1
|
Picáns-Leis R, Vázquez-Mosquera ME, Pereira-Hernández M, Vizoso-González M, López-Valverde L, Barbosa-Gouveia S, López-Suárez O, López-Sanguos C, Bravo SB, García-González MA, Couce ML. Characterization of the functional component in human milk and identification of the molecular mechanisms undergoing prematurity. Clin Nutr 2025; 44:178-192. [PMID: 39700709 DOI: 10.1016/j.clnu.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND AIMS Human milk (HM) is the earliest form of extrauterine communication between mother and infant, that could promote early programming. The aim of this study is to look for specific biological processes, particularly those undergoing prematurity, modulated by proteins and miRNAs of HM that could be implicated in growth and development. METHODS This is a prospective, observational, single center study in which we collected 48 human milk (HM) samples at two distinct stages of lactation: colostrum (first 72-96 h) and mature milk (at week 4 post-delivery) from mothers of very preterm newborns (<32 weeks) and term (≥37 and < 42 weeks). Qualitative and quantitative proteomic and transcriptomic analysis was done in our samples. RESULTS We performed isolation and characterization of HM extracellular vesicles (EVs) to carry out proteomic and transcriptomic analysis in colostrum (CM) and mature milk (MM). Proteomic analysis revealed a functional role of CM in immunological protection and MM in metabolic processes. TENA, TSP1 and OLF4, proteins with roles in immune response and inflammatory modulation, were upregulated in CM vs MM, particularly in preterm. HM modulation differed depending on gestational age (GA). The miRNAs identified in HM are implicated in structural functions, including growth and neurological development. miRNA-451a was differentially expressed between groups, and downregulated in preterm CM. CONCLUSIONS Because the particularities of each GA are reflected in the EVs content of HM, providing newborns with HM from their own mother is the optimal way for satisfying their specific needs. Although the role of the proteomic profile of CM and MM of different GA in relation to neurodevelopment has been previously described, this is the first study to show a complete functional characterization of HM (proteome, miRNA at the same time), unmasking the molecular mechanisms related to EVs signaling and their functional role in preterm.
Collapse
Affiliation(s)
- Rosaura Picáns-Leis
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - María E Vázquez-Mosquera
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - María Pereira-Hernández
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain; RICORS2040 (Kidney Disease), Santiago de Compostela, Spain.
| | - Marta Vizoso-González
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain.
| | - Laura López-Valverde
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Sofía Barbosa-Gouveia
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Olalla López-Suárez
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Carolina López-Sanguos
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Susana B Bravo
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Proteomic Platform, University Clinical Hospital of Santiago de Compostela, Spain.
| | - Miguel A García-González
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain; RICORS2040 (Kidney Disease), Santiago de Compostela, Spain.
| | - María L Couce
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| |
Collapse
|
2
|
Alberro A, Bravo-Miana RDC, Gs Iñiguez S, Iribarren-López A, Arroyo-Izaga M, Matheu A, Muñoz-Culla M, Otaegui D. Age-Related sncRNAs in Human Hippocampal Tissue Samples: Focusing on Deregulated miRNAs. Int J Mol Sci 2024; 25:12872. [PMID: 39684581 DOI: 10.3390/ijms252312872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Small non-coding RNAs (sncRNAs), particularly microRNAs (miRNAs), play an important role in transcriptome regulation by binding to mRNAs and post-transcriptionally inhibiting protein production. This regulation occurs in both physiological and pathological conditions, where the expression of many miRNAs is altered. Previous reports by our group and others have demonstrated that miRNA expression is also altered during aging. However, most studies have analyzed human peripheral blood samples or brain samples from animal models, leaving a gap in knowledge regarding miRNA expression in the human brain. In this work, we analyzed the expression of sncRNAs from coronal sections of human hippocampal samples, a tissue with a high vulnerability to deleterious conditions such as aging. Samples from young (n = 5, 27-49 years old), old (n = 8, 58-88 years old), and centenarian (n = 3, 97, 99, and 100 years old) individuals were included. Our results reveal that sncRNAs, particularly miRNAs, are differentially expressed (DE) in the human hippocampus with aging. Besides, miRNA-mediated regulatory networks revealed significant interactions with mRNAs deregulated in the same hippocampal samples. Surprisingly, 80% of DE mRNA in the centenarian vs. old comparison are regulated by hsa-miR-192-5p and hsa-miR-3135b. Additionally, validated hsa-miR-6826-5p, hsa-let-7b-3p, hsa-miR-7846, and hsa-miR-451a emerged as promising miRNAs that are deregulated with aging and should be further investigated.
Collapse
Affiliation(s)
- Ainhoa Alberro
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Rocío Del Carmen Bravo-Miana
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Saioa Gs Iñiguez
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Andrea Iribarren-López
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Marta Arroyo-Izaga
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Bioaraba, 01006 Vitoria-Gasteiz, Spain
| | - Ander Matheu
- Cellular Oncology Group, Oncology Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Frailty and Healthy Ageing Research Area of CIBER (CIBERfes), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Maider Muñoz-Culla
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Department of Basic Psychological Processes and Their Development, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain
| | - David Otaegui
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
3
|
Ku T, Tan X, Liu Y, Wang R, Fan L, Ren Z, Ning X, Li G, Sang N. Triazole fungicides exert neural differentiation alteration through H3K27me3 modifications: In vitro and in silico study. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132225. [PMID: 37557044 DOI: 10.1016/j.jhazmat.2023.132225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Considering that humans are unavoidably exposed to triazole fungicides through the esophagus, respiratory tract, and skin contact, revealing the developmental toxicity of triazole fungicides is vital for health risk assessment. This study aimed to screen and discriminate neural developmental disorder chemicals in commonly used triazole fungicides, and explore the underlying harmful impacts on neurogenesis associated with histone modification abnormality in mouse embryonic stem cells (mESCs). The triploblastic and neural differentiation models were constructed based on mESCs to expose six typical triazole fungicides (myclobutanil, tebuconazole, hexaconazole, propiconazole, difenoconazole, and flusilazole). The result demonstrated that although no cytotoxicity was observed, different triazole fungicides exhibited varying degrees of alterations in neural differentiation, including increased ectodermal differentiation, promoted neurogenesis, increased intracellular calcium ion levels, and disturbance of neurotransmitters. Molecular docking, cluster analysis, and multiple linear regressions demonstrated that the binding affinities between triazole fungicides and the Kdm6b-ligand binding domain were the dominant determinants of the neurodevelopmental response. This partially resulted in the reduced enrichment of H3K27me3 at the promoter region of the serotonin receptor 2 C gene, finally leading to disturbed neural differentiation. The data suggested potential adverse outcomes of triazole fungicides on embryonic neurogenesis even under sublethal doses through interfering histone modification, providing substantial evidence on the safety control of fungicides.
Collapse
Affiliation(s)
- Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xin Tan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yutong Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Rui Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifan Fan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
4
|
Vinogradova A, Sysova M, Smirnova P, Sidorova M, Turkin A, Kurilova E, Tuchina O. Enriched Environment Induces Sex-Specific Changes in the Adult Neurogenesis, Cytokine and miRNA Expression in Rat Hippocampus. Biomedicines 2023; 11:1341. [PMID: 37239012 PMCID: PMC10215805 DOI: 10.3390/biomedicines11051341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
An enriched environment stimulates adult hippocampal plasticity, but the exact cellular and molecular mechanisms are complex, and thus a matter of debate. We studied the behavior and hippocampal neurogenesis in adult male and female Wistar rats that were housed in an enriched environment (EE) for two months. Both EE males and females performed better than control animals in a Barnes maze, meaning that EE enhances spatial memory. However, the expression levels of neurogenesis markers KI67, DCX, Nestin, and Syn1 increased only in EE females, while in EE males only KI67 and BDNF were higher than in the corresponding control. The number of DCX+ neurons on brain slices increased in the dentate gyrus of EE females only, i.e., the level of adult hippocampal neurogenesis was increased in female but not in male rats. The level of anti-inflammatory IL-10 and signaling pathway components was upregulated in EE females. Of 84 miRNAs tested, in the hippocampi of EE female rats we detected upregulation in the expression levels of 12 miRNAs related to neuronal differentiation and morphogenesis, while in EE males four miRNAs were upregulated and involved in the regulation of cell proliferation/differentiation, and one was downregulated and associated with the stimulation of proliferation. Taken altogether, our results point to sex-specific differences in adult hippocampal plasticity, IL-10 expression, and miRNA profiles induced by an enriched environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oksana Tuchina
- Educational and Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”, Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., 236016 Kaliningrad, Russia
| |
Collapse
|
5
|
Real-Time PCR Quantification of 87 miRNAs from Cerebrospinal Fluid: miRNA Dynamics and Association with Extracellular Vesicles after Severe Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24054751. [PMID: 36902179 PMCID: PMC10003046 DOI: 10.3390/ijms24054751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Severe traumatic brain injury (sTBI) is an intracranial damage triggered by external force, most commonly due to falls and traffic accidents. The initial brain injury can progress into a secondary injury involving numerous pathophysiological processes. The resulting sTBI dynamics makes the treatment challenging and prompts the improved understanding of underlying intracranial processes. Here, we analysed how extracellular microRNAs (miRNAs) are affected by sTBI. We collected thirty-five cerebrospinal fluids (CSF) from five sTBI patients during twelve days (d) after the injury and combined them into d1-2, d3-4, d5-6 and d7-12 CSF pools. After miRNA isolation and cDNA synthesis with added quantification spike-ins, we applied a real-time PCR-array targeting 87 miRNAs. We detected all of the targeted miRNAs, with totals ranging from several nanograms to less than a femtogram, with the highest levels found at d1-2 followed by decreasing levels in later CSF pools. The most abundant miRNAs were miR-451a, miR-16-5p, miR-144-3p, miR-20a-5p, let-7b-5p, miR-15a-5p, and miR-21-5p. After separating CSF by size-exclusion chromatography, most miRNAs were associated with free proteins, while miR-142-3p, miR-204-5p, and miR-223-3p were identified as the cargo of CD81-enriched extracellular vesicles, as characterised by immunodetection and tunable resistive pulse sensing. Our results indicate that miRNAs might be informative about both brain tissue damage and recovery after sTBI.
Collapse
|
6
|
Nedel F, Ferrúa CP, do Amaral CC, Corrêa GP, Silveira RG, Trettim JP, da Cunha GK, Klug AB, Ardais AP, Fogaça TB, Pinheiro KA, Bast RK, Ghisleni G, de M Souza LD, de Matos MB, Quevedo LDA, Pinheiro RT. Maternal expression of miR-let-7d-3p and miR-451a during gestation influences the neuropsychomotor development of 90 days old babies: "Pregnancy care, healthy baby" study. J Psychiatr Res 2023; 158:185-191. [PMID: 36587497 PMCID: PMC9907453 DOI: 10.1016/j.jpsychires.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Studies on maternal microRNA expression have emerged to better understand regulatory mechanisms during the gestational period, since microRNA expression has been associated with pregnancy disorders. OBJECTIVES This study aims to investigate the association between the expression of the maternal microRNAs miR-let-7d-3p and miR-451a during the second gestational trimester and neuropsychomotor development at 90 days of life of infants. METHODS This is a case-control study nested within a cohort, with the groups being divided into dyads in which pregnant women presented Major Depressive Episode (MDE) (n = 64), these being the cases, and their respective controls (no MDE; n = 64). The Bayley Scale III was used to assess the outcome of child development, and MDE was assessed through the Mini International Neuropsychiatric Interview Plus. The analysis of miR-let-7d-3p and miR-451a was done via serum from the pregnant women, utilizing the qRT-PCR (n = 128). RESULTS The results indicated a negative association between expression levels of miR-451a (β -3.3 CI95% -6.4;-0.3) and a positive associated of the miR-let-7d-3p with the cognitive development domain (β 1.7 CI95% 0.1; 3.0), and a positive association between expression of miR-let-7d-3p with motor development of the infants (β 1.6 CI95% 0.3; 2.9). CONCLUSION This is a pioneering study on the topic that indicates a biological interrelationship between the miRNAs miR-let-7d-3p and miR-451a evaluated during the pregnancy and the motor and cognitive domains of infant development at 90 days postpartum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tatiane B. Fogaça
- San Francisco de Paula University Hospital – Fetal Medicine Service, Pelotas, RS, Brazil
| | - Karen A.T. Pinheiro
- University of Rio Grande Foundation (FURG), FAMED, Department of Specialized Surgery, Rio Grande/RS, Brazil
| | - Rachel K.S.S. Bast
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul. Porto Alegre/RS, Brazil
| | | | | | | | | | - Ricardo T. Pinheiro
- Catholic University of Pelotas, Pelotas, RS, Brazil,Corresponding author. Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Gonçalves Chaves, 373, Centro – Pelotas, Rio Grande do Sul, 96015-560, Brazil.
| |
Collapse
|
7
|
Ramírez AE, Gil-Jaramillo N, Tapias MA, González-Giraldo Y, Pinzón A, Puentes-Rozo PJ, Aristizábal-Pachón AF, González J. MicroRNA: A Linking between Astrocyte Dysfunction, Mild Cognitive Impairment, and Neurodegenerative Diseases. Life (Basel) 2022; 12:life12091439. [PMID: 36143475 PMCID: PMC9505027 DOI: 10.3390/life12091439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/06/2022] Open
Abstract
Simple Summary Neurodegenerative diseases are complex neurological disorders with a high incidence worldwide in older people, increasing hospital visits and requiring expensive treatments. As a precursor phase of neurodegenerative diseases, cognitive impairment needs to be studied to understand the factors that influence its development and improve patients’ quality of life. The present review compiles possible factors and biomarkers for diagnosing mild cognitive impairment based on the most recent studies involving miRNAs. These molecules can direct the gene expression in multiple cells, affecting their behavior under certain conditions, such as stressing factors. This review encourages further research into biomarkers that identify cognitive impairment in cellular models such as astrocytes, which are brain cells capable of maintaining the optimal conditions for the central nervous system functioning. Abstract The importance of miRNAs in cellular processes and their dysregulation has taken significant importance in understanding different pathologies. Due to the constant increase in the prevalence of neurodegenerative diseases (ND) worldwide and their economic impact, mild cognitive impairment (MCI), considered a prodromal phase, is a logical starting point to study this public health problem. Multiple studies have established the importance of miRNAs in MCI, including astrocyte regulation during stressful conditions. Additionally, the protection mechanisms exerted by astrocytes against some damage in the central nervous system (CNS) lead to astrocytic reactivation, in which a differential expression of miRNAs has been shown. Nevertheless, excessive reactivation can cause neurodegeneration, and a clear pattern defining the equilibrium point between a neuroprotective or detrimental astrocytic phenotype is unknown. Therefore, the miRNA expression has gained significant attention to understand the maintenance of brain balance and improve the diagnosis and treatment at earlier stages in the ND. Here, we provide a comprehensive review of the emerging role of miRNAs in cellular processes that contribute to the loss of cognitive function, including lipotoxicity, which can induce chronic inflammation, also considering the fundamental role of astrocytes in brain homeostasis.
Collapse
Affiliation(s)
- Angelica E. Ramírez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Natalia Gil-Jaramillo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - María Alejandra Tapias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080007, Colombia
| | | | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Correspondence:
| |
Collapse
|
8
|
Han X, Kuang Y, Chen H, Liu T, Zhang J, Liu J. p19INK4d: More than Just a Cyclin-Dependent Kinase Inhibitor. Curr Drug Targets 2021; 21:96-102. [PMID: 31400265 DOI: 10.2174/1389450120666190809161901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
Cyclin-dependent kinase inhibitors (CDKIs) are important cell cycle regulators. The CDKI family is composed of the INK4 family and the CIP/KIP family. p19INK4d belongs to the INK4 gene family and is involved in a series of normal physiological activities and the pathogenesis of diseases. Many factors play regulatory roles in the p19INK4d gene expression at the transcriptional and posttranscriptional levels. p19INK4d not only regulates the cell cycle but also plays regulatory roles in apoptosis, DNA damage repair, cell differentiation of hematopoietic cells, and cellular senescence. In this review, the regulatory network of the p19INK4d gene expression and its biological functions are summarized, which provides a basis for further study of p19INK4d as a drug target for disease treatment.
Collapse
Affiliation(s)
- Xu Han
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yijin Kuang
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Huiyong Chen
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ting Liu
- Department of Rheumatology, the First Affiliated Hospital of South China University, Hengyang, Hunan, China
| | - Ji Zhang
- Department of Rheumatology, the First Affiliated Hospital of South China University, Hengyang, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Li M, Zhou Y, Taylor HS. miR-451a Inhibition Reduces Established Endometriosis Lesions in Mice. Reprod Sci 2019; 26:1506-1511. [PMID: 31354069 DOI: 10.1177/1933719119862050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endometriosis is an estrogen-dependent pro-inflammatory disease that affects 6% to 10% of reproductive-age women. Current treatments target sex steroids, and none are disease-specific. MicroRNA treatments have provided promising results for some chronic diseases and cancers. We have previously shown microRNA 451a is increased in endometriosis and that elevation of 451a contributes to the pathophysiology of the disease. Here, we propose inhibition of miR-451a for the treatment of endometriosis in a murine model. Endometriosis was treated using a microRNA 451a inhibitor or a scrambled control microRNA. Treatment with miR-451a inhibitor resulted in reduced endometriosis lesion size (30 vs 13 mm3). There was no difference in the number of visible lesions between the miR-451a treatment and controls. Treatment led to altered expression of several genes including YWHAZ, CAB39, MAPK1, β-catenin, and IL-6. Systemic treatment with a miR-451a inhibitor is a promising therapy for endometriosis that simultaneously affects multiple pathways driving the disease.
Collapse
Affiliation(s)
- Menghui Li
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA. Li is now with the Department of Obstetrics and Gynecology, Affiliated to Beijing Chaoyang Hospital, Capital University of Medical Science, Chaoyang District, Beijing, China
| | - Yuping Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA. Li is now with the Department of Obstetrics and Gynecology, Affiliated to Beijing Chaoyang Hospital, Capital University of Medical Science, Chaoyang District, Beijing, China
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA. Li is now with the Department of Obstetrics and Gynecology, Affiliated to Beijing Chaoyang Hospital, Capital University of Medical Science, Chaoyang District, Beijing, China
| |
Collapse
|