member of the poxvirus family, variola virus, has caused one of the most devastating human infections worldwide, smallpox, the knowledge gained over the last 30 years on the molecular, virological and immunological mechanisms of these viruses has allowed the use of members of this family as vectors for the generation of recombinant vaccines against numerous pathogens. In this review, we cover different aspects of the history and biology of poxviruses with emphasis on their application as vaccines, from first- to fourth-generation, against smallpox, monkeypox, emerging viral diseases highlighted by the World Health Organization (COVID-19, Crimean-Congo haemorrhagic fever, Ebola and Marburg virus diseases, Lassa fever, Middle East respiratory syndrome and severe acute respiratory syndrome, Nipah and other henipaviral diseases, Rift Valley fever and Zika), as well as against one of the most concerning prevalent virus, the Human Immunodeficiency Virus, the causative agent of AcquiredImmunodeficiency Syndrome. We discuss the implications in human health of the 2022 monkeypox epidemic affecting many countries, and the rapid prophylactic and therapeutic measures adopted to control virus dissemination within the human population. We also describe the preclinical and clinical evaluation of the Modified Vaccinia virus Ankara and New York vaccinia virus poxviral strains expressing heterologous antigens from the viral diseases listed above. Finally, we report different approaches to improve the immunogenicity and efficacy of poxvirus-based vaccine candidates, such as deletion of immunomodulatory genes, insertion of host-range genes and enhanced transcription of foreign genes through modified viral promoters. Some future prospects are also highlighted.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Sin
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
4
|
Lambracht-Washington D, Fu M, Wight-Carter M, Riegel M, Hynan LS, Rosenberg RN. DNA Aβ42 immunization via needle-less Jet injection in mice and rabbits as potential immunotherapy for Alzheimer's disease. J Neurol Sci 2023; 446:120564. [PMID: 36731358 DOI: 10.1016/j.jns.2023.120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia found in the elderly and disease progression is associated with accumulation of Amyloid beta 1-42 (Aβ42) in brain. An immune-mediated approach as a preventive intervention to reduce amyloid plaques without causing brain inflammation is highly desirable for future clinical use. Genetic immunization, in which the immunizing agent is DNA encoding Aβ42, has great potential because the immune response to DNA delivered into the skin is generally non-inflammatory, and thus differs quantitatively and qualitatively from immune responses elicited by peptides, which are inflammatory with production of IFNγ and IL-17 cytokines by activated T cells. DNA immunization has historically been proven difficult to apply to larger mammals. A potential barrier to use DNA immunization in large mammals is the method for delivery of the DNA antigen. We tested jet injection in mice and rabbits and found good antibody production and safe immune responses (no inflammatory cytokines). We found significant reduction of amyloid plaques and Aβ peptides in brains of the DNA Aβ42 immunized 3xTg-AD mouse model. This study was designed to optimize DNA delivery for possible testing of the DNA Aβ42 vaccine for AD prevention in a clinical trial.
Collapse
Affiliation(s)
| | - Min Fu
- Department of Neurology, UT Southwestern Medical Center Dallas, TX, USA.
| | - Mary Wight-Carter
- Animal Resource Center, UT Southwestern Medical Center Dallas, TX, USA.
| | - Matthew Riegel
- Animal Resource Center, UT Southwestern Medical Center Dallas, TX, USA; University of Kansas, Lawrence, KS, USA.
| | - Linda S Hynan
- Departments of Population and Data Sciences (Biostatistics) & Psychiatry, UT Southwestern Medical Center Dallas, TX, USA.
| | - Roger N Rosenberg
- Department of Neurology, UT Southwestern Medical Center Dallas, TX, USA.
| |
Collapse
|
5
|
The Prevalence, Incidence, and Risk Factors for HIV Among Female Sex Workers-A Cohort Being Prepared for a Phase IIb HIV Vaccine Trial in Dar es Salaam, Tanzania. J Acquir Immune Defic Syndr 2022; 91:439-448. [PMID: 36126184 PMCID: PMC9646411 DOI: 10.1097/qai.0000000000003097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 06/20/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND A cohort of female sex workers (FSWs) was established to determine HIV prevalence and incidence, and associated factors in preparation for a phase IIb HIV vaccine and pre-exposure prophylaxis trial (PrEPVacc). SETTING A cohort of FSWs in Dar es Salaam, Tanzania. METHODS FSWs aged 18-45 years were recruited using a respondent-driven sampling method. Social demographic data, HIV risk behavioral assessments, and blood samples for testing of HIV, syphilis, hepatitis B (HBV), and hepatitis C (HCV) infections were collected at baseline and then at 3, 6, 9, and 12 months. Poisson regressions were used to estimate the prevalence ratios for factors associated with HIV prevalence and to estimate the 12-month HIV incidence rate. RESULTS Between October and December 2018, a total of 773 FSWs were screened for eligibility and 700 were enrolled. The baseline prevalence of HIV, syphilis, HBV, and HCV was 7.6%, 1.2%, 1.7%, and 1.0%, respectively. HIV prevalence was associated with older age, using illicit drugs, and being infected with syphilis, HBV, or HCV. Attendance at 12 months was 80% (562/700). Twenty-one FSWs seroconverted during follow-up, giving a 12-month HIV incidence rate of 3.45 per 100 person-years at risk (95% CI; 2.25-5.28/100 person-years at risk). The HIV incidence rate was higher among FSWs aged 18-24 years, FSWs who used drugs, and those diagnosed with syphilis, HBV, or HCV. CONCLUSION The high HIV incidence rate and retention rate among FSWs enrolled into the cohort demonstrate that this population is suitable for participation in HIV prevention trials.
Collapse
|
6
|
Tarimo EAM, Ambikile J, Munseri P, Bakari M. Personal experiences following acquiring HIV infection while volunteering in Phase I/II HIV vaccine trials: A qualitative study from Tanzania. PLoS One 2022; 17:e0276404. [PMID: 36288332 PMCID: PMC9605023 DOI: 10.1371/journal.pone.0276404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Participation in HIV vaccine trials is an essential step towards development of an effective preventive vaccine. A Phase I/II HIV vaccine trial enrolls volunteers at low risk of acquiring HIV infection, however a few may still become infected. Understanding the experiences of volunteers who acquired HIV infection while participating in such trials is essential for future research. Here, we describe experiences of HIV infected volunteers in Phase I/II HIV vaccine trials conducted in urban Tanzania. MATERIALS AND METHODS We used a case study design. In-depth interviews were conducted with four participants who became HIV infected during long follow-up visits after completion of vaccination schedules in a Phase I/II trial. Between 3 and 8 years after HIV positive diagnosis, each participant was interviewed at three time points within a two-year interval so as to allow for accumulation of experiences and cross-checking the emerging constructs. Data was analyzed using a qualitative data analysis framework. RESULTS Analysis revealed that participation in HIV vaccine trials involves balancing controversies and the spirit of informed decision. The participants declared that they did not acquire HIV from the experimental vaccine. Disclosure of HIV status within the family was gender specific. Men were hesitant to disclose their HIV status to their sexual partners fearing for the consequences. Women's attempt to disclose their HIV status yielded negative reactions from the sexual partners. The acquired knowledge from the HIV vaccine research enabled the participants to cope with the uncertainties and their health status. CONCLUSIONS The knowledge acquired during the Phase I/II HIV vaccine trial appears to be an essential resource to cope with uncertainties post research. The HIV vaccine trial implementers need to understand the challenges the volunteers may confront after the trial while coping with their health status. Longitudinal studies are essential to trace the effects of uncertainties to the individual participants.
Collapse
Affiliation(s)
- Edith A. M. Tarimo
- Department of Nursing Management, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Joel Ambikile
- Department of Clinical Nursing, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Patricia Munseri
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Muhammad Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
7
|
A prime-boost combination of a three-protein cocktail and multiepitopic MVA as a vaccine against Babesia bigemina elicits neutralizing antibodies and a Th1 cellular immune response in mice. Ticks Tick Borne Dis 2022; 13:101991. [DOI: 10.1016/j.ttbdis.2022.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
|
8
|
Msafiri F, Manjate A, Lindroth S, Tembe N, Chissumba RM, Cumbane V, Jani I, Aboud S, Lyamuya E, Andersson S, Nilsson C. Vaccine-Induced Seroreactivity Impacts the Accuracy of HIV Testing Algorithms in Sub-Saharan Africa: An Exploratory Study. Vaccines (Basel) 2022; 10:vaccines10071062. [PMID: 35891226 PMCID: PMC9316099 DOI: 10.3390/vaccines10071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
The detection of vaccine-induced HIV antibody responses by rapid diagnostic tests (RDTs) may confound the interpretation of HIV testing results. We assessed the impact of vaccine-induced seroreactivity (VISR) on the diagnosis of HIV in sub-Saharan Africa. Samples collected from healthy participants of HIVIS and TaMoVac HIV vaccine trials after the final vaccination were analyzed for VISR using HIV testing algorithms used in Mozambique and Tanzania that employ two sequential RDTs. The samples were also tested for VISR using Enzygnost HIV Integral 4 ELISA and HIV western blot assays. Antibody titers to subtype C gp140 were determined using an in-house enzyme-linked immunosorbent assay (ELISA). The frequency of VISR was 93.4% (128/137) by Enzygnost HIV Integral 4 ELISA, and 66.4% (91/137) by western blot assay (WHO interpretation). The proportion of vaccine recipients that would have been misdiagnosed as HIV-positive in Mozambique was half of that in Tanzania: 26.3% (36/137) and 54.0% (74/137), respectively, p < 0.0001. In conclusion, the HIV RDTs and algorithms assessed here will potentially misclassify a large proportion of the HIV vaccine recipients if no other test is used. Increased efforts are needed to develop differential serological or molecular tools for use at the point of care.
Collapse
Affiliation(s)
- Frank Msafiri
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (S.A.); (E.L.)
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
- Correspondence:
| | - Alice Manjate
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo P.O. Box 257, Mozambique;
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (S.L.); (S.A.)
| | - Sarah Lindroth
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (S.L.); (S.A.)
| | - Nelson Tembe
- Instituto Nacional de Saúde, Maputo P.O. Box 3943, Mozambique; (N.T.); (R.M.C.); (V.C.); (I.J.)
| | | | - Victoria Cumbane
- Instituto Nacional de Saúde, Maputo P.O. Box 3943, Mozambique; (N.T.); (R.M.C.); (V.C.); (I.J.)
| | - Ilesh Jani
- Instituto Nacional de Saúde, Maputo P.O. Box 3943, Mozambique; (N.T.); (R.M.C.); (V.C.); (I.J.)
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (S.A.); (E.L.)
| | - Eligius Lyamuya
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (S.A.); (E.L.)
| | - Sören Andersson
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (S.L.); (S.A.)
- Public Health Agency of Sweden, 17182 Solna, Sweden
| | - Charlotta Nilsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
- Public Health Agency of Sweden, 17182 Solna, Sweden
| |
Collapse
|
9
|
Eldi P, Cooper TH, Prow NA, Liu L, Heinemann GK, Zhang VJ, Trinidad AD, Guzman‐Genuino RM, Wulff P, Hobbs LM, Diener KR, Hayball JD. The vaccinia‐based Sementis Copenhagen Vector coronavirus disease 2019 vaccine induces broad and durable cellular and humoral immune responses. Immunol Cell Biol 2022; 100:250-266. [PMID: 35188985 PMCID: PMC9111635 DOI: 10.1111/imcb.12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID‐19) pandemic perpetuated by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) variants has highlighted the continued need for broadly protective vaccines that elicit robust and durable protection. Here, the vaccinia virus‐based, replication‐defective Sementis Copenhagen Vector (SCV) was used to develop a first‐generation COVID‐19 vaccine encoding the spike glycoprotein (SCV‐S). Vaccination of mice rapidly induced polyfunctional CD8 T cells with cytotoxic activity and robust type 1 T helper‐biased, spike‐specific antibodies, which are significantly increased following a second vaccination, and contained neutralizing activity against the alpha and beta variants of concern. Longitudinal studies indicated that neutralizing antibody activity was maintained up to 9 months after vaccination in both young and middle‐aged mice, with durable immune memory evident even in the presence of pre‐existing vector immunity. Therefore, SCV‐S vaccination has a positive immunogenicity profile, with potential to expand protection generated by current vaccines in a heterologous boost format and presents a solid basis for second‐generation SCV‐based COVID‐19 vaccine candidates incorporating additional SARS‐CoV‐2 immunogens.
Collapse
Affiliation(s)
- Preethi Eldi
- Experimental Therapeutics Laboratory, Clinical and Health Science Unit University of South Australia Adelaide SA Australia
| | - Tamara H Cooper
- Experimental Therapeutics Laboratory, Clinical and Health Science Unit University of South Australia Adelaide SA Australia
| | - Natalie A Prow
- Experimental Therapeutics Laboratory, Clinical and Health Science Unit University of South Australia Adelaide SA Australia
| | - Liang Liu
- Experimental Therapeutics Laboratory, Clinical and Health Science Unit University of South Australia Adelaide SA Australia
| | - Gary K Heinemann
- Experimental Therapeutics Laboratory, Clinical and Health Science Unit University of South Australia Adelaide SA Australia
| | - Voueleng J Zhang
- Experimental Therapeutics Laboratory, Clinical and Health Science Unit University of South Australia Adelaide SA Australia
| | - Abigail D Trinidad
- Experimental Therapeutics Laboratory, Clinical and Health Science Unit University of South Australia Adelaide SA Australia
| | | | | | - Leanne M Hobbs
- Experimental Therapeutics Laboratory, Clinical and Health Science Unit University of South Australia Adelaide SA Australia
- Sementis Limited Hackney SA Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Clinical and Health Science Unit University of South Australia Adelaide SA Australia
- Robinson Research Institute and Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Clinical and Health Science Unit University of South Australia Adelaide SA Australia
- Sementis Limited Hackney SA Australia
| |
Collapse
|
10
|
Yang JX, Tseng JC, Yu GY, Luo Y, Huang CYF, Hong YR, Chuang TH. Recent Advances in the Development of Toll-like Receptor Agonist-Based Vaccine Adjuvants for Infectious Diseases. Pharmaceutics 2022; 14:pharmaceutics14020423. [PMID: 35214155 PMCID: PMC8878135 DOI: 10.3390/pharmaceutics14020423] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Vaccines are powerful tools for controlling microbial infections and preventing epidemic diseases. Efficient inactive, subunit, or viral-like particle vaccines usually rely on a safe and potent adjuvant to boost the immune response to the antigen. After a slow start, over the last decade there has been increased developments on adjuvants for human vaccines. The development of adjuvants has paralleled our increased understanding of the molecular mechanisms for the pattern recognition receptor (PRR)-mediated activation of immune responses. Toll-like receptors (TLRs) are a group of PRRs that recognize microbial pathogens to initiate a host’s response to infection. Activation of TLRs triggers potent and immediate innate immune responses, which leads to subsequent adaptive immune responses. Therefore, these TLRs are ideal targets for the development of effective adjuvants. To date, TLR agonists such as monophosphoryl lipid A (MPL) and CpG-1018 have been formulated in licensed vaccines for their adjuvant activity, and other TLR agonists are being developed for this purpose. The COVID-19 pandemic has also accelerated clinical research of vaccines containing TLR agonist-based adjuvants. In this paper, we reviewed the agonists for TLR activation and the molecular mechanisms associated with the adjuvants’ effects on TLR activation, emphasizing recent advances in the development of TLR agonist-based vaccine adjuvants for infectious diseases.
Collapse
Affiliation(s)
- Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
- Department of Life Sciences, National Central University, Taoyuan City 32001, Taiwan
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-37-246166 (ext. 37611)
| |
Collapse
|
11
|
Broadly binding and functional antibodies and persisting memory B cells elicited by HIV vaccine PDPHV. NPJ Vaccines 2022; 7:18. [PMID: 35140230 PMCID: PMC8828892 DOI: 10.1038/s41541-022-00441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Since publishing our original reports on the safety and immunogenicity of a polyvalent DNA prime-protein boost HIV vaccine (PDPHV) which elicited high titer antibody responses with broad specificity, neutralizing activities to multiple HIV-1 subtypes, as well as poly-functional T cell responses, accumulated findings from other HIV vaccine studies indicated the important roles of Ig isotype distribution, Fc medicated functions and the persistence of memory immune responses which were not studied in previous PDPHV related reports. The current report provides further detailed characterization of these parameters in human volunteers receiving the PDPHV regimen. Antibody responses were assessed using IgG isotype and gp70-V1V2-binding ELISAs, peptide arrays, and antibody-dependent cellular cytotoxicity (ADCC) assays. B cell ELISPOT was used to detect gp120-specific memory B cells. Our results showed that the gp120-specific antibodies were primarily of the IgG1 isotype. HIV-1 envelope protein variable regions V1 and V2 were actively targeted by the antibodies as determined by specific binding to both peptide and V1V2-carrying scaffolds. The antibodies showed potent and broad ADCC responses. Finally, the B cell ELISPOT analysis demonstrated persistence of gp120-specific memory B cells for at least 6 months after the last dose. These data indicate that broadly reactive binding Abs and ADCC responses as well as durable gp120-specific memory B cells were elicited by the polyvalent heterologous prime-boost vaccination regimens and showed great promise as a candidate HIV vaccine.
Collapse
|
12
|
Horvath A, Rogers L, Pollakis G, Baranov O, Pieroth N, Joseph S, Chachage M, Heitzer A, Maganga L, Msafiri F, Joachim A, Viegas E, Eller LA, Kibuuka H, Rerks-Ngarm S, Pitisuttithum P, Nitayapan S, Dhitavat J, Premsri N, Fidler S, Shattock RJ, Robb ML, Weber J, McCormack S, Munseri PJ, Lyamuya E, Nilsson C, Kroidl A, Hoelscher M, Wagner R, Geldmacher C, Held K. Systematic comparison of HIV-1 Envelope-specific IgG responses induced by different vaccination regimens: Can we steer IgG recognition towards regions of viral vulnerability? Front Immunol 2022; 13:1075606. [PMID: 36741409 PMCID: PMC9891136 DOI: 10.3389/fimmu.2022.1075606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Immunogens and vaccination regimens can influence patterns of immune-epitope recognition, steering them towards or away from epitopes of potential viral vulnerability. HIV-1 envelope (Env)-specific antibodies targeting variable region 2 (V2) or 3 (V3) correlated with protection during the RV144 trial, however, it was suggested that the immunodominant V3 region might divert antibody responses away from other relevant sites. We mapped IgG responses against linear Env epitopes in five clinical HIV vaccine trials, revealing a specific pattern of Env targeting for each regimen. Notable V2 responses were only induced in trials administering CRF01_AE based immunogens, but targeting of V3 was seen in all trials, with the soluble, trimeric CN54gp140 protein eliciting robust V3 recognition. Strong V3 targeting was linked to greater overall response, increased number of total recognised antigenic regions, and where present, stronger V2 recognition. Hence, strong induction of V3-specific antibodies did not negatively impact the targeting of other linear epitopes in this study, suggesting that the induction of antibodies against V3 and other regions of potential viral vulnerability need not be necessarily mutually exclusive.
Collapse
Affiliation(s)
- Augusta Horvath
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Lisa Rogers
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Georgios Pollakis
- Institute of Infection Veterinary and Ecological Sciences (IVES/CIMI), University of Liverpool, Liverpool, United Kingdom
| | - Olga Baranov
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Nora Pieroth
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Sarah Joseph
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom
| | - Mkunde Chachage
- National Institute for Medical Research-Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Asli Heitzer
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Lucas Maganga
- National Institute for Medical Research-Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Frank Msafiri
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Agricola Joachim
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Edna Viegas
- Instituto Nacional de Saúde, Maputo, Mozambique
| | - Leigh-Anne Eller
- United States Military HIV Research Program, Silver Spring, MD, United States.,Makerere University Walter Reed Project, Kampala, Uganda.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Supachai Rerks-Ngarm
- Department of Disease Control, Ministry of Public Health, Mueang Nonthaburi, Thailand
| | | | | | - Jittima Dhitavat
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nakorn Premsri
- Department of Disease Control, Ministry of Public Health, Mueang Nonthaburi, Thailand
| | - Sarah Fidler
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Robin J Shattock
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Merlin Lee Robb
- United States Military HIV Research Program, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Jonathan Weber
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Sheena McCormack
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom
| | | | - Eligius Lyamuya
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Charlotta Nilsson
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden.,The Public Health Agency of Sweden, Solna, Sweden
| | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene; University Hospital Regensburg, Regensburg, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
13
|
Capitine IPU, Macicame IB, Uanela AM, Bhatt NB, Yates A, Milazzo M, Nwoga C, Crowell TA, Michael NL, Robb ML, Jani IV, Kroidl A, Polyak CS, De Schacht C. Young at risk-people in Maputo City, Mozambique, present a high willingness to participate in HIV trials: Results from an HIV vaccine preparedness cohort study. PLoS One 2021; 16:e0260126. [PMID: 34855790 PMCID: PMC8638929 DOI: 10.1371/journal.pone.0260126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Vaccine efficacy testing requires engagement of willing volunteers with high disease incidence. We evaluated factors associated with willingness to participate in potential future HIV vaccine trials in Maputo, Mozambique. METHODS Adults aged 18-35 years without HIV and who reported at least two sexual partners in the 3 months prior to screening were enrolled into a 24-month observational study. They were asked at screening and exit if they would be willing to participate in a theoretical HIV vaccine study. Bivariate and multivariate logistic regression analyses were done between willingness to participate, demographic, sexual behavior, and motivational factors for screening visit data. Logistic regression with generalized estimating equations (GEE) was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for factors potentially associated with willingness to participate for data from both visits. RESULTS A total of 577 participants without HIV were eligible, including 275 (48%) women. The mean age was 22.2 (SD ± 3.9) years. At screening 529 (92%) expressed willingness to participate and the proportion remained stable at 378 (88%) of the 430 participants retained through the exit visit (p = 0.209). Helping the country (n = 556) and fear of needles (n = 26) were the top motive and barrier for willingness to participate, respectively. Results from the GEE binary logistic regression (screening visit and exit visit) showed that wanting to learn how to avoid risk behaviors (aOR 3.33, 95% CI: 1.61-6.86) and feeling protected against HIV infection (aOR 2.24, 95% CI: 1.07-4.7) were associated with willingness to participate in HIV vaccine studies. CONCLUSION The majority of our study population in Mozambique expressed willingness to participate in a theoretical HIV vaccine trial. Participation in a HIV vaccine trial was seen as a way to contribute to the fight against HIV but was associated with some unrealistic expectations such as protection against HIV. This reinforces the need for continuous mobilization and awareness of potential participants to HIV vaccine trial.
Collapse
Affiliation(s)
- Igor P. U. Capitine
- Instituto Nacional de Saúde (INS), Maputo Province, Mozambique
- Centre for International Health (CIH), University of Munich (LMU), Munich, Germany
| | | | - Artur M. Uanela
- Instituto Nacional de Saúde (INS), Maputo Province, Mozambique
| | - Nilesh B. Bhatt
- Instituto Nacional de Saúde (INS), Maputo Province, Mozambique
| | - Adam Yates
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Mark Milazzo
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Chiaka Nwoga
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Trevor A. Crowell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Ilesh V. Jani
- Instituto Nacional de Saúde (INS), Maputo Province, Mozambique
| | - Arne Kroidl
- Centre for International Health (CIH), University of Munich (LMU), Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Christina S. Polyak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | | | | |
Collapse
|
14
|
Msafiri F, Joachim A, Held K, Nadai Y, Chissumba RM, Geldmacher C, Aboud S, Stöhr W, Viegas E, Kroidl A, Bakari M, Munseri PJ, Wahren B, Sandström E, Robb ML, McCormack S, Joseph S, Jani I, Ferrari G, Rao M, Biberfeld G, Lyamuya E, Nilsson C. Frequent Anti-V1V2 Responses Induced by HIV-DNA Followed by HIV-MVA with or without CN54rgp140/GLA-AF in Healthy African Volunteers. Microorganisms 2020; 8:microorganisms8111722. [PMID: 33158007 PMCID: PMC7693996 DOI: 10.3390/microorganisms8111722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Antibody responses that correlated with reduced risk of HIV acquisition in the RV144 efficacy trial were assessed in healthy African volunteers who had been primed three times with HIV-DNA (subtype A, B, C) and then randomized into two groups; group 1 was boosted twice with HIV-MVA (CRF01_AE) and group 2 with the same HIV-MVA coadministered with subtype C envelope (Env) protein (CN54rgp140/GLA-AF). The fine specificity of plasma Env-specific antibody responses was mapped after the final vaccination using linear peptide microarray technology. Binding IgG antibodies to the V1V2 loop in CRF01_AE and subtype C Env and Env-specific IgA antibodies were determined using enzyme-linked immunosorbent assay. Functional antibody-dependent cellular cytotoxicity (ADCC)-mediating antibody responses were measured using luciferase assay. Mapping of linear epitopes within HIV-1 Env demonstrated strong targeting of the V1V2, V3, and the immunodominant region in gp41 in both groups, with additional recognition of two epitopes located in the C2 and C4 regions in group 2. A high frequency of V1V2-specific binding IgG antibody responses was detected to CRF01_AE (77%) and subtype C antigens (65%). In conclusion, coadministration of CN54rgp140/GLA-AF with HIV-MVA did not increase the frequency, breadth, or magnitude of anti-V1V2 responses or ADCC-mediating antibodies induced by boosting with HIV-MVA alone.
Collapse
Affiliation(s)
- Frank Msafiri
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (A.J.); (S.A.); (E.L.)
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
- Correspondence: or
| | - Agricola Joachim
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (A.J.); (S.A.); (E.L.)
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany; (K.H.); (Y.N.); (C.G.); (A.K.)
- German Center for Infection Research (DZIF), partner site Munich, 80802 Munich, Germany
| | - Yuka Nadai
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany; (K.H.); (Y.N.); (C.G.); (A.K.)
- German Center for Infection Research (DZIF), partner site Munich, 80802 Munich, Germany
| | | | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany; (K.H.); (Y.N.); (C.G.); (A.K.)
- German Center for Infection Research (DZIF), partner site Munich, 80802 Munich, Germany
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (A.J.); (S.A.); (E.L.)
| | - Wolfgang Stöhr
- MRC Clinical Trials Unit at UCL, London WC1V 6LJ, UK; (W.S.); (S.M.)
| | - Edna Viegas
- Instituto Nacional de Saúde, Maputo 3943, Mozambique; (R.M.C.); (E.V.); (I.J.)
| | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany; (K.H.); (Y.N.); (C.G.); (A.K.)
- German Center for Infection Research (DZIF), partner site Munich, 80802 Munich, Germany
| | - Muhammad Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (M.B.); (P.J.M.)
| | - Patricia J. Munseri
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (M.B.); (P.J.M.)
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobel’s Rd 16, 17177 Stockholm, Sweden;
| | - Eric Sandström
- Karolinska Institutet at Södersjukhuset, Södersjukhuset, 11883 Stockholm, Sweden;
| | - Merlin L. Robb
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA;
| | - Sheena McCormack
- MRC Clinical Trials Unit at UCL, London WC1V 6LJ, UK; (W.S.); (S.M.)
| | | | - Ilesh Jani
- Instituto Nacional de Saúde, Maputo 3943, Mozambique; (R.M.C.); (E.V.); (I.J.)
| | - Guido Ferrari
- Department of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Gunnel Biberfeld
- Department of Global Public Health, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Eligius Lyamuya
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (A.J.); (S.A.); (E.L.)
| | - Charlotta Nilsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Microbiology, Public Health Agency of Sweden, 17182 Solna, Sweden
| |
Collapse
|
15
|
Guilfoyle K, Major D, Skeldon S, James H, Tingstedt JL, Polacek C, Lassauniére R, Engelhardt OG, Fomsgaard A. Protective efficacy of a polyvalent influenza A DNA vaccine against both homologous (H1N1pdm09) and heterologous (H5N1) challenge in the ferret model. Vaccine 2020; 39:4903-4913. [PMID: 33036805 DOI: 10.1016/j.vaccine.2020.09.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
This study describes the protective efficacy of a novel influenza plasmid DNA vaccine in the ferret challenge model. The rationally designed polyvalent influenza DNA vaccine encodes haemagglutinin and neuraminidase proteins derived from less glycosylated pandemic H1N1 (2009) and H3N2 (1968) virus strains as well as the nucleoprotein (NP) and matrix proteins (M1 and M2) from a different pandemic H1N1 (1918) strain. Needle-free intradermal immunisation with the influenza DNA vaccine protected ferrets against homologous challenge with an H1N1pdm09 virus strain, demonstrated by restriction of viral replication to the upper respiratory tract and reduced duration of viral shedding post-challenge. Breadth of protection was demonstrated in two heterologous efficacy experiments in which animals immunised with the influenza DNA vaccine were protected against challenge with a highly pathogenic avian influenza H5N1 virus strain with reproducible survival and clinical outcomes.
Collapse
Affiliation(s)
- Kate Guilfoyle
- National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG Hertfordshire, UK; Viroclinics Xplore, Nistelrooise Baan 3, 5374 Schaijk, The Netherlands(1)
| | - Diane Major
- National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG Hertfordshire, UK
| | - Sarah Skeldon
- National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG Hertfordshire, UK
| | - Heather James
- National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG Hertfordshire, UK
| | - Jeanette L Tingstedt
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Charlotta Polacek
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Ria Lassauniére
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Othmar G Engelhardt
- National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG Hertfordshire, UK.
| | - Anders Fomsgaard
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark; Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Sdr. Boulevard 29, DK-5000 Odense C, Denmark
| |
Collapse
|
16
|
Hettinga J, Carlisle R. Vaccination into the Dermal Compartment: Techniques, Challenges, and Prospects. Vaccines (Basel) 2020; 8:E534. [PMID: 32947966 PMCID: PMC7564253 DOI: 10.3390/vaccines8030534] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
In 2019, an 'influenza pandemic' and 'vaccine hesitancy' were listed as two of the top 10 challenges to global health by the WHO. The skin is a unique vaccination site, due to its immune-rich milieu, which is evolutionarily primed to respond to challenge, and its ability to induce both humoral and cellular immunity. Vaccination into this dermal compartment offers a way of addressing both of the challenges presented by the WHO, as well as opening up avenues for novel vaccine formulation and dose-sparing strategies to enter the clinic. This review will provide an overview of the diverse range of vaccination techniques available to target the dermal compartment, as well as their current state, challenges, and prospects, and touch upon the formulations that have been developed to maximally benefit from these new techniques. These include needle and syringe techniques, microneedles, DNA tattooing, jet and ballistic delivery, and skin permeabilization techniques, including thermal ablation, chemical enhancers, ablation, electroporation, iontophoresis, and sonophoresis.
Collapse
Affiliation(s)
| | - Robert Carlisle
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
17
|
Leite Pereira A, Jouhault Q, Marcos Lopez E, Cosma A, Lambotte O, Le Grand R, Lehmann MH, Tchitchek N. Modulation of Cell Surface Receptor Expression by Modified Vaccinia Virus Ankara in Leukocytes of Healthy and HIV-Infected Individuals. Front Immunol 2020; 11:2096. [PMID: 33013882 PMCID: PMC7506042 DOI: 10.3389/fimmu.2020.02096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022] Open
Abstract
Viral vectors are increasingly used as delivery means to induce a specific immunity in humans and animals. However, they also impact the immune system, and it depends on the given context whether this is beneficial or not. The attenuated vaccinia virus strain modified vaccinia virus Ankara (MVA) has been used as a viral vector in clinical studies intended to treat and prevent cancer and infectious diseases. The adjuvant property of MVA is thought to be due to its capability to stimulate innate immunity. Here, we confirmed that MVA induces interleukin-8 (IL-8), and this chemokine was upregulated significantly more in monocytes and HLA-DRbright dendritic cells (DCs) of HIV-infected patients on combined antiretroviral therapy (ART) than in cells of healthy persons. The effect of MVA on cell surface receptors is mostly unknown. Using mass cytometry profiling, we investigated the expression of 17 cell surface receptors in leukocytes after ex vivo infection of human whole-blood samples with MVA. We found that MVA downregulates most of the characteristic cell surface markers in particular types of leukocytes. In contrast, C-X-C motif chemokine receptor 4 (CXCR4) was significantly upregulated in each leukocyte type of healthy persons. Additionally, we detected a relative higher cell surface expression of the HIV-1 co-receptors C-C motif chemokine receptor 5 (CCR5) and CXCR4 in leukocytes of HIV-ART patients than in healthy persons. Importantly, we showed that MVA infection significantly downregulated CCR5 in CD4+ T cells, CD8+ T cells, B cells, and three different DC populations. CD86, a costimulatory molecule for T cells, was significantly upregulated in HLA-DRbright DCs after MVA infection of whole blood from HIV-ART patients. However, MVA was unable to downregulate cell surface expression of CD11b and CD32 in monocytes and neutrophils of HIV-ART patients to the same extent as in monocytes and neutrophils of healthy persons. In summary, MVA modulates the expression of many different kinds of cell surface receptors in leukocytes, which can vary in cells originating from persons previously infected with other pathogens.
Collapse
Affiliation(s)
- Adrien Leite Pereira
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Quentin Jouhault
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Ernesto Marcos Lopez
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Antonio Cosma
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France.,INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France.,APHP, Service de Médecine Interne et Immunologie Clinique, Hôpitaux Universitaires Paris Saclay, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Michael H Lehmann
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicolas Tchitchek
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| |
Collapse
|
18
|
A Zigzag but Upward Way to Develop an HIV-1 Vaccine. Vaccines (Basel) 2020; 8:vaccines8030511. [PMID: 32911701 PMCID: PMC7564621 DOI: 10.3390/vaccines8030511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
After decades of its epidemic, the human immunodeficiency virus type 1 (HIV-1) is still rampant worldwide. An effective vaccine is considered to be the ultimate strategy to control and prevent the spread of HIV-1. To date, hundreds of clinical trials for HIV-1 vaccines have been tested. However, there is no HIV-1 vaccine available yet, mostly because the immune correlates of protection against HIV-1 infection are not fully understood. Currently, a variety of recombinant viruses-vectored HIV-1 vaccine candidates are extensively studied as promising strategies to elicit the appropriate immune response to control HIV-1 infection. In this review, we summarize the current findings on the immunological parameters to predict the protective efficacy of HIV-1 vaccines, and highlight the latest advances on HIV-1 vaccines based on viral vectors.
Collapse
|
19
|
Palli R, Seaton KE, Piepenbrink MS, Hural J, Goepfert PA, Laher F, Buchbinder SP, Churchyard G, Gray GE, Robinson HL, Huang Y, Janes H, Kobie JJ, Keefer MC, Tomaras GD, Thakar J. Impact of vaccine type on HIV-1 vaccine elicited antibody durability and B cell gene signature. Sci Rep 2020; 10:13031. [PMID: 32747654 PMCID: PMC7398916 DOI: 10.1038/s41598-020-69007-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Efficacious HIV-1 vaccination requires elicitation of long-lived antibody responses. However, our understanding of how different vaccine types elicit durable antibody responses is lacking. To assess the impact of vaccine type on antibody responses, we measured IgG isotypes against four consensus HIV antigens from 2 weeks to 10 years post HIV-1 vaccination and used mixed effects models to estimate half-life of responses in four human clinical trials. Compared to protein-boosted regimens, half-lives of gp120-specific antibodies were longer but peak magnitudes were lower in Modified Vaccinia Ankara (MVA)-boosted regimens. Furthermore, gp120-specific B cell transcriptomics from MVA-boosted and protein-boosted vaccines revealed a distinct signature at a peak (2 weeks after last vaccination) including CD19, CD40, and FCRL2-5 activation along with increased B cell receptor signaling. Additional analysis revealed contributions of RIG-I-like receptor pathway and genes such as SMAD5 and IL-32 to antibody durability. Thus, this study provides novel insights into vaccine induced antibody durability and B-cell receptor signaling.
Collapse
Affiliation(s)
- Rohith Palli
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kelly E Seaton
- Duke Human Vaccine Institute and Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Michael S Piepenbrink
- Infectious Diseases Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul A Goepfert
- Infectious Diseases Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fatima Laher
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan P Buchbinder
- Bridge HIV, San Francisco Department of Public Health and Departments of Medicine, Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Glenda E Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council, Cape Town, South Africa
| | | | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - James J Kobie
- Infectious Diseases Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael C Keefer
- Department of Medicine, Infectious Diseases Division, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute and Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14620, USA.
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 14620, USA.
| |
Collapse
|
20
|
Lévy Y, Lacabaratz C, Ellefsen-Lavoie K, Stöhr W, Lelièvre JD, Bart PA, Launay O, Weber J, Salzberger B, Wiedemann A, Surenaud M, Koelle DM, Wolf H, Wagner R, Rieux V, Montefiori DC, Yates NL, Tomaras GD, Gottardo R, Mayer B, Ding S, Thiébaut R, McCormack S, Chêne G, Pantaleo G. Optimal priming of poxvirus vector (NYVAC)-based HIV vaccine regimens for T cell responses requires three DNA injections. Results of the randomized multicentre EV03/ANRS VAC20 Phase I/II Trial. PLoS Pathog 2020; 16:e1008522. [PMID: 32589686 PMCID: PMC7319597 DOI: 10.1371/journal.ppat.1008522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
DNA vectors have been widely used as a priming of poxvirus vaccine in prime/boost regimens. Whether the number of DNA impacts qualitatively or quantitatively the immune response is not fully explored. With the aim to reinforce T-cell responses by optimizing the prime-boost regimen, the multicentric EV03/ANRS VAC20 phase I/II trial, randomized 147 HIV-negative volunteers to either 3xDNA plus 1xNYVAC (weeks 0, 4, 8 plus 24; n = 74) or to 2xDNA plus 2xNYVAC (weeks 0, 4 plus 20, 24; n = 73) groups. T-cell responses (IFN-γ ELISPOT) to at least one peptide pool were higher in the 3xDNA than the 2xDNA groups (91% and 80% of vaccinees) (P = 0.049). In the 3xDNA arm, 26 (37%) recipients developed a broader T-cell response (Env plus at least to one of the Gag, Pol, Nef pools) than in the 2xDNA (15; 22%) arms (primary endpoint; P = 0.047) with a higher magnitude against Env (at week 26) (P<0.001). In both groups, vaccine regimens induced HIV-specific polyfunctional CD4 and CD8 T cells and the production of Th1, Th2 and Th17/IL-21 cytokines. Antibody responses were also elicited in up to 81% of vaccines. A higher percentage of IgG responders was noted in the 2xDNA arm compared to the 3xDNA arm, while the 3xDNA group tended to elicit a higher magnitude of IgG3 response against specific Env antigens. We show here that the modulation of the prime strategy, without modifying the route or the dose of administration, or the combination of vectors, may influence the quality of the responses. Development of a safe and effective HIV-1 vaccine would undoubtedly be the best solution for the ultimate control of the worldwide AIDS pandemic. To date, only one large phase III trial (RV144 Thai study) showed a partial and modest protection against HIV infection. This result raised hope in the field and encouraged the development of vaccines or strategies in order to improve vaccine efficacy. Several vaccine strategies designed to elicit broad HIV-specific T cells and/or neutralizing antibodies to prevent HIV-1 transmission are under evaluation. Among diverse candidate vaccines, the safety and immunogenicity of multi-gene DNA-based and Pox-virus derived vaccines have been evaluated in several clinical studies. The present study was designed to optimize the combination of these two vaccines with the aim of determining the optimal number of DNA primes for a poxvirus-based HIV vaccine regimen. We show here that the prime boost combination is highly immunogenic and that the number of DNA primes induces differentially T cell and antibody responses. A better priming of poxvirus-based vaccine regimens for T cells is obtained with 3 DNA injections. Our results contribute and extend data of several preclinical studies pointing out the potential interest of DNA as a prime capable not only of improving immune responses but also of imprinting the long-term responses to boost vaccines.
Collapse
Affiliation(s)
- Yves Lévy
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, équipe 16, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service d’Immunologie Clinique, Créteil, France
- * E-mail:
| | - Christine Lacabaratz
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, équipe 16, Créteil, France
| | | | | | - Jean-Daniel Lelièvre
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, équipe 16, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service d’Immunologie Clinique, Créteil, France
| | | | - Odile Launay
- Université de Paris, Faculté de médecine Paris Descartes; Inserm, CIC 1417, F-CRIN I-REIVAC; Assistance Publique-Hôpitaux de Paris, CIC Cochin Pasteur, Paris, France
| | | | - Bernd Salzberger
- University Hospital, Institute of Clinical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Aurélie Wiedemann
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, équipe 16, Créteil, France
| | - Mathieu Surenaud
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, équipe 16, Créteil, France
| | - David M. Koelle
- Department of Medicine & Department of Global Health, University of Washington, Fred Hutchinson Cancer Research Center Seattle, Washington, United States of America
| | - Hans Wolf
- University Hospital, Institute of Clinical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- University Hospital, Institute of Clinical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Véronique Rieux
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, équipe 16, Créteil, France
- ANRS, Paris, France
| | - David C. Montefiori
- Department of Surgery, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nicole L. Yates
- Department of Surgery, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Department of Surgery, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Bryan Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Song Ding
- EuroVacc Foundation, Lausanne, Switzerland
| | - Rodolphe Thiébaut
- Inserm, Bordeaux Population Health Research Center, UMR 1219, University Bordeaux, ISPED, CIC 1401-EC, Univ Bordeaux, Bordeaux, France
- CHU de Bordeaux, pôle de santé publique, Bordeaux, France
- INRIA SISTM, Talence, France
| | | | - Geneviève Chêne
- Inserm, Bordeaux Population Health Research Center, UMR 1219, University Bordeaux, ISPED, CIC 1401-EC, Univ Bordeaux, Bordeaux, France
- CHU de Bordeaux, pôle de santé publique, Bordeaux, France
| | - Giuseppe Pantaleo
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Petrushina I, Hovakimyan A, Harahap-Carrillo IS, Davtyan H, Antonyan T, Chailyan G, Kazarian K, Antonenko M, Jullienne A, Hamer MM, Obenaus A, King O, Zagorski K, Blurton-Jones M, Cribbs DH, Lander H, Ghochikyan A, Agadjanyan MG. Characterization and preclinical evaluation of the cGMP grade DNA based vaccine, AV-1959D to enter the first-in-human clinical trials. Neurobiol Dis 2020; 139:104823. [PMID: 32119976 PMCID: PMC8772258 DOI: 10.1016/j.nbd.2020.104823] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023] Open
Abstract
The DNA vaccine, AV-1959D, targeting N-terminal epitope of Aβ peptide, has been proven immunogenic in mice, rabbits, and non-human primates, while its therapeutic efficacy has been shown in mouse models of Alzheimer's disease (AD). Here we report for the first time on IND-enabling biodistribution and safety/toxicology studies of cGMP-grade AV-1959D vaccine in the Tg2576 mouse model of AD. We also tested acute neuropathology safety profiles of AV-1959D in another AD disease model, Tg-SwDI mice with established vascular and parenchymal Aβ pathology in a pre-clinical translational study. Biodistribution studies two days after the injection demonstrated high copy numbers of AV-1959D plasmid after single immunization of Tg2576 mice at the injection sites but not in the tissues of distant organs. Plasmids persisted at the injection sites of some mice 60 days after vaccination. In Tg2576 mice with established amyloid pathology, we did not observe short- or long-term toxicities after multiple immunizations with three doses of AV-1959D. Assessment of the repeated dose acute safety of AV-1959D in cerebral amyloid angiopathy (CAA) prone Tg-SwDI mice did not reveal any immunotherapy-induced vasogenic edema detected by magnetic resonance imaging (MRI) or increased microhemorrhages. Multiple immunizations of Tg-SwDI mice with AV-1959D did not induce T and B cell infiltration, glial activation, vascular deposition of Aβ, or neuronal degeneration (necrosis and apoptosis) greater than that in the control group determined by immunohistochemistry of brain tissues. Taken together, the safety data from two different mouse models of AD substantiate a favorable safety profile of the cGMP grade AV-1959D vaccine supporting its progression to first-in-human clinical trials.
Collapse
Affiliation(s)
- Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | | | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Tatevik Antonyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Gor Chailyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Konstantin Kazarian
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Maxim Antonenko
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Amandine Jullienne
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Mary M Hamer
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA; Preclinical and Translational Imaging Center, University of California, Irvine, CA, USA
| | - Olga King
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Karen Zagorski
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Harry Lander
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| |
Collapse
|
22
|
Tarimo EAM, Ambikile J, Munseri P, Bakari M. Perception of potential harm and benefits of HIV vaccine trial participation: A qualitative study from urban Tanzania. PLoS One 2019; 14:e0224831. [PMID: 31703092 PMCID: PMC6839895 DOI: 10.1371/journal.pone.0224831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of an effective preventive HIV vaccine is the best-known option to halt incident HIV infections. Participants in HIV vaccine trials may possess expectations shaped by existing socio-cultural contexts that are important to understand to allow for improved trial design. Here, we describe post-phase I/II HIV vaccine trial perceptions within participating communities in Dar es Salaam, Tanzania. MATERIALS AND METHODS This descriptive qualitative study was conducted in May 2016. We conducted eight focus group discussions, each consisting of 5 to 12 participants. Four groups comprised of the past phase I/II HIV vaccine trial participants and four groups involved those who did not participate. We used a thematic analysis approach. RESULTS Ongoing concerns existed among non-vaccine trial participants who believed that those who participated in HIV vaccine trials were infected with HIV. Limited post-HIV vaccine trial result dissemination, the pre-existing negative beliefs about vaccines, and experiences from other previous medical experiments fueled these concerns. The participants anticipated that broader dissemination of facts regarding HIV vaccine trials using media, former volunteers, and flyers would reduce the reported concerns. In contrast, some participants embraced the benefits gained through participating in HIV vaccine trials. HIV vaccine trial participants appreciated trial interventions, such as health status check-ups, knowledge acquisition, and facilitation of access to medical services. They envisioned mutual benefits in the form of community protection and capacity building among the local scientists. CONCLUSIONS The future conduct of HIV vaccine trials in Tanzania requires wider community dissemination of information and post-trial feedback to alleviate concerns among the participating communities. Interventions such as medical services may represent essential incentives to the HIV vaccine trial volunteers. In future HIV vaccine trials, it is crucial to boost individual and perceived mutual benefits.
Collapse
Affiliation(s)
- Edith A. M. Tarimo
- Department of Nursing Management, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Joel Ambikile
- Department of Clinical Nursing, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Patricia Munseri
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Muhammad Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
23
|
Affiliation(s)
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
| |
Collapse
|
24
|
Verma M, Furin J, Langer R, Traverso G. Making the case: developing innovative adherence solutions for the treatment of tuberculosis. BMJ Glob Health 2019; 4:e001323. [PMID: 30815283 PMCID: PMC6361324 DOI: 10.1136/bmjgh-2018-001323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 02/02/2023] Open
Affiliation(s)
- Malvika Verma
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Giovanni Traverso
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|